A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
wifi-vht-network.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2015 SEBASTIEN DERONNE
3 *
4 * SPDX-License-Identifier: GPL-2.0-only
5 *
6 * Author: Sebastien Deronne <sebastien.deronne@gmail.com>
7 */
8
9#include "ns3/attribute-container.h"
10#include "ns3/boolean.h"
11#include "ns3/command-line.h"
12#include "ns3/config.h"
13#include "ns3/double.h"
14#include "ns3/internet-stack-helper.h"
15#include "ns3/ipv4-address-helper.h"
16#include "ns3/ipv4-global-routing-helper.h"
17#include "ns3/log.h"
18#include "ns3/mobility-helper.h"
19#include "ns3/multi-model-spectrum-channel.h"
20#include "ns3/on-off-helper.h"
21#include "ns3/packet-sink-helper.h"
22#include "ns3/packet-sink.h"
23#include "ns3/spectrum-wifi-helper.h"
24#include "ns3/ssid.h"
25#include "ns3/string.h"
26#include "ns3/udp-client-server-helper.h"
27#include "ns3/udp-server.h"
28#include "ns3/uinteger.h"
29#include "ns3/vht-phy.h"
30#include "ns3/yans-wifi-channel.h"
31#include "ns3/yans-wifi-helper.h"
32
33#include <algorithm>
34#include <vector>
35
36// This is a simple example in order to show how to configure an IEEE 802.11ac Wi-Fi network.
37//
38// It outputs the UDP or TCP goodput for every VHT MCS value, which depends on the MCS value (0 to
39// 9, where 9 is forbidden when the channel width is 20 MHz), the channel width (20, 40, 80 or 160
40// MHz) and the guard interval (long or short). The PHY bitrate is constant over all the simulation
41// run. The user can also specify the distance between the access point and the station: the larger
42// the distance the smaller the goodput.
43//
44// The simulation assumes a single station in an infrastructure network:
45//
46// STA AP
47// * *
48// | |
49// n1 n2
50//
51// Packets in this simulation belong to BestEffort Access Class (AC_BE).
52
53using namespace ns3;
54
55NS_LOG_COMPONENT_DEFINE("vht-wifi-network");
56
57int
58main(int argc, char* argv[])
59{
60 bool udp{true};
61 bool useRts{false};
62 bool use80Plus80{false};
63 Time simulationTime{"10s"};
64 meter_u distance{1.0};
65 std::string mcsStr;
66 std::vector<uint64_t> mcsValues;
67 std::string phyModel{"Yans"};
68 int channelWidth{-1}; // in MHz, -1 indicates an unset value
69 int guardInterval{-1}; // in nanoseconds, -1 indicates an unset value
70 double minExpectedThroughput{0.0};
71 double maxExpectedThroughput{0.0};
72
73 CommandLine cmd(__FILE__);
74 cmd.AddValue("distance",
75 "Distance in meters between the station and the access point",
76 distance);
77 cmd.AddValue("simulationTime", "Simulation time", simulationTime);
78 cmd.AddValue("udp", "UDP if set to 1, TCP otherwise", udp);
79 cmd.AddValue("useRts", "Enable/disable RTS/CTS", useRts);
80 cmd.AddValue("use80Plus80", "Enable/disable use of 80+80 MHz", use80Plus80);
81 cmd.AddValue(
82 "mcs",
83 "list of comma separated MCS values to test; if unset, all MCS values (0-9) are tested",
84 mcsStr);
85 cmd.AddValue("phyModel",
86 "PHY model to use (Yans or Spectrum). If 80+80 MHz is enabled, then Spectrum is "
87 "automatically selected",
88 phyModel);
89 cmd.AddValue("channelWidth",
90 "if set, limit testing to a specific channel width expressed in MHz (20, 40, 80 "
91 "or 160 MHz)",
92 channelWidth);
93 cmd.AddValue("guardInterval",
94 "if set, limit testing to a specific guard interval duration expressed in "
95 "nanoseconds (800 or 400 ns)",
96 guardInterval);
97 cmd.AddValue("minExpectedThroughput",
98 "if set, simulation fails if the lowest throughput is below this value",
99 minExpectedThroughput);
100 cmd.AddValue("maxExpectedThroughput",
101 "if set, simulation fails if the highest throughput is above this value",
102 maxExpectedThroughput);
103 cmd.Parse(argc, argv);
104
105 if (phyModel != "Yans" && phyModel != "Spectrum")
106 {
107 NS_ABORT_MSG("Invalid PHY model (must be Yans or Spectrum)");
108 }
109 if (use80Plus80)
110 {
111 // SpectrumWifiPhy is required for 80+80 MHz
112 phyModel = "Spectrum";
113 }
114
115 if (useRts)
116 {
117 Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue("0"));
118 }
119
120 double prevThroughput[8] = {0};
121
122 std::cout << "MCS value"
123 << "\t\t"
124 << "Channel width"
125 << "\t\t"
126 << "short GI"
127 << "\t\t"
128 << "Throughput" << '\n';
129 uint8_t minMcs = 0;
130 uint8_t maxMcs = 9;
131
132 if (mcsStr.empty())
133 {
134 for (uint8_t mcs = minMcs; mcs <= maxMcs; ++mcs)
135 {
136 mcsValues.push_back(mcs);
137 }
138 }
139 else
140 {
141 AttributeContainerValue<UintegerValue, ',', std::vector> attr;
143 checker->SetItemChecker(MakeUintegerChecker<uint8_t>());
144 attr.DeserializeFromString(mcsStr, checker);
145 mcsValues = attr.Get();
146 std::sort(mcsValues.begin(), mcsValues.end());
147 }
148
149 int minChannelWidth = 20;
150 int maxChannelWidth = 160;
151 if ((channelWidth != -1) &&
152 ((channelWidth < minChannelWidth) || (channelWidth > maxChannelWidth)))
153 {
154 NS_FATAL_ERROR("Invalid channel width: " << channelWidth << " MHz");
155 }
156 if (channelWidth >= minChannelWidth && channelWidth <= maxChannelWidth)
157 {
158 minChannelWidth = channelWidth;
159 maxChannelWidth = channelWidth;
160 }
161 int minGi = 400;
162 int maxGi = 800;
163 if (guardInterval >= minGi && guardInterval <= maxGi)
164 {
165 minGi = guardInterval;
166 maxGi = guardInterval;
167 }
168
169 for (const auto mcs : mcsValues)
170 {
171 uint8_t index = 0;
172 double previous = 0;
173 for (int width = minChannelWidth; width <= maxChannelWidth; width *= 2) // MHz
174 {
175 if (mcs == 9 && width == 20)
176 {
177 continue;
178 }
179 const auto is80Plus80 = (use80Plus80 && (width == 160));
180 const std::string widthStr = is80Plus80 ? "80+80" : std::to_string(width);
181 const auto segmentWidthStr = is80Plus80 ? "80" : widthStr;
182 for (int gi = maxGi; gi >= minGi; gi /= 2) // Nanoseconds
183 {
184 const auto sgi = (gi == 400);
185 uint32_t payloadSize; // 1500 byte IP packet
186 if (udp)
187 {
188 payloadSize = 1472; // bytes
189 }
190 else
191 {
192 payloadSize = 1448; // bytes
193 Config::SetDefault("ns3::TcpSocket::SegmentSize", UintegerValue(payloadSize));
194 }
195
196 NodeContainer wifiStaNode;
197 wifiStaNode.Create(1);
199 wifiApNode.Create(1);
200
201 NetDeviceContainer apDevice;
202 NetDeviceContainer staDevice;
205 std::string channelStr{"{0, " + segmentWidthStr + ", BAND_5GHZ, 0}"};
206
207 std::ostringstream ossControlMode;
208 auto nonHtRefRateMbps = VhtPhy::GetNonHtReferenceRate(mcs) / 1e6;
209 ossControlMode << "OfdmRate" << nonHtRefRateMbps << "Mbps";
210
211 std::ostringstream ossDataMode;
212 ossDataMode << "VhtMcs" << mcs;
213
214 if (is80Plus80)
215 {
216 channelStr += std::string(";") + channelStr;
217 }
218
219 wifi.SetStandard(WIFI_STANDARD_80211ac);
220 wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager",
221 "DataMode",
222 StringValue(ossDataMode.str()),
223 "ControlMode",
224 StringValue(ossControlMode.str()));
225
226 // Set guard interval
227 wifi.ConfigHtOptions("ShortGuardIntervalSupported", BooleanValue(sgi));
228
229 Ssid ssid = Ssid("ns3-80211ac");
230
231 if (phyModel == "Spectrum")
232 {
233 auto spectrumChannel = CreateObject<MultiModelSpectrumChannel>();
235 spectrumChannel->AddPropagationLossModel(lossModel);
236
238 phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO);
239 phy.SetChannel(spectrumChannel);
240
241 phy.Set("ChannelSettings",
242 StringValue("{0, " + std::to_string(width) + ", BAND_5GHZ, 0}"));
243
244 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
245 staDevice = wifi.Install(phy, mac, wifiStaNode);
246
247 mac.SetType("ns3::ApWifiMac",
248 "EnableBeaconJitter",
249 BooleanValue(false),
250 "Ssid",
251 SsidValue(ssid));
252 apDevice = wifi.Install(phy, mac, wifiApNode);
253 }
254 else
255 {
258 phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO);
259 phy.SetChannel(channel.Create());
260
261 phy.Set("ChannelSettings",
262 StringValue("{0, " + std::to_string(width) + ", BAND_5GHZ, 0}"));
263
264 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
265 staDevice = wifi.Install(phy, mac, wifiStaNode);
266
267 mac.SetType("ns3::ApWifiMac",
268 "EnableBeaconJitter",
269 BooleanValue(false),
270 "Ssid",
271 SsidValue(ssid));
272 apDevice = wifi.Install(phy, mac, wifiApNode);
273 }
274
275 int64_t streamNumber = 150;
276 streamNumber += WifiHelper::AssignStreams(apDevice, streamNumber);
277 streamNumber += WifiHelper::AssignStreams(staDevice, streamNumber);
278
279 // mobility.
282
283 positionAlloc->Add(Vector(0.0, 0.0, 0.0));
284 positionAlloc->Add(Vector(distance, 0.0, 0.0));
285 mobility.SetPositionAllocator(positionAlloc);
286
287 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
288
289 mobility.Install(wifiApNode);
290 mobility.Install(wifiStaNode);
291
292 /* Internet stack*/
294 stack.Install(wifiApNode);
295 stack.Install(wifiStaNode);
296 streamNumber += stack.AssignStreams(wifiApNode, streamNumber);
297 streamNumber += stack.AssignStreams(wifiStaNode, streamNumber);
298
300 address.SetBase("192.168.1.0", "255.255.255.0");
301 Ipv4InterfaceContainer staNodeInterface;
302 Ipv4InterfaceContainer apNodeInterface;
303
304 staNodeInterface = address.Assign(staDevice);
305 apNodeInterface = address.Assign(apDevice);
306
307 /* Setting applications */
308 const auto maxLoad = VhtPhy::GetDataRate(mcs,
309 MHz_u{static_cast<double>(width)},
310 NanoSeconds(sgi ? 400 : 800),
311 1);
312 ApplicationContainer serverApp;
313 if (udp)
314 {
315 // UDP flow
316 uint16_t port = 9;
318 serverApp = server.Install(wifiStaNode.Get(0));
319 streamNumber += server.AssignStreams(wifiStaNode.Get(0), streamNumber);
320
321 serverApp.Start(Seconds(0));
322 serverApp.Stop(simulationTime + Seconds(1));
323 const auto packetInterval = payloadSize * 8.0 / maxLoad;
324
325 UdpClientHelper client(staNodeInterface.GetAddress(0), port);
326 client.SetAttribute("MaxPackets", UintegerValue(4294967295U));
327 client.SetAttribute("Interval", TimeValue(Seconds(packetInterval)));
328 client.SetAttribute("PacketSize", UintegerValue(payloadSize));
329 ApplicationContainer clientApp = client.Install(wifiApNode.Get(0));
330 streamNumber += client.AssignStreams(wifiApNode.Get(0), streamNumber);
331
332 clientApp.Start(Seconds(1));
333 clientApp.Stop(simulationTime + Seconds(1));
334 }
335 else
336 {
337 // TCP flow
338 uint16_t port = 50000;
340 PacketSinkHelper packetSinkHelper("ns3::TcpSocketFactory", localAddress);
341 serverApp = packetSinkHelper.Install(wifiStaNode.Get(0));
342 streamNumber +=
343 packetSinkHelper.AssignStreams(wifiStaNode.Get(0), streamNumber);
344
345 serverApp.Start(Seconds(0));
346 serverApp.Stop(simulationTime + Seconds(1));
347
348 OnOffHelper onoff("ns3::TcpSocketFactory", Ipv4Address::GetAny());
349 onoff.SetAttribute("OnTime",
350 StringValue("ns3::ConstantRandomVariable[Constant=1]"));
351 onoff.SetAttribute("OffTime",
352 StringValue("ns3::ConstantRandomVariable[Constant=0]"));
353 onoff.SetAttribute("PacketSize", UintegerValue(payloadSize));
354 onoff.SetAttribute("DataRate", DataRateValue(maxLoad));
356 InetSocketAddress(staNodeInterface.GetAddress(0), port));
357 onoff.SetAttribute("Remote", remoteAddress);
358 ApplicationContainer clientApp = onoff.Install(wifiApNode.Get(0));
359 streamNumber += onoff.AssignStreams(wifiApNode.Get(0), streamNumber);
360
361 clientApp.Start(Seconds(1));
362 clientApp.Stop(simulationTime + Seconds(1));
363 }
364
366
367 Simulator::Stop(simulationTime + Seconds(1));
369
370 auto rxBytes = 0.0;
371 if (udp)
372 {
373 rxBytes = payloadSize * DynamicCast<UdpServer>(serverApp.Get(0))->GetReceived();
374 }
375 else
376 {
377 rxBytes = DynamicCast<PacketSink>(serverApp.Get(0))->GetTotalRx();
378 }
379 auto throughput = (rxBytes * 8) / simulationTime.GetMicroSeconds(); // Mbit/s
380
382
383 std::cout << +mcs << "\t\t\t" << widthStr << " MHz\t\t"
384 << (widthStr.size() > 3 ? "" : "\t") << (sgi ? "400 ns" : "800 ns")
385 << "\t\t\t" << throughput << " Mbit/s" << std::endl;
386
387 // test first element
388 if (mcs == minMcs && width == 20 && !sgi)
389 {
390 if (throughput < minExpectedThroughput)
391 {
392 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
393 exit(1);
394 }
395 }
396 // test last element
397 if (mcs == maxMcs && width == 160 && sgi)
398 {
399 if (maxExpectedThroughput > 0 && throughput > maxExpectedThroughput)
400 {
401 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
402 exit(1);
403 }
404 }
405 // test previous throughput is smaller (for the same mcs)
406 if (throughput > previous)
407 {
408 previous = throughput;
409 }
410 else
411 {
412 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
413 exit(1);
414 }
415 // test previous throughput is smaller (for the same channel width and GI)
416 if (throughput > prevThroughput[index])
417 {
418 prevThroughput[index] = throughput;
419 }
420 else
421 {
422 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
423 exit(1);
424 }
425 index++;
426 }
427 }
428 }
429 return 0;
430}
a polymophic address class
Definition address.h:90
AttributeValue implementation for Address.
Definition address.h:275
holds a vector of ns3::Application pointers.
void Start(Time start) const
Start all of the Applications in this container at the start time given as a parameter.
Ptr< Application > Get(uint32_t i) const
Get the Ptr<Application> stored in this container at a given index.
void Stop(Time stop) const
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter.
A container for one type of attribute.
AttributeValue implementation for Boolean.
Definition boolean.h:26
Parse command-line arguments.
AttributeValue implementation for DataRate.
Definition data-rate.h:285
an Inet address class
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
static Ipv4Address GetAny()
static void PopulateRoutingTables()
Build a routing database and initialize the routing tables of the nodes in the simulation.
holds a vector of std::pair of Ptr<Ipv4> and interface index.
Ipv4Address GetAddress(uint32_t i, uint32_t j=0) const
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
A helper to make it easier to instantiate an ns3::OnOffApplication on a set of nodes.
A helper to make it easier to instantiate an ns3::PacketSinkApplication on a set of nodes.
Smart pointer class similar to boost::intrusive_ptr.
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition simulator.cc:131
static void Run()
Run the simulation.
Definition simulator.cc:167
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition simulator.cc:175
Make it easy to create and manage PHY objects for the spectrum model.
The IEEE 802.11 SSID Information Element.
Definition ssid.h:25
AttributeValue implementation for Ssid.
Definition ssid.h:85
Hold variables of type string.
Definition string.h:45
Simulation virtual time values and global simulation resolution.
Definition nstime.h:94
AttributeValue implementation for Time.
Definition nstime.h:1432
Create a client application which sends UDP packets carrying a 32bit sequence number and a 64 bit tim...
Create a server application which waits for input UDP packets and uses the information carried into t...
Hold an unsigned integer type.
Definition uinteger.h:34
static uint64_t GetDataRate(uint8_t mcsValue, MHz_u channelWidth, Time guardInterval, uint8_t nss)
Return the data rate corresponding to the supplied VHT MCS index, channel width, guard interval,...
Definition vht-phy.cc:438
static uint64_t GetNonHtReferenceRate(uint8_t mcsValue)
Calculate the rate in bps of the non-HT Reference Rate corresponding to the supplied VHT MCS index.
Definition vht-phy.cc:468
helps to create WifiNetDevice objects
static int64_t AssignStreams(NetDeviceContainer c, int64_t stream)
Assign a fixed random variable stream number to the random variables used by the PHY and MAC aspects ...
create MAC layers for a ns3::WifiNetDevice.
@ DLT_IEEE802_11_RADIO
Include Radiotap link layer information.
static YansWifiChannelHelper Default()
Create a channel helper in a default working state.
Make it easy to create and manage PHY objects for the YANS model.
uint16_t port
Definition dsdv-manet.cc:33
Ptr< AttributeChecker > MakeAttributeContainerChecker()
Make uninitialized AttributeContainerChecker using explicit types.
Ptr< const AttributeChecker > MakeUintegerChecker()
Definition uinteger.h:85
void SetDefault(std::string name, const AttributeValue &value)
Definition config.cc:886
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
#define NS_ABORT_MSG(msg)
Unconditional abnormal program termination with a message.
Definition abort.h:38
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition log.h:243
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition log.h:191
Ptr< T > CreateObject(Args &&... args)
Create an object by type, with varying number of constructor parameters.
Definition object.h:619
Time NanoSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition nstime.h:1381
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition nstime.h:1345
@ WIFI_STANDARD_80211ac
address
Definition first.py:36
stack
Definition first.py:33
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Ptr< T1 > DynamicCast(const Ptr< T2 > &p)
Cast a Ptr.
Definition ptr.h:580
STL namespace.
ssid
Definition third.py:82
channel
Definition third.py:77
mac
Definition third.py:81
wifi
Definition third.py:84
wifiApNode
Definition third.py:75
mobility
Definition third.py:92
phy
Definition third.py:78
std::ofstream throughput