From Nsnam
Revision as of 08:14, 20 May 2019 by Tommasozugno (Talk | contribs) (add link to GSOC 2019 page)

Jump to: navigation, search

Main Page - Current Development - Developer FAQ - Tools - Related Projects - Project Ideas - Summer Projects

Installation - Troubleshooting - User FAQ - HOWTOs - Samples - Models - Education - Contributed Code - Papers

Back to Google Summer of Code 2019.

Project Overview

  • Project Name: Integration of the 3GPP TR 38.901 channel model in the ns-3 spectrum module
  • Student: Tommaso Zugno
  • Mentor: Natale Patriciello
  • Proposal: link to the document
  • Abstract: In recent years, ns-3 has been widely used for the simulation of wireless networks, because it features several built-in and external modules implementing different wireless technologies. The overall performance of this kind of networks are strongly influenced by the characteristics of the signal propagation through the wireless link, thereby, a proper modeling of the channel behavior is of primary importance to obtain reliable results from the simulations. This project aims to tackle this issue by proposing an extension of the spectrum module to model both frequency and spatial-dependent phenomena, and to account for the directional behavior of the signal propagation. This will be achieved by implementing the modeling framework described in 3GPP TR 38.901, which includes the statistical characterization of different propagation environments, supports the modeling of multi-antenna systems, and, thanks to its modularity, can be easily extended with new environments or other additional features. Even if it has been specifically designed for the simulation of cellular networks, it supports frequency bands between 0.5 and 100 GHz, thus can be used even for other wireless technologies.
  • Code: to be added
  • About Me: I am a first-year PhD student at the University of Padova, Italy, working under the supervision of prof. Michele Zorzi. My research focus on protocols and architectures for 5G cellular systems operating at mmWaves.

Project Timeline