A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
wifi-eht-network.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2022
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Sebastien Deronne <sebastien.deronne@gmail.com>
18 */
19
20#include "ns3/boolean.h"
21#include "ns3/command-line.h"
22#include "ns3/config.h"
23#include "ns3/double.h"
24#include "ns3/eht-phy.h"
25#include "ns3/enum.h"
26#include "ns3/internet-stack-helper.h"
27#include "ns3/ipv4-address-helper.h"
28#include "ns3/log.h"
29#include "ns3/mobility-helper.h"
30#include "ns3/multi-model-spectrum-channel.h"
31#include "ns3/on-off-helper.h"
32#include "ns3/packet-sink-helper.h"
33#include "ns3/packet-sink.h"
34#include "ns3/rng-seed-manager.h"
35#include "ns3/spectrum-wifi-helper.h"
36#include "ns3/ssid.h"
37#include "ns3/string.h"
38#include "ns3/udp-client-server-helper.h"
39#include "ns3/udp-server.h"
40#include "ns3/uinteger.h"
41#include "ns3/wifi-acknowledgment.h"
42#include "ns3/yans-wifi-channel.h"
43#include "ns3/yans-wifi-helper.h"
44
45#include <array>
46#include <functional>
47#include <numeric>
48
49// This is a simple example in order to show how to configure an IEEE 802.11be Wi-Fi network.
50//
51// It outputs the UDP or TCP goodput for every EHT MCS value, which depends on the MCS value (0 to
52// 13), the channel width (20, 40, 80 or 160 MHz) and the guard interval (800ns, 1600ns or 3200ns).
53// The PHY bitrate is constant over all the simulation run. The user can also specify the distance
54// between the access point and the station: the larger the distance the smaller the goodput.
55//
56// The simulation assumes a configurable number of stations in an infrastructure network:
57//
58// STA AP
59// * *
60// | |
61// n1 n2
62//
63// Packets in this simulation belong to BestEffort Access Class (AC_BE).
64// By selecting an acknowledgment sequence for DL MU PPDUs, it is possible to aggregate a
65// Round Robin scheduler to the AP, so that DL MU PPDUs are sent by the AP via DL OFDMA.
66
67using namespace ns3;
68
69NS_LOG_COMPONENT_DEFINE("eht-wifi-network");
70
77std::vector<uint64_t>
78GetRxBytes(bool udp, const ApplicationContainer& serverApp, uint32_t payloadSize)
79{
80 std::vector<uint64_t> rxBytes(serverApp.GetN(), 0);
81 if (udp)
82 {
83 for (uint32_t i = 0; i < serverApp.GetN(); i++)
84 {
85 rxBytes[i] = payloadSize * DynamicCast<UdpServer>(serverApp.Get(i))->GetReceived();
86 }
87 }
88 else
89 {
90 for (uint32_t i = 0; i < serverApp.GetN(); i++)
91 {
92 rxBytes[i] = DynamicCast<PacketSink>(serverApp.Get(i))->GetTotalRx();
93 }
94 }
95 return rxBytes;
96}
97
107void
108PrintIntermediateTput(std::vector<uint64_t>& rxBytes,
109 bool udp,
110 const ApplicationContainer& serverApp,
111 uint32_t payloadSize,
112 Time tputInterval,
113 double simulationTime)
114{
115 auto newRxBytes = GetRxBytes(udp, serverApp, payloadSize);
116 Time now = Simulator::Now();
117
118 std::cout << "[" << (now - tputInterval).As(Time::S) << " - " << now.As(Time::S)
119 << "] Per-STA Throughput (Mbit/s):";
120
121 for (std::size_t i = 0; i < newRxBytes.size(); i++)
122 {
123 std::cout << "\t\t(" << i << ") "
124 << (newRxBytes[i] - rxBytes[i]) * 8. / tputInterval.GetMicroSeconds(); // Mbit/s
125 }
126 std::cout << std::endl;
127
128 rxBytes.swap(newRxBytes);
129
130 if (now < Seconds(simulationTime) - NanoSeconds(1))
131 {
132 Simulator::Schedule(Min(tputInterval, Seconds(simulationTime) - now - NanoSeconds(1)),
134 rxBytes,
135 udp,
136 serverApp,
137 payloadSize,
138 tputInterval,
139 simulationTime);
140 }
141}
142
143int
144main(int argc, char* argv[])
145{
146 bool udp{true};
147 bool downlink{true};
148 bool useRts{false};
149 uint16_t mpduBufferSize{512};
150 std::string emlsrLinks;
151 uint16_t paddingDelayUsec{32};
152 uint16_t transitionDelayUsec{128};
153 uint16_t channelSwitchDelayUsec{100};
154 bool switchAuxPhy{true};
155 double simulationTime{10}; // seconds
156 double distance{1.0}; // meters
157 double frequency{5}; // whether the first link operates in the 2.4, 5 or 6 GHz
158 double frequency2{0}; // whether the second link operates in the 2.4, 5 or 6 GHz (0 means no
159 // second link exists)
160 double frequency3{
161 0}; // whether the third link operates in the 2.4, 5 or 6 GHz (0 means no third link exists)
162 std::size_t nStations{1};
163 std::string dlAckSeqType{"NO-OFDMA"};
164 bool enableUlOfdma{false};
165 bool enableBsrp{false};
166 int mcs{-1}; // -1 indicates an unset value
167 uint32_t payloadSize =
168 700; // must fit in the max TX duration when transmitting at MCS 0 over an RU of 26 tones
169 Time tputInterval{0}; // interval for detailed throughput measurement
170 double minExpectedThroughput{0};
171 double maxExpectedThroughput{0};
172 Time accessReqInterval{0};
173
174 CommandLine cmd(__FILE__);
175 cmd.AddValue(
176 "frequency",
177 "Whether the first link operates in the 2.4, 5 or 6 GHz band (other values gets rejected)",
178 frequency);
179 cmd.AddValue(
180 "frequency2",
181 "Whether the second link operates in the 2.4, 5 or 6 GHz band (0 means the device has one "
182 "link, otherwise the band must be different than first link and third link)",
183 frequency2);
184 cmd.AddValue(
185 "frequency3",
186 "Whether the third link operates in the 2.4, 5 or 6 GHz band (0 means the device has up to "
187 "two links, otherwise the band must be different than first link and second link)",
188 frequency3);
189 cmd.AddValue("emlsrLinks",
190 "The comma separated list of IDs of EMLSR links (for MLDs only)",
191 emlsrLinks);
192 cmd.AddValue("emlsrPaddingDelay",
193 "The EMLSR padding delay in microseconds (0, 32, 64, 128 or 256)",
194 paddingDelayUsec);
195 cmd.AddValue("emlsrTransitionDelay",
196 "The EMLSR transition delay in microseconds (0, 16, 32, 64, 128 or 256)",
197 transitionDelayUsec);
198 cmd.AddValue("emlsrAuxSwitch",
199 "Whether Aux PHY should switch channel to operate on the link on which "
200 "the Main PHY was operating before moving to the link of the Aux PHY. ",
201 switchAuxPhy);
202 cmd.AddValue("channelSwitchDelay",
203 "The PHY channel switch delay in microseconds",
204 channelSwitchDelayUsec);
205 cmd.AddValue("distance",
206 "Distance in meters between the station and the access point",
207 distance);
208 cmd.AddValue("simulationTime", "Simulation time in seconds", simulationTime);
209 cmd.AddValue("udp", "UDP if set to 1, TCP otherwise", udp);
210 cmd.AddValue("downlink",
211 "Generate downlink flows if set to 1, uplink flows otherwise",
212 downlink);
213 cmd.AddValue("useRts", "Enable/disable RTS/CTS", useRts);
214 cmd.AddValue("mpduBufferSize",
215 "Size (in number of MPDUs) of the BlockAck buffer",
216 mpduBufferSize);
217 cmd.AddValue("nStations", "Number of non-AP EHT stations", nStations);
218 cmd.AddValue("dlAckType",
219 "Ack sequence type for DL OFDMA (NO-OFDMA, ACK-SU-FORMAT, MU-BAR, AGGR-MU-BAR)",
220 dlAckSeqType);
221 cmd.AddValue("enableUlOfdma",
222 "Enable UL OFDMA (useful if DL OFDMA is enabled and TCP is used)",
223 enableUlOfdma);
224 cmd.AddValue("enableBsrp",
225 "Enable BSRP (useful if DL and UL OFDMA are enabled and TCP is used)",
226 enableBsrp);
227 cmd.AddValue(
228 "muSchedAccessReqInterval",
229 "Duration of the interval between two requests for channel access made by the MU scheduler",
230 accessReqInterval);
231 cmd.AddValue("mcs", "if set, limit testing to a specific MCS (0-11)", mcs);
232 cmd.AddValue("payloadSize", "The application payload size in bytes", payloadSize);
233 cmd.AddValue("tputInterval", "duration of intervals for throughput measurement", tputInterval);
234 cmd.AddValue("minExpectedThroughput",
235 "if set, simulation fails if the lowest throughput is below this value",
236 minExpectedThroughput);
237 cmd.AddValue("maxExpectedThroughput",
238 "if set, simulation fails if the highest throughput is above this value",
239 maxExpectedThroughput);
240 cmd.Parse(argc, argv);
241
242 if (useRts)
243 {
244 Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue("0"));
245 Config::SetDefault("ns3::WifiDefaultProtectionManager::EnableMuRts", BooleanValue(true));
246 }
247
248 if (dlAckSeqType == "ACK-SU-FORMAT")
249 {
250 Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
252 }
253 else if (dlAckSeqType == "MU-BAR")
254 {
255 Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
257 }
258 else if (dlAckSeqType == "AGGR-MU-BAR")
259 {
260 Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
262 }
263 else if (dlAckSeqType != "NO-OFDMA")
264 {
265 NS_ABORT_MSG("Invalid DL ack sequence type (must be NO-OFDMA, ACK-SU-FORMAT, MU-BAR or "
266 "AGGR-MU-BAR)");
267 }
268
269 double prevThroughput[12] = {0};
270
271 std::cout << "MCS value"
272 << "\t\t"
273 << "Channel width"
274 << "\t\t"
275 << "GI"
276 << "\t\t\t"
277 << "Throughput" << '\n';
278 int minMcs = 0;
279 int maxMcs = 13;
280 if (mcs >= 0 && mcs <= 13)
281 {
282 minMcs = mcs;
283 maxMcs = mcs;
284 }
285 for (int mcs = minMcs; mcs <= maxMcs; mcs++)
286 {
287 uint8_t index = 0;
288 double previous = 0;
289 uint16_t maxChannelWidth =
290 (frequency != 2.4 && frequency2 != 2.4 && frequency3 != 2.4) ? 160 : 40;
291 for (int channelWidth = 20; channelWidth <= maxChannelWidth;) // MHz
292 {
293 for (int gi = 3200; gi >= 800;) // Nanoseconds
294 {
295 if (!udp)
296 {
297 Config::SetDefault("ns3::TcpSocket::SegmentSize", UintegerValue(payloadSize));
298 }
299
301 wifiStaNodes.Create(nStations);
303 wifiApNode.Create(1);
304
305 NetDeviceContainer apDevice;
309
310 wifi.SetStandard(WIFI_STANDARD_80211be);
311 std::array<std::string, 3> channelStr;
312 std::array<FrequencyRange, 3> freqRanges;
313 uint8_t nLinks = 0;
314 std::string dataModeStr = "EhtMcs" + std::to_string(mcs);
315 std::string ctrlRateStr;
316 uint64_t nonHtRefRateMbps = EhtPhy::GetNonHtReferenceRate(mcs) / 1e6;
317
318 if (frequency2 == frequency || frequency3 == frequency ||
319 (frequency3 != 0 && frequency3 == frequency2))
320 {
321 std::cout << "Frequency values must be unique!" << std::endl;
322 return 0;
323 }
324
325 for (auto freq : {frequency, frequency2, frequency3})
326 {
327 if (nLinks > 0 && freq == 0)
328 {
329 break;
330 }
331 channelStr[nLinks] = "{0, " + std::to_string(channelWidth) + ", ";
332 if (freq == 6)
333 {
334 channelStr[nLinks] += "BAND_6GHZ, 0}";
335 freqRanges[nLinks] = WIFI_SPECTRUM_6_GHZ;
336 Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss",
337 DoubleValue(48));
338 wifi.SetRemoteStationManager(nLinks,
339 "ns3::ConstantRateWifiManager",
340 "DataMode",
341 StringValue(dataModeStr),
342 "ControlMode",
343 StringValue(dataModeStr));
344 }
345 else if (freq == 5)
346 {
347 channelStr[nLinks] += "BAND_5GHZ, 0}";
348 freqRanges[nLinks] = WIFI_SPECTRUM_5_GHZ;
349 ctrlRateStr = "OfdmRate" + std::to_string(nonHtRefRateMbps) + "Mbps";
350 wifi.SetRemoteStationManager(nLinks,
351 "ns3::ConstantRateWifiManager",
352 "DataMode",
353 StringValue(dataModeStr),
354 "ControlMode",
355 StringValue(ctrlRateStr));
356 }
357 else if (freq == 2.4)
358 {
359 channelStr[nLinks] += "BAND_2_4GHZ, 0}";
360 freqRanges[nLinks] = WIFI_SPECTRUM_2_4_GHZ;
361 Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss",
362 DoubleValue(40));
363 ctrlRateStr = "ErpOfdmRate" + std::to_string(nonHtRefRateMbps) + "Mbps";
364 wifi.SetRemoteStationManager(nLinks,
365 "ns3::ConstantRateWifiManager",
366 "DataMode",
367 StringValue(dataModeStr),
368 "ControlMode",
369 StringValue(ctrlRateStr));
370 }
371 else
372 {
373 std::cout << "Wrong frequency value!" << std::endl;
374 return 0;
375 }
376 nLinks++;
377 }
378
379 if (nLinks > 1 && !emlsrLinks.empty())
380 {
381 wifi.ConfigEhtOptions("EmlsrActivated", BooleanValue(true));
382 }
383
384 Ssid ssid = Ssid("ns3-80211be");
385
386 /*
387 * SingleModelSpectrumChannel cannot be used with 802.11be because two
388 * spectrum models are required: one with 78.125 kHz bands for HE PPDUs
389 * and one with 312.5 kHz bands for, e.g., non-HT PPDUs (for more details,
390 * see issue #408 (CLOSED))
391 */
393 phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO);
394 phy.Set("ChannelSwitchDelay", TimeValue(MicroSeconds(channelSwitchDelayUsec)));
395
396 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
397 mac.SetEmlsrManager("ns3::DefaultEmlsrManager",
398 "EmlsrLinkSet",
399 StringValue(emlsrLinks),
400 "EmlsrPaddingDelay",
401 TimeValue(MicroSeconds(paddingDelayUsec)),
402 "EmlsrTransitionDelay",
403 TimeValue(MicroSeconds(transitionDelayUsec)),
404 "SwitchAuxPhy",
405 BooleanValue(switchAuxPhy));
406 for (uint8_t linkId = 0; linkId < nLinks; linkId++)
407 {
408 phy.Set(linkId, "ChannelSettings", StringValue(channelStr[linkId]));
409
410 auto spectrumChannel = CreateObject<MultiModelSpectrumChannel>();
411 auto lossModel = CreateObject<LogDistancePropagationLossModel>();
412 spectrumChannel->AddPropagationLossModel(lossModel);
413 phy.AddChannel(spectrumChannel, freqRanges[linkId]);
414 }
415 staDevices = wifi.Install(phy, mac, wifiStaNodes);
416
417 if (dlAckSeqType != "NO-OFDMA")
418 {
419 mac.SetMultiUserScheduler("ns3::RrMultiUserScheduler",
420 "EnableUlOfdma",
421 BooleanValue(enableUlOfdma),
422 "EnableBsrp",
423 BooleanValue(enableBsrp),
424 "AccessReqInterval",
425 TimeValue(accessReqInterval));
426 }
427 mac.SetType("ns3::ApWifiMac",
428 "EnableBeaconJitter",
429 BooleanValue(false),
430 "Ssid",
431 SsidValue(ssid));
432 apDevice = wifi.Install(phy, mac, wifiApNode);
433
436 int64_t streamNumber = 100;
437 streamNumber += wifi.AssignStreams(apDevice, streamNumber);
438 streamNumber += wifi.AssignStreams(staDevices, streamNumber);
439
440 // Set guard interval and MPDU buffer size
442 "/NodeList/*/DeviceList/*/$ns3::WifiNetDevice/HeConfiguration/GuardInterval",
444 Config::Set("/NodeList/*/DeviceList/*/$ns3::WifiNetDevice/Mac/MpduBufferSize",
445 UintegerValue(mpduBufferSize));
446
447 // mobility.
449 Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
450
451 positionAlloc->Add(Vector(0.0, 0.0, 0.0));
452 positionAlloc->Add(Vector(distance, 0.0, 0.0));
453 mobility.SetPositionAllocator(positionAlloc);
454
455 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
456
457 mobility.Install(wifiApNode);
458 mobility.Install(wifiStaNodes);
459
460 /* Internet stack*/
462 stack.Install(wifiApNode);
463 stack.Install(wifiStaNodes);
464
466 address.SetBase("192.168.1.0", "255.255.255.0");
467 Ipv4InterfaceContainer staNodeInterfaces;
468 Ipv4InterfaceContainer apNodeInterface;
469
470 staNodeInterfaces = address.Assign(staDevices);
471 apNodeInterface = address.Assign(apDevice);
472
473 /* Setting applications */
474 ApplicationContainer serverApp;
475 auto serverNodes = downlink ? std::ref(wifiStaNodes) : std::ref(wifiApNode);
477 NodeContainer clientNodes;
478 for (std::size_t i = 0; i < nStations; i++)
479 {
480 serverInterfaces.Add(downlink ? staNodeInterfaces.Get(i)
481 : apNodeInterface.Get(0));
482 clientNodes.Add(downlink ? wifiApNode.Get(0) : wifiStaNodes.Get(i));
483 }
484
485 const auto maxLoad =
486 nLinks * EhtPhy::GetDataRate(mcs, channelWidth, gi, 1) / nStations;
487 if (udp)
488 {
489 // UDP flow
490 uint16_t port = 9;
492 serverApp = server.Install(serverNodes.get());
493 serverApp.Start(Seconds(0.0));
494 serverApp.Stop(Seconds(simulationTime + 1));
495 const auto packetInterval = payloadSize * 8.0 / maxLoad;
496
497 for (std::size_t i = 0; i < nStations; i++)
498 {
500 client.SetAttribute("MaxPackets", UintegerValue(4294967295U));
501 client.SetAttribute("Interval", TimeValue(Seconds(packetInterval)));
502 client.SetAttribute("PacketSize", UintegerValue(payloadSize));
503 ApplicationContainer clientApp = client.Install(clientNodes.Get(i));
504 clientApp.Start(Seconds(1.0));
505 clientApp.Stop(Seconds(simulationTime + 1));
506 }
507 }
508 else
509 {
510 // TCP flow
511 uint16_t port = 50000;
513 PacketSinkHelper packetSinkHelper("ns3::TcpSocketFactory", localAddress);
514 serverApp = packetSinkHelper.Install(serverNodes.get());
515 serverApp.Start(Seconds(0.0));
516 serverApp.Stop(Seconds(simulationTime + 1));
517
518 for (std::size_t i = 0; i < nStations; i++)
519 {
520 OnOffHelper onoff("ns3::TcpSocketFactory", Ipv4Address::GetAny());
521 onoff.SetAttribute("OnTime",
522 StringValue("ns3::ConstantRandomVariable[Constant=1]"));
523 onoff.SetAttribute("OffTime",
524 StringValue("ns3::ConstantRandomVariable[Constant=0]"));
525 onoff.SetAttribute("PacketSize", UintegerValue(payloadSize));
526 onoff.SetAttribute("DataRate", DataRateValue(maxLoad));
528 InetSocketAddress(serverInterfaces.GetAddress(i), port));
529 onoff.SetAttribute("Remote", remoteAddress);
530 ApplicationContainer clientApp = onoff.Install(clientNodes.Get(i));
531 clientApp.Start(Seconds(1.0));
532 clientApp.Stop(Seconds(simulationTime + 1));
533 }
534 }
535
536 // cumulative number of bytes received by each server application
537 std::vector<uint64_t> cumulRxBytes(nStations, 0);
538
539 if (tputInterval.IsStrictlyPositive())
540 {
541 Simulator::Schedule(Seconds(1) + tputInterval,
543 cumulRxBytes,
544 udp,
545 serverApp,
546 payloadSize,
547 tputInterval,
548 simulationTime + 1);
549 }
550
551 Simulator::Stop(Seconds(simulationTime + 1));
553
554 // When multiple stations are used, there are chances that association requests
555 // collide and hence the throughput may be lower than expected. Therefore, we relax
556 // the check that the throughput cannot decrease by introducing a scaling factor (or
557 // tolerance)
558 double tolerance = 0.10;
559 cumulRxBytes = GetRxBytes(udp, serverApp, payloadSize);
560 uint64_t rxBytes = std::accumulate(cumulRxBytes.cbegin(), cumulRxBytes.cend(), 0);
561 double throughput = (rxBytes * 8) / (simulationTime * 1000000.0); // Mbit/s
562
564
565 std::cout << mcs << "\t\t\t" << channelWidth << " MHz\t\t\t" << gi << " ns\t\t\t"
566 << throughput << " Mbit/s" << std::endl;
567
568 // test first element
569 if (mcs == 0 && channelWidth == 20 && gi == 3200)
570 {
571 if (throughput * (1 + tolerance) < minExpectedThroughput)
572 {
573 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
574 exit(1);
575 }
576 }
577 // test last element
578 if (mcs == 11 && channelWidth == 160 && gi == 800)
579 {
580 if (maxExpectedThroughput > 0 &&
581 throughput > maxExpectedThroughput * (1 + tolerance))
582 {
583 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
584 exit(1);
585 }
586 }
587 // test previous throughput is smaller (for the same mcs)
588 if (throughput * (1 + tolerance) > previous)
589 {
590 previous = throughput;
591 }
592 else if (throughput > 0)
593 {
594 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
595 exit(1);
596 }
597 // test previous throughput is smaller (for the same channel width and GI)
598 if (throughput * (1 + tolerance) > prevThroughput[index])
599 {
600 prevThroughput[index] = throughput;
601 }
602 else if (throughput > 0)
603 {
604 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
605 exit(1);
606 }
607 index++;
608 gi /= 2;
609 }
610 channelWidth *= 2;
611 }
612 }
613 return 0;
614}
#define Min(a, b)
a polymophic address class
Definition: address.h:101
AttributeValue implementation for Address.
Definition: address.h:286
holds a vector of ns3::Application pointers.
void Start(Time start) const
Start all of the Applications in this container at the start time given as a parameter.
Ptr< Application > Get(uint32_t i) const
Get the Ptr<Application> stored in this container at a given index.
void Stop(Time stop) const
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter.
uint32_t GetN() const
Get the number of Ptr<Application> stored in this container.
AttributeValue implementation for Boolean.
Definition: boolean.h:37
Parse command-line arguments.
Definition: command-line.h:232
AttributeValue implementation for DataRate.
Definition: data-rate.h:296
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
static uint64_t GetNonHtReferenceRate(uint8_t mcsValue)
Calculate the rate in bps of the non-HT Reference Rate corresponding to the supplied HE MCS index.
Definition: eht-phy.cc:388
static uint64_t GetDataRate(uint8_t mcsValue, uint16_t channelWidth, uint16_t guardInterval, uint8_t nss)
Return the data rate corresponding to the supplied EHT MCS index, channel width, guard interval,...
Definition: eht-phy.cc:376
Hold variables of type enum.
Definition: enum.h:62
an Inet address class
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
static Ipv4Address GetAny()
holds a vector of std::pair of Ptr<Ipv4> and interface index.
std::pair< Ptr< Ipv4 >, uint32_t > Get(uint32_t i) const
Get the std::pair of an Ptr<Ipv4> and interface stored at the location specified by the index.
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
keep track of a set of node pointers.
void Add(const NodeContainer &nc)
Append the contents of another NodeContainer to the end of this container.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
A helper to make it easier to instantiate an ns3::OnOffApplication on a set of nodes.
Definition: on-off-helper.h:37
A helper to make it easier to instantiate an ns3::PacketSinkApplication on a set of nodes.
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static void SetRun(uint64_t run)
Set the run number of simulation.
static void SetSeed(uint32_t seed)
Set the seed.
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:571
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:142
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
static void Run()
Run the simulation.
Definition: simulator.cc:178
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:186
Make it easy to create and manage PHY objects for the spectrum model.
The IEEE 802.11 SSID Information Element.
Definition: ssid.h:36
AttributeValue implementation for Ssid.
Definition: ssid.h:96
Hold variables of type string.
Definition: string.h:56
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
TimeWithUnit As(const Unit unit=Time::AUTO) const
Attach a unit to a Time, to facilitate output in a specific unit.
Definition: time.cc:415
@ S
second
Definition: nstime.h:116
int64_t GetMicroSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:413
AttributeValue implementation for Time.
Definition: nstime.h:1413
Create a client application which sends UDP packets carrying a 32bit sequence number and a 64 bit tim...
Create a server application which waits for input UDP packets and uses the information carried into t...
Hold an unsigned integer type.
Definition: uinteger.h:45
helps to create WifiNetDevice objects
Definition: wifi-helper.h:324
create MAC layers for a ns3::WifiNetDevice.
@ DLT_IEEE802_11_RADIO
Include Radiotap link layer information.
Definition: wifi-helper.h:178
uint16_t port
Definition: dsdv-manet.cc:44
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:894
void Set(std::string path, const AttributeValue &value)
Definition: config.cc:880
#define NS_ABORT_MSG(msg)
Unconditional abnormal program termination with a message.
Definition: abort.h:49
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
Time MicroSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1350
Time NanoSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1362
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1326
@ WIFI_STANDARD_80211be
ns address
Definition: first.py:47
ns stack
Definition: first.py:44
Every class exported by the ns3 library is enclosed in the ns3 namespace.
constexpr FrequencyRange WIFI_SPECTRUM_6_GHZ
Identifier for the frequency range covering the wifi spectrum in the 6 GHz band.
constexpr FrequencyRange WIFI_SPECTRUM_5_GHZ
Identifier for the frequency range covering the wifi spectrum in the 5 GHz band.
constexpr FrequencyRange WIFI_SPECTRUM_2_4_GHZ
Identifier for the frequency range covering the wifi spectrum in the 2.4 GHz band.
ns cmd
Definition: second.py:40
STL namespace.
ns wifi
Definition: third.py:95
ns ssid
Definition: third.py:93
ns staDevices
Definition: third.py:100
ns mac
Definition: third.py:92
ns wifiApNode
Definition: third.py:86
ns mobility
Definition: third.py:105
ns wifiStaNodes
Definition: third.py:84
ns phy
Definition: third.py:89
std::ofstream throughput
void PrintIntermediateTput(std::vector< uint64_t > &rxBytes, bool udp, const ApplicationContainer &serverApp, uint32_t payloadSize, Time tputInterval, double simulationTime)
Print average throughput over an intermediate time interval.
std::vector< uint64_t > GetRxBytes(bool udp, const ApplicationContainer &serverApp, uint32_t payloadSize)