A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
pf-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Marco Miozzo <marco.miozzo@cttc.es>
18 */
19
20#include "pf-ff-mac-scheduler.h"
21
22#include "lte-amc.h"
24
25#include <ns3/boolean.h>
26#include <ns3/log.h>
27#include <ns3/math.h>
28#include <ns3/pointer.h>
29#include <ns3/simulator.h>
30
31#include <cfloat>
32#include <set>
33
34namespace ns3
35{
36
37NS_LOG_COMPONENT_DEFINE("PfFfMacScheduler");
38
39/// PF type 0 allocation RBG
40static const int PfType0AllocationRbg[4] = {
41 10, // RBG size 1
42 26, // RBG size 2
43 63, // RBG size 3
44 110, // RBG size 4
45}; // see table 7.1.6.1-1 of 36.213
46
47NS_OBJECT_ENSURE_REGISTERED(PfFfMacScheduler);
48
50 : m_cschedSapUser(nullptr),
51 m_schedSapUser(nullptr),
52 m_timeWindow(99.0),
53 m_nextRntiUl(0)
54{
55 m_amc = CreateObject<LteAmc>();
58 m_ffrSapProvider = nullptr;
60}
61
63{
64 NS_LOG_FUNCTION(this);
65}
66
67void
69{
70 NS_LOG_FUNCTION(this);
79 delete m_schedSapProvider;
80 delete m_ffrSapUser;
81}
82
85{
86 static TypeId tid =
87 TypeId("ns3::PfFfMacScheduler")
89 .SetGroupName("Lte")
90 .AddConstructor<PfFfMacScheduler>()
91 .AddAttribute("CqiTimerThreshold",
92 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
93 UintegerValue(1000),
95 MakeUintegerChecker<uint32_t>())
96 .AddAttribute("HarqEnabled",
97 "Activate/Deactivate the HARQ [by default is active].",
98 BooleanValue(true),
101 .AddAttribute("UlGrantMcs",
102 "The MCS of the UL grant, must be [0..15] (default 0)",
103 UintegerValue(0),
105 MakeUintegerChecker<uint8_t>());
106 return tid;
107}
108
109void
111{
112 m_cschedSapUser = s;
113}
114
115void
117{
118 m_schedSapUser = s;
119}
120
123{
124 return m_cschedSapProvider;
125}
126
129{
130 return m_schedSapProvider;
131}
132
133void
135{
137}
138
141{
142 return m_ffrSapUser;
143}
144
145void
148{
149 NS_LOG_FUNCTION(this);
150 // Read the subset of parameters used
151 m_cschedCellConfig = params;
154 cnf.m_result = SUCCESS;
156}
157
158void
161{
162 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
163 << (uint16_t)params.m_transmissionMode);
164 auto it = m_uesTxMode.find(params.m_rnti);
165 if (it == m_uesTxMode.end())
166 {
167 m_uesTxMode[params.m_rnti] = params.m_transmissionMode;
168 // generate HARQ buffers
169 m_dlHarqCurrentProcessId[params.m_rnti] = 0;
170 DlHarqProcessesStatus_t dlHarqPrcStatus;
171 dlHarqPrcStatus.resize(8, 0);
172 m_dlHarqProcessesStatus[params.m_rnti] = dlHarqPrcStatus;
173 DlHarqProcessesTimer_t dlHarqProcessesTimer;
174 dlHarqProcessesTimer.resize(8, 0);
175 m_dlHarqProcessesTimer[params.m_rnti] = dlHarqProcessesTimer;
177 dlHarqdci.resize(8);
178 m_dlHarqProcessesDciBuffer[params.m_rnti] = dlHarqdci;
179 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
180 dlHarqRlcPdu.resize(2);
181 dlHarqRlcPdu.at(0).resize(8);
182 dlHarqRlcPdu.at(1).resize(8);
183 m_dlHarqProcessesRlcPduListBuffer[params.m_rnti] = dlHarqRlcPdu;
184 m_ulHarqCurrentProcessId[params.m_rnti] = 0;
185 UlHarqProcessesStatus_t ulHarqPrcStatus;
186 ulHarqPrcStatus.resize(8, 0);
187 m_ulHarqProcessesStatus[params.m_rnti] = ulHarqPrcStatus;
189 ulHarqdci.resize(8);
190 m_ulHarqProcessesDciBuffer[params.m_rnti] = ulHarqdci;
191 }
192 else
193 {
194 (*it).second = params.m_transmissionMode;
195 }
196}
197
198void
201{
202 NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
203
204 for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
205 {
206 auto it = m_flowStatsDl.find(params.m_rnti);
207
208 if (it == m_flowStatsDl.end())
209 {
210 pfsFlowPerf_t flowStatsDl;
211 flowStatsDl.flowStart = Simulator::Now();
212 flowStatsDl.totalBytesTransmitted = 0;
213 flowStatsDl.lastTtiBytesTransmitted = 0;
214 flowStatsDl.lastAveragedThroughput = 1;
215 m_flowStatsDl[params.m_rnti] = flowStatsDl;
216 pfsFlowPerf_t flowStatsUl;
217 flowStatsUl.flowStart = Simulator::Now();
218 flowStatsUl.totalBytesTransmitted = 0;
219 flowStatsUl.lastTtiBytesTransmitted = 0;
220 flowStatsUl.lastAveragedThroughput = 1;
221 m_flowStatsUl[params.m_rnti] = flowStatsUl;
222 }
223 }
224}
225
226void
229{
230 NS_LOG_FUNCTION(this);
231 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
232 {
233 auto it = m_rlcBufferReq.begin();
234 while (it != m_rlcBufferReq.end())
235 {
236 if (((*it).first.m_rnti == params.m_rnti) &&
237 ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
238 {
239 auto temp = it;
240 it++;
241 m_rlcBufferReq.erase(temp);
242 }
243 else
244 {
245 it++;
246 }
247 }
248 }
249}
250
251void
254{
255 NS_LOG_FUNCTION(this);
256
257 m_uesTxMode.erase(params.m_rnti);
258 m_dlHarqCurrentProcessId.erase(params.m_rnti);
259 m_dlHarqProcessesStatus.erase(params.m_rnti);
260 m_dlHarqProcessesTimer.erase(params.m_rnti);
261 m_dlHarqProcessesDciBuffer.erase(params.m_rnti);
262 m_dlHarqProcessesRlcPduListBuffer.erase(params.m_rnti);
263 m_ulHarqCurrentProcessId.erase(params.m_rnti);
264 m_ulHarqProcessesStatus.erase(params.m_rnti);
265 m_ulHarqProcessesDciBuffer.erase(params.m_rnti);
266 m_flowStatsDl.erase(params.m_rnti);
267 m_flowStatsUl.erase(params.m_rnti);
268 m_ceBsrRxed.erase(params.m_rnti);
269 auto it = m_rlcBufferReq.begin();
270 while (it != m_rlcBufferReq.end())
271 {
272 if ((*it).first.m_rnti == params.m_rnti)
273 {
274 auto temp = it;
275 it++;
276 m_rlcBufferReq.erase(temp);
277 }
278 else
279 {
280 it++;
281 }
282 }
283 if (m_nextRntiUl == params.m_rnti)
284 {
285 m_nextRntiUl = 0;
286 }
287}
288
289void
292{
293 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
294 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
295
296 LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
297
298 auto it = m_rlcBufferReq.find(flow);
299
300 if (it == m_rlcBufferReq.end())
301 {
302 m_rlcBufferReq[flow] = params;
303 }
304 else
305 {
306 (*it).second = params;
307 }
308}
309
310void
313{
314 NS_LOG_FUNCTION(this);
315 NS_FATAL_ERROR("method not implemented");
316}
317
318void
321{
322 NS_LOG_FUNCTION(this);
323 NS_FATAL_ERROR("method not implemented");
324}
325
326int
328{
329 for (int i = 0; i < 4; i++)
330 {
331 if (dlbandwidth < PfType0AllocationRbg[i])
332 {
333 return i + 1;
334 }
335 }
336
337 return -1;
338}
339
340unsigned int
342{
343 unsigned int lcActive = 0;
344 for (auto it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
345 {
346 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
347 ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
348 ((*it).second.m_rlcStatusPduSize > 0)))
349 {
350 lcActive++;
351 }
352 if ((*it).first.m_rnti > rnti)
353 {
354 break;
355 }
356 }
357 return lcActive;
358}
359
360bool
362{
363 NS_LOG_FUNCTION(this << rnti);
364
365 auto it = m_dlHarqCurrentProcessId.find(rnti);
366 if (it == m_dlHarqCurrentProcessId.end())
367 {
368 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
369 }
370 auto itStat = m_dlHarqProcessesStatus.find(rnti);
371 if (itStat == m_dlHarqProcessesStatus.end())
372 {
373 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
374 }
375 uint8_t i = (*it).second;
376 do
377 {
378 i = (i + 1) % HARQ_PROC_NUM;
379 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
380
381 return (*itStat).second.at(i) == 0;
382}
383
384uint8_t
386{
387 NS_LOG_FUNCTION(this << rnti);
388
389 if (!m_harqOn)
390 {
391 return 0;
392 }
393
394 auto it = m_dlHarqCurrentProcessId.find(rnti);
395 if (it == m_dlHarqCurrentProcessId.end())
396 {
397 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
398 }
399 auto itStat = m_dlHarqProcessesStatus.find(rnti);
400 if (itStat == m_dlHarqProcessesStatus.end())
401 {
402 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
403 }
404 uint8_t i = (*it).second;
405 do
406 {
407 i = (i + 1) % HARQ_PROC_NUM;
408 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
409 if ((*itStat).second.at(i) == 0)
410 {
411 (*it).second = i;
412 (*itStat).second.at(i) = 1;
413 }
414 else
415 {
416 NS_FATAL_ERROR("No HARQ process available for RNTI "
417 << rnti << " check before update with HarqProcessAvailability");
418 }
419
420 return (*it).second;
421}
422
423void
425{
426 NS_LOG_FUNCTION(this);
427
428 for (auto itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
429 itTimers++)
430 {
431 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
432 {
433 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
434 {
435 // reset HARQ process
436
437 NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
438 auto itStat = m_dlHarqProcessesStatus.find((*itTimers).first);
439 if (itStat == m_dlHarqProcessesStatus.end())
440 {
441 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
442 << (*itTimers).first);
443 }
444 (*itStat).second.at(i) = 0;
445 (*itTimers).second.at(i) = 0;
446 }
447 else
448 {
449 (*itTimers).second.at(i)++;
450 }
451 }
452 }
453}
454
455void
458{
459 NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
460 << (0xF & params.m_sfnSf));
461 // API generated by RLC for triggering the scheduling of a DL subframe
462
463 // evaluate the relative channel quality indicator for each UE per each RBG
464 // (since we are using allocation type 0 the small unit of allocation is RBG)
465 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
466
468
470 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
471 std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
472 std::vector<bool> rbgMap; // global RBGs map
473 uint16_t rbgAllocatedNum = 0;
474 std::set<uint16_t> rntiAllocated;
475 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
476
478 for (auto it = rbgMap.begin(); it != rbgMap.end(); it++)
479 {
480 if (*it)
481 {
482 rbgAllocatedNum++;
483 }
484 }
485
487
488 // update UL HARQ proc id
489 for (auto itProcId = m_ulHarqCurrentProcessId.begin();
490 itProcId != m_ulHarqCurrentProcessId.end();
491 itProcId++)
492 {
493 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
494 }
495
496 // RACH Allocation
497 std::vector<bool> ulRbMap;
498 ulRbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
500 uint8_t maxContinuousUlBandwidth = 0;
501 uint8_t tmpMinBandwidth = 0;
502 uint16_t ffrRbStartOffset = 0;
503 uint16_t tmpFfrRbStartOffset = 0;
504 uint16_t index = 0;
505
506 for (auto it = ulRbMap.begin(); it != ulRbMap.end(); it++)
507 {
508 if (*it)
509 {
510 if (tmpMinBandwidth > maxContinuousUlBandwidth)
511 {
512 maxContinuousUlBandwidth = tmpMinBandwidth;
513 ffrRbStartOffset = tmpFfrRbStartOffset;
514 }
515 tmpMinBandwidth = 0;
516 }
517 else
518 {
519 if (tmpMinBandwidth == 0)
520 {
521 tmpFfrRbStartOffset = index;
522 }
523 tmpMinBandwidth++;
524 }
525 index++;
526 }
527
528 if (tmpMinBandwidth > maxContinuousUlBandwidth)
529 {
530 maxContinuousUlBandwidth = tmpMinBandwidth;
531 ffrRbStartOffset = tmpFfrRbStartOffset;
532 }
533
535 uint16_t rbStart = 0;
536 rbStart = ffrRbStartOffset;
537 for (auto itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
538 {
540 (*itRach).m_estimatedSize,
541 " Default UL Grant MCS does not allow to send RACH messages");
543 newRar.m_rnti = (*itRach).m_rnti;
544 // DL-RACH Allocation
545 // Ideal: no needs of configuring m_dci
546 // UL-RACH Allocation
547 newRar.m_grant.m_rnti = newRar.m_rnti;
548 newRar.m_grant.m_mcs = m_ulGrantMcs;
549 uint16_t rbLen = 1;
550 uint16_t tbSizeBits = 0;
551 // find lowest TB size that fits UL grant estimated size
552 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
553 (rbStart + rbLen < (ffrRbStartOffset + maxContinuousUlBandwidth)))
554 {
555 rbLen++;
556 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
557 }
558 if (tbSizeBits < (*itRach).m_estimatedSize)
559 {
560 // no more allocation space: finish allocation
561 break;
562 }
563 newRar.m_grant.m_rbStart = rbStart;
564 newRar.m_grant.m_rbLen = rbLen;
565 newRar.m_grant.m_tbSize = tbSizeBits / 8;
566 newRar.m_grant.m_hopping = false;
567 newRar.m_grant.m_tpc = 0;
568 newRar.m_grant.m_cqiRequest = false;
569 newRar.m_grant.m_ulDelay = false;
570 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
571 << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize "
572 << newRar.m_grant.m_tbSize);
573 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
574 {
575 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
576 }
577
578 if (m_harqOn)
579 {
580 // generate UL-DCI for HARQ retransmissions
581 UlDciListElement_s uldci;
582 uldci.m_rnti = newRar.m_rnti;
583 uldci.m_rbLen = rbLen;
584 uldci.m_rbStart = rbStart;
585 uldci.m_mcs = m_ulGrantMcs;
586 uldci.m_tbSize = tbSizeBits / 8;
587 uldci.m_ndi = 1;
588 uldci.m_cceIndex = 0;
589 uldci.m_aggrLevel = 1;
590 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
591 uldci.m_hopping = false;
592 uldci.m_n2Dmrs = 0;
593 uldci.m_tpc = 0; // no power control
594 uldci.m_cqiRequest = false; // only period CQI at this stage
595 uldci.m_ulIndex = 0; // TDD parameter
596 uldci.m_dai = 1; // TDD parameter
597 uldci.m_freqHopping = 0;
598 uldci.m_pdcchPowerOffset = 0; // not used
599
600 uint8_t harqId = 0;
601 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
602 if (itProcId == m_ulHarqCurrentProcessId.end())
603 {
604 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
605 }
606 harqId = (*itProcId).second;
607 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
608 if (itDci == m_ulHarqProcessesDciBuffer.end())
609 {
610 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
611 << uldci.m_rnti);
612 }
613 (*itDci).second.at(harqId) = uldci;
614 }
615
616 rbStart = rbStart + rbLen;
617 ret.m_buildRarList.push_back(newRar);
618 }
619 m_rachList.clear();
620
621 // Process DL HARQ feedback
623 // retrieve past HARQ retx buffered
624 if (!m_dlInfoListBuffered.empty())
625 {
626 if (!params.m_dlInfoList.empty())
627 {
628 NS_LOG_INFO(this << " Received DL-HARQ feedback");
630 params.m_dlInfoList.begin(),
631 params.m_dlInfoList.end());
632 }
633 }
634 else
635 {
636 if (!params.m_dlInfoList.empty())
637 {
638 m_dlInfoListBuffered = params.m_dlInfoList;
639 }
640 }
641 if (!m_harqOn)
642 {
643 // Ignore HARQ feedback
644 m_dlInfoListBuffered.clear();
645 }
646 std::vector<DlInfoListElement_s> dlInfoListUntxed;
647 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
648 {
649 auto itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
650 if (itRnti != rntiAllocated.end())
651 {
652 // RNTI already allocated for retx
653 continue;
654 }
655 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
656 std::vector<bool> retx;
657 NS_LOG_INFO(this << " Processing DLHARQ feedback");
658 if (nLayers == 1)
659 {
660 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
662 retx.push_back(false);
663 }
664 else
665 {
666 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
668 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
670 }
671 if (retx.at(0) || retx.at(1))
672 {
673 // retrieve HARQ process information
674 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
675 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
676 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
677 auto itHarq = m_dlHarqProcessesDciBuffer.find(rnti);
678 if (itHarq == m_dlHarqProcessesDciBuffer.end())
679 {
680 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
681 }
682
683 DlDciListElement_s dci = (*itHarq).second.at(harqId);
684 int rv = 0;
685 if (dci.m_rv.size() == 1)
686 {
687 rv = dci.m_rv.at(0);
688 }
689 else
690 {
691 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
692 }
693
694 if (rv == 3)
695 {
696 // maximum number of retx reached -> drop process
697 NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
698 auto it = m_dlHarqProcessesStatus.find(rnti);
699 if (it == m_dlHarqProcessesStatus.end())
700 {
701 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
702 << m_dlInfoListBuffered.at(i).m_rnti);
703 }
704 (*it).second.at(harqId) = 0;
705 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
706 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
707 {
708 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
709 << m_dlInfoListBuffered.at(i).m_rnti);
710 }
711 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
712 {
713 (*itRlcPdu).second.at(k).at(harqId).clear();
714 }
715 continue;
716 }
717 // check the feasibility of retransmitting on the same RBGs
718 // translate the DCI to Spectrum framework
719 std::vector<int> dciRbg;
720 uint32_t mask = 0x1;
721 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
722 for (int j = 0; j < 32; j++)
723 {
724 if (((dci.m_rbBitmap & mask) >> j) == 1)
725 {
726 dciRbg.push_back(j);
727 NS_LOG_INFO("\t" << j);
728 }
729 mask = (mask << 1);
730 }
731 bool free = true;
732 for (std::size_t j = 0; j < dciRbg.size(); j++)
733 {
734 if (rbgMap.at(dciRbg.at(j)))
735 {
736 free = false;
737 break;
738 }
739 }
740 if (free)
741 {
742 // use the same RBGs for the retx
743 // reserve RBGs
744 for (std::size_t j = 0; j < dciRbg.size(); j++)
745 {
746 rbgMap.at(dciRbg.at(j)) = true;
747 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
748 rbgAllocatedNum++;
749 }
750
751 NS_LOG_INFO(this << " Send retx in the same RBGs");
752 }
753 else
754 {
755 // find RBGs for sending HARQ retx
756 uint8_t j = 0;
757 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
758 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
759 std::vector<bool> rbgMapCopy = rbgMap;
760 while ((j < dciRbg.size()) && (startRbg != rbgId))
761 {
762 if (!rbgMapCopy.at(rbgId))
763 {
764 rbgMapCopy.at(rbgId) = true;
765 dciRbg.at(j) = rbgId;
766 j++;
767 }
768 rbgId = (rbgId + 1) % rbgNum;
769 }
770 if (j == dciRbg.size())
771 {
772 // find new RBGs -> update DCI map
773 uint32_t rbgMask = 0;
774 for (std::size_t k = 0; k < dciRbg.size(); k++)
775 {
776 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
777 rbgAllocatedNum++;
778 }
779 dci.m_rbBitmap = rbgMask;
780 rbgMap = rbgMapCopy;
781 NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
782 }
783 else
784 {
785 // HARQ retx cannot be performed on this TTI -> store it
786 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
787 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
788 }
789 }
790 // retrieve RLC PDU list for retx TBsize and update DCI
792 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
793 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
794 {
795 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
796 }
797 for (std::size_t j = 0; j < nLayers; j++)
798 {
799 if (retx.at(j))
800 {
801 if (j >= dci.m_ndi.size())
802 {
803 // for avoiding errors in MIMO transient phases
804 dci.m_ndi.push_back(0);
805 dci.m_rv.push_back(0);
806 dci.m_mcs.push_back(0);
807 dci.m_tbsSize.push_back(0);
808 NS_LOG_INFO(this << " layer " << (uint16_t)j
809 << " no txed (MIMO transition)");
810 }
811 else
812 {
813 dci.m_ndi.at(j) = 0;
814 dci.m_rv.at(j)++;
815 (*itHarq).second.at(harqId).m_rv.at(j)++;
816 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
817 << (uint16_t)dci.m_rv.at(j));
818 }
819 }
820 else
821 {
822 // empty TB of layer j
823 dci.m_ndi.at(j) = 0;
824 dci.m_rv.at(j) = 0;
825 dci.m_mcs.at(j) = 0;
826 dci.m_tbsSize.at(j) = 0;
827 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
828 }
829 }
830 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
831 {
832 std::vector<RlcPduListElement_s> rlcPduListPerLc;
833 for (std::size_t j = 0; j < nLayers; j++)
834 {
835 if (retx.at(j))
836 {
837 if (j < dci.m_ndi.size())
838 {
839 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
840 << dci.m_tbsSize.at(j));
841 rlcPduListPerLc.push_back(
842 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
843 }
844 }
845 else
846 { // if no retx needed on layer j, push an RlcPduListElement_s object with
847 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
848 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
849 RlcPduListElement_s emptyElement;
850 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
851 .second.at(j)
852 .at(dci.m_harqProcess)
853 .at(k)
854 .m_logicalChannelIdentity;
855 emptyElement.m_size = 0;
856 rlcPduListPerLc.push_back(emptyElement);
857 }
858 }
859
860 if (!rlcPduListPerLc.empty())
861 {
862 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
863 }
864 }
865 newEl.m_rnti = rnti;
866 newEl.m_dci = dci;
867 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
868 // refresh timer
869 auto itHarqTimer = m_dlHarqProcessesTimer.find(rnti);
870 if (itHarqTimer == m_dlHarqProcessesTimer.end())
871 {
872 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
873 }
874 (*itHarqTimer).second.at(harqId) = 0;
875 ret.m_buildDataList.push_back(newEl);
876 rntiAllocated.insert(rnti);
877 }
878 else
879 {
880 // update HARQ process status
881 NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
882 auto it = m_dlHarqProcessesStatus.find(m_dlInfoListBuffered.at(i).m_rnti);
883 if (it == m_dlHarqProcessesStatus.end())
884 {
885 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
886 << m_dlInfoListBuffered.at(i).m_rnti);
887 }
888 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
889 auto itRlcPdu =
891 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
892 {
893 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
894 << m_dlInfoListBuffered.at(i).m_rnti);
895 }
896 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
897 {
898 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
899 }
900 }
901 }
902 m_dlInfoListBuffered.clear();
903 m_dlInfoListBuffered = dlInfoListUntxed;
904
905 if (rbgAllocatedNum == rbgNum)
906 {
907 // all the RBGs are already allocated -> exit
908 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
909 {
911 }
912 return;
913 }
914
915 for (int i = 0; i < rbgNum; i++)
916 {
917 NS_LOG_INFO(this << " ALLOCATION for RBG " << i << " of " << rbgNum);
918 if (!rbgMap.at(i))
919 {
920 auto itMax = m_flowStatsDl.end();
921 double rcqiMax = 0.0;
922 for (auto it = m_flowStatsDl.begin(); it != m_flowStatsDl.end(); it++)
923 {
924 if (!m_ffrSapProvider->IsDlRbgAvailableForUe(i, (*it).first))
925 {
926 continue;
927 }
928
929 auto itRnti = rntiAllocated.find((*it).first);
930 if (itRnti != rntiAllocated.end() || !HarqProcessAvailability((*it).first))
931 {
932 // UE already allocated for HARQ or without HARQ process available -> drop it
933 if (itRnti != rntiAllocated.end())
934 {
935 NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx"
936 << (uint16_t)(*it).first);
937 }
938 if (!HarqProcessAvailability((*it).first))
939 {
940 NS_LOG_DEBUG(this << " RNTI discarded for HARQ id"
941 << (uint16_t)(*it).first);
942 }
943 continue;
944 }
945 auto itCqi = m_a30CqiRxed.find((*it).first);
946 auto itTxMode = m_uesTxMode.find((*it).first);
947 if (itTxMode == m_uesTxMode.end())
948 {
949 NS_FATAL_ERROR("No Transmission Mode info on user " << (*it).first);
950 }
951 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
952 std::vector<uint8_t> sbCqi;
953 if (itCqi == m_a30CqiRxed.end())
954 {
955 sbCqi = std::vector<uint8_t>(nLayer, 1); // start with lowest value
956 }
957 else
958 {
959 sbCqi = (*itCqi).second.m_higherLayerSelected.at(i).m_sbCqi;
960 }
961 uint8_t cqi1 = sbCqi.at(0);
962 uint8_t cqi2 = 0;
963 if (sbCqi.size() > 1)
964 {
965 cqi2 = sbCqi.at(1);
966 }
967
968 if ((cqi1 > 0) ||
969 (cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
970 {
971 if (LcActivePerFlow((*it).first) > 0)
972 {
973 // this UE has data to transmit
974 double achievableRate = 0.0;
975 uint8_t mcs = 0;
976 for (uint8_t k = 0; k < nLayer; k++)
977 {
978 if (sbCqi.size() > k)
979 {
980 mcs = m_amc->GetMcsFromCqi(sbCqi.at(k));
981 }
982 else
983 {
984 // no info on this subband -> worst MCS
985 mcs = 0;
986 }
987 achievableRate += ((m_amc->GetDlTbSizeFromMcs(mcs, rbgSize) / 8) /
988 0.001); // = TB size / TTI
989 }
990
991 double rcqi = achievableRate / (*it).second.lastAveragedThroughput;
992 NS_LOG_INFO(this << " RNTI " << (*it).first << " MCS " << (uint32_t)mcs
993 << " achievableRate " << achievableRate << " avgThr "
994 << (*it).second.lastAveragedThroughput << " RCQI "
995 << rcqi);
996
997 if (rcqi > rcqiMax)
998 {
999 rcqiMax = rcqi;
1000 itMax = it;
1001 }
1002 }
1003 } // end if cqi
1004 } // end for m_rlcBufferReq
1005
1006 if (itMax == m_flowStatsDl.end())
1007 {
1008 // no UE available for this RB
1009 NS_LOG_INFO(this << " any UE found");
1010 }
1011 else
1012 {
1013 rbgMap.at(i) = true;
1014 auto itMap = allocationMap.find((*itMax).first);
1015 if (itMap == allocationMap.end())
1016 {
1017 // insert new element
1018 std::vector<uint16_t> tempMap;
1019 tempMap.push_back(i);
1020 allocationMap[(*itMax).first] = tempMap;
1021 }
1022 else
1023 {
1024 (*itMap).second.push_back(i);
1025 }
1026 NS_LOG_INFO(this << " UE assigned " << (*itMax).first);
1027 }
1028 } // end for RBG free
1029 } // end for RBGs
1030
1031 // reset TTI stats of users
1032 for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
1033 {
1034 (*itStats).second.lastTtiBytesTransmitted = 0;
1035 }
1036
1037 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1038 // creating the correspondent DCIs
1039 auto itMap = allocationMap.begin();
1040 while (itMap != allocationMap.end())
1041 {
1042 // create new BuildDataListElement_s for this LC
1044 newEl.m_rnti = (*itMap).first;
1045 // create the DlDciListElement_s
1046 DlDciListElement_s newDci;
1047 newDci.m_rnti = (*itMap).first;
1048 newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
1049
1050 uint16_t lcActives = LcActivePerFlow((*itMap).first);
1051 NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1052 if (lcActives == 0)
1053 {
1054 // Set to max value, to avoid divide by 0 below
1055 lcActives = (uint16_t)65535; // UINT16_MAX;
1056 }
1057 uint16_t RbgPerRnti = (*itMap).second.size();
1058 auto itCqi = m_a30CqiRxed.find((*itMap).first);
1059 auto itTxMode = m_uesTxMode.find((*itMap).first);
1060 if (itTxMode == m_uesTxMode.end())
1061 {
1062 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
1063 }
1064 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1065 std::vector<uint8_t> worstCqi(2, 15);
1066 if (itCqi != m_a30CqiRxed.end())
1067 {
1068 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1069 {
1070 if ((*itCqi).second.m_higherLayerSelected.size() > (*itMap).second.at(k))
1071 {
1072 NS_LOG_INFO(this << " RBG " << (*itMap).second.at(k) << " CQI "
1073 << (uint16_t)((*itCqi)
1074 .second.m_higherLayerSelected
1075 .at((*itMap).second.at(k))
1076 .m_sbCqi.at(0)));
1077 for (uint8_t j = 0; j < nLayer; j++)
1078 {
1079 if ((*itCqi)
1080 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1081 .m_sbCqi.size() > j)
1082 {
1083 if (((*itCqi)
1084 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1085 .m_sbCqi.at(j)) < worstCqi.at(j))
1086 {
1087 worstCqi.at(j) =
1088 ((*itCqi)
1089 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1090 .m_sbCqi.at(j));
1091 }
1092 }
1093 else
1094 {
1095 // no CQI for this layer of this suband -> worst one
1096 worstCqi.at(j) = 1;
1097 }
1098 }
1099 }
1100 else
1101 {
1102 for (uint8_t j = 0; j < nLayer; j++)
1103 {
1104 worstCqi.at(j) = 1; // try with lowest MCS in RBG with no info on channel
1105 }
1106 }
1107 }
1108 }
1109 else
1110 {
1111 for (uint8_t j = 0; j < nLayer; j++)
1112 {
1113 worstCqi.at(j) = 1; // try with lowest MCS in RBG with no info on channel
1114 }
1115 }
1116 for (uint8_t j = 0; j < nLayer; j++)
1117 {
1118 NS_LOG_INFO(this << " Layer " << (uint16_t)j << " CQI selected "
1119 << (uint16_t)worstCqi.at(j));
1120 }
1121 uint32_t bytesTxed = 0;
1122 for (uint8_t j = 0; j < nLayer; j++)
1123 {
1124 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi(worstCqi.at(j)));
1125 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RbgPerRnti * rbgSize) /
1126 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1127 newDci.m_tbsSize.push_back(tbSize);
1128 NS_LOG_INFO(this << " Layer " << (uint16_t)j << " MCS selected"
1129 << m_amc->GetMcsFromCqi(worstCqi.at(j)));
1130 bytesTxed += tbSize;
1131 }
1132
1133 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1134 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1135 uint32_t rbgMask = 0;
1136 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1137 {
1138 rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
1139 NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
1140 }
1141 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1142
1143 // create the rlc PDUs -> equally divide resources among actives LCs
1144 for (auto itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1145 {
1146 if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1147 (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1148 ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1149 ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1150 {
1151 std::vector<RlcPduListElement_s> newRlcPduLe;
1152 for (uint8_t j = 0; j < nLayer; j++)
1153 {
1154 RlcPduListElement_s newRlcEl;
1155 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1156 newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1157 NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1158 << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1159 newRlcPduLe.push_back(newRlcEl);
1161 newRlcEl.m_logicalChannelIdentity,
1162 newRlcEl.m_size);
1163 if (m_harqOn)
1164 {
1165 // store RLC PDU list for HARQ
1166 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1167 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1168 {
1169 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1170 << (*itMap).first);
1171 }
1172 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1173 }
1174 }
1175 newEl.m_rlcPduList.push_back(newRlcPduLe);
1176 }
1177 if ((*itBufReq).first.m_rnti > (*itMap).first)
1178 {
1179 break;
1180 }
1181 }
1182 for (uint8_t j = 0; j < nLayer; j++)
1183 {
1184 newDci.m_ndi.push_back(1);
1185 newDci.m_rv.push_back(0);
1186 }
1187
1188 newDci.m_tpc = m_ffrSapProvider->GetTpc((*itMap).first);
1189
1190 newEl.m_dci = newDci;
1191
1192 if (m_harqOn)
1193 {
1194 // store DCI for HARQ
1195 auto itDci = m_dlHarqProcessesDciBuffer.find(newEl.m_rnti);
1196 if (itDci == m_dlHarqProcessesDciBuffer.end())
1197 {
1198 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1199 << newEl.m_rnti);
1200 }
1201 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1202 // refresh timer
1203 auto itHarqTimer = m_dlHarqProcessesTimer.find(newEl.m_rnti);
1204 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1205 {
1206 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1207 }
1208 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1209 }
1210
1211 // ...more parameters -> ignored in this version
1212
1213 ret.m_buildDataList.push_back(newEl);
1214 // update UE stats
1215 auto it = m_flowStatsDl.find((*itMap).first);
1216 if (it != m_flowStatsDl.end())
1217 {
1218 (*it).second.lastTtiBytesTransmitted = bytesTxed;
1219 NS_LOG_INFO(this << " UE total bytes txed " << (*it).second.lastTtiBytesTransmitted);
1220 }
1221 else
1222 {
1223 NS_FATAL_ERROR(this << " No Stats for this allocated UE");
1224 }
1225
1226 itMap++;
1227 } // end while allocation
1228 ret.m_nrOfPdcchOfdmSymbols = 1; /// \todo check correct value according the DCIs txed
1229
1230 // update UEs stats
1231 NS_LOG_INFO(this << " Update UEs statistics");
1232 for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
1233 {
1234 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTransmitted;
1235 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1236 // Evolution, Ed Wiley)
1237 (*itStats).second.lastAveragedThroughput =
1238 ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1239 ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTransmitted / 0.001));
1240 NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1241 NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1242 (*itStats).second.lastTtiBytesTransmitted = 0;
1243 }
1244
1246}
1247
1248void
1251{
1252 NS_LOG_FUNCTION(this);
1253
1254 m_rachList = params.m_rachList;
1255}
1256
1257void
1260{
1261 NS_LOG_FUNCTION(this);
1263
1264 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1265 {
1266 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1267 {
1268 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1269 << " reported");
1270 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1271 auto it = m_p10CqiRxed.find(rnti);
1272 if (it == m_p10CqiRxed.end())
1273 {
1274 // create the new entry
1275 m_p10CqiRxed[rnti] =
1276 params.m_cqiList.at(i).m_wbCqi.at(0); // only codeword 0 at this stage (SISO)
1277 // generate correspondent timer
1279 }
1280 else
1281 {
1282 // update the CQI value and refresh correspondent timer
1283 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1284 // update correspondent timer
1285 auto itTimers = m_p10CqiTimers.find(rnti);
1286 (*itTimers).second = m_cqiTimersThreshold;
1287 }
1288 }
1289 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1290 {
1291 // subband CQI reporting high layer configured
1292 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1293 auto it = m_a30CqiRxed.find(rnti);
1294 if (it == m_a30CqiRxed.end())
1295 {
1296 // create the new entry
1297 m_a30CqiRxed[rnti] = params.m_cqiList.at(i).m_sbMeasResult;
1299 }
1300 else
1301 {
1302 // update the CQI value and refresh correspondent timer
1303 (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1304 auto itTimers = m_a30CqiTimers.find(rnti);
1305 (*itTimers).second = m_cqiTimersThreshold;
1306 }
1307 }
1308 else
1309 {
1310 NS_LOG_ERROR(this << " CQI type unknown");
1311 }
1312 }
1313}
1314
1315double
1316PfFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1317{
1318 auto itCqi = m_ueCqi.find(rnti);
1319 if (itCqi == m_ueCqi.end())
1320 {
1321 // no cqi info about this UE
1322 return NO_SINR;
1323 }
1324 else
1325 {
1326 // take the average SINR value among the available
1327 double sinrSum = 0;
1328 unsigned int sinrNum = 0;
1329 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1330 {
1331 double sinr = (*itCqi).second.at(i);
1332 if (sinr != NO_SINR)
1333 {
1334 sinrSum += sinr;
1335 sinrNum++;
1336 }
1337 }
1338 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1339 // store the value
1340 (*itCqi).second.at(rb) = estimatedSinr;
1341 return estimatedSinr;
1342 }
1343}
1344
1345void
1348{
1349 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1350 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1351
1354
1355 // Generate RBs map
1357 std::vector<bool> rbMap;
1358 uint16_t rbAllocatedNum = 0;
1359 std::set<uint16_t> rntiAllocated;
1360 std::vector<uint16_t> rbgAllocationMap;
1361 // update with RACH allocation map
1362 rbgAllocationMap = m_rachAllocationMap;
1363 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1364 m_rachAllocationMap.clear();
1366
1367 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1369
1370 for (auto it = rbMap.begin(); it != rbMap.end(); it++)
1371 {
1372 if (*it)
1373 {
1374 rbAllocatedNum++;
1375 }
1376 }
1377
1378 uint8_t minContinuousUlBandwidth = m_ffrSapProvider->GetMinContinuousUlBandwidth();
1379 uint8_t ffrUlBandwidth = m_cschedCellConfig.m_ulBandwidth - rbAllocatedNum;
1380
1381 // remove RACH allocation
1382 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1383 {
1384 if (rbgAllocationMap.at(i) != 0)
1385 {
1386 rbMap.at(i) = true;
1387 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1388 }
1389 }
1390
1391 if (m_harqOn)
1392 {
1393 // Process UL HARQ feedback
1394
1395 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1396 {
1397 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1398 {
1399 // retx correspondent block: retrieve the UL-DCI
1400 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1401 auto itProcId = m_ulHarqCurrentProcessId.find(rnti);
1402 if (itProcId == m_ulHarqCurrentProcessId.end())
1403 {
1404 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1405 }
1406 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1407 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1408 << " i " << i << " size " << params.m_ulInfoList.size());
1409 auto itHarq = m_ulHarqProcessesDciBuffer.find(rnti);
1410 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1411 {
1412 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1413 continue;
1414 }
1415 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1416 auto itStat = m_ulHarqProcessesStatus.find(rnti);
1417 if (itStat == m_ulHarqProcessesStatus.end())
1418 {
1419 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1420 }
1421 if ((*itStat).second.at(harqId) >= 3)
1422 {
1423 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1424 continue;
1425 }
1426 bool free = true;
1427 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1428 {
1429 if (rbMap.at(j))
1430 {
1431 free = false;
1432 NS_LOG_INFO(this << " BUSY " << j);
1433 }
1434 }
1435 if (free)
1436 {
1437 // retx on the same RBs
1438 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1439 {
1440 rbMap.at(j) = true;
1441 rbgAllocationMap.at(j) = dci.m_rnti;
1442 NS_LOG_INFO("\tRB " << j);
1443 rbAllocatedNum++;
1444 }
1445 NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1446 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1447 << (*itStat).second.at(harqId) + 1);
1448 }
1449 else
1450 {
1451 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1452 continue;
1453 }
1454 dci.m_ndi = 0;
1455 // Update HARQ buffers with new HarqId
1456 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1457 (*itStat).second.at(harqId) = 0;
1458 (*itHarq).second.at((*itProcId).second) = dci;
1459 ret.m_dciList.push_back(dci);
1460 rntiAllocated.insert(dci.m_rnti);
1461 }
1462 else
1463 {
1464 NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1465 << params.m_ulInfoList.at(i).m_rnti);
1466 }
1467 }
1468 }
1469
1470 std::map<uint16_t, uint32_t>::iterator it;
1471 int nflows = 0;
1472
1473 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1474 {
1475 auto itRnti = rntiAllocated.find((*it).first);
1476 // select UEs with queues not empty and not yet allocated for HARQ
1477 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1478 {
1479 nflows++;
1480 }
1481 }
1482
1483 if (nflows == 0)
1484 {
1485 if (!ret.m_dciList.empty())
1486 {
1487 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1489 }
1490
1491 return; // no flows to be scheduled
1492 }
1493
1494 // Divide the remaining resources equally among the active users starting from the subsequent
1495 // one served last scheduling trigger
1496 uint16_t tempRbPerFlow = (ffrUlBandwidth) / (nflows + rntiAllocated.size());
1497 uint16_t rbPerFlow =
1498 (minContinuousUlBandwidth < tempRbPerFlow) ? minContinuousUlBandwidth : tempRbPerFlow;
1499
1500 if (rbPerFlow < 3)
1501 {
1502 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1503 // >= 7 bytes
1504 }
1505
1506 int rbAllocated = 0;
1507
1508 if (m_nextRntiUl != 0)
1509 {
1510 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1511 {
1512 if ((*it).first == m_nextRntiUl)
1513 {
1514 break;
1515 }
1516 }
1517 if (it == m_ceBsrRxed.end())
1518 {
1519 NS_LOG_ERROR(this << " no user found");
1520 }
1521 }
1522 else
1523 {
1524 it = m_ceBsrRxed.begin();
1525 m_nextRntiUl = (*it).first;
1526 }
1527 do
1528 {
1529 auto itRnti = rntiAllocated.find((*it).first);
1530 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1531 {
1532 // UE already allocated for UL-HARQ -> skip it
1533 NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1534 << (*it).first);
1535 it++;
1536 if (it == m_ceBsrRxed.end())
1537 {
1538 // restart from the first
1539 it = m_ceBsrRxed.begin();
1540 }
1541 continue;
1542 }
1543 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1544 {
1545 // limit to physical resources last resource assignment
1546 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1547 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1548 if (rbPerFlow < 3)
1549 {
1550 // terminate allocation
1551 rbPerFlow = 0;
1552 }
1553 }
1554
1555 rbAllocated = 0;
1556 UlDciListElement_s uldci;
1557 uldci.m_rnti = (*it).first;
1558 uldci.m_rbLen = rbPerFlow;
1559 bool allocated = false;
1560
1561 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1562 (rbPerFlow != 0))
1563 {
1564 // check availability
1565 bool free = true;
1566 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1567 {
1568 if (rbMap.at(j))
1569 {
1570 free = false;
1571 break;
1572 }
1573 if (!m_ffrSapProvider->IsUlRbgAvailableForUe(j, (*it).first))
1574 {
1575 free = false;
1576 break;
1577 }
1578 }
1579 if (free)
1580 {
1581 NS_LOG_INFO(this << "RNTI: " << (*it).first << " RB Allocated " << rbAllocated
1582 << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1583 uldci.m_rbStart = rbAllocated;
1584
1585 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1586 {
1587 rbMap.at(j) = true;
1588 // store info on allocation for managing ul-cqi interpretation
1589 rbgAllocationMap.at(j) = (*it).first;
1590 }
1591 rbAllocated += rbPerFlow;
1592 allocated = true;
1593 break;
1594 }
1595 rbAllocated++;
1596 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1597 {
1598 // limit to physical resources last resource assignment
1599 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1600 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1601 if (rbPerFlow < 3)
1602 {
1603 // terminate allocation
1604 rbPerFlow = 0;
1605 }
1606 }
1607 }
1608 if (!allocated)
1609 {
1610 // unable to allocate new resource: finish scheduling
1611 m_nextRntiUl = (*it).first;
1612 // if (ret.m_dciList.size () > 0)
1613 // {
1614 // m_schedSapUser->SchedUlConfigInd (ret);
1615 // }
1616 // m_allocationMaps[params.m_sfnSf] = rbgAllocationMap; return;
1617 break;
1618 }
1619
1620 auto itCqi = m_ueCqi.find((*it).first);
1621 int cqi = 0;
1622 if (itCqi == m_ueCqi.end())
1623 {
1624 // no cqi info about this UE
1625 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1626 }
1627 else
1628 {
1629 // take the lowest CQI value (worst RB)
1630 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1631 "CQI of RNTI = " << (*it).first << " has expired");
1632 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1633 if (minSinr == NO_SINR)
1634 {
1635 minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1636 }
1637 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1638 {
1639 double sinr = (*itCqi).second.at(i);
1640 if (sinr == NO_SINR)
1641 {
1642 sinr = EstimateUlSinr((*it).first, i);
1643 }
1644 if (sinr < minSinr)
1645 {
1646 minSinr = sinr;
1647 }
1648 }
1649
1650 // translate SINR -> cqi: WILD ACK: same as DL
1651 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1652 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1653 if (cqi == 0)
1654 {
1655 it++;
1656 if (it == m_ceBsrRxed.end())
1657 {
1658 // restart from the first
1659 it = m_ceBsrRxed.begin();
1660 }
1661 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1662 // remove UE from allocation map
1663 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1664 {
1665 rbgAllocationMap.at(i) = 0;
1666 }
1667 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1668 }
1669 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1670 }
1671
1672 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1674 uldci.m_ndi = 1;
1675 uldci.m_cceIndex = 0;
1676 uldci.m_aggrLevel = 1;
1677 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1678 uldci.m_hopping = false;
1679 uldci.m_n2Dmrs = 0;
1680 uldci.m_tpc = 0; // no power control
1681 uldci.m_cqiRequest = false; // only period CQI at this stage
1682 uldci.m_ulIndex = 0; // TDD parameter
1683 uldci.m_dai = 1; // TDD parameter
1684 uldci.m_freqHopping = 0;
1685 uldci.m_pdcchPowerOffset = 0; // not used
1686 ret.m_dciList.push_back(uldci);
1687 // store DCI for HARQ_PERIOD
1688 uint8_t harqId = 0;
1689 if (m_harqOn)
1690 {
1691 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1692 if (itProcId == m_ulHarqCurrentProcessId.end())
1693 {
1694 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1695 }
1696 harqId = (*itProcId).second;
1697 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
1698 if (itDci == m_ulHarqProcessesDciBuffer.end())
1699 {
1700 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1701 << uldci.m_rnti);
1702 }
1703 (*itDci).second.at(harqId) = uldci;
1704 // Update HARQ process status (RV 0)
1705 auto itStat = m_ulHarqProcessesStatus.find(uldci.m_rnti);
1706 if (itStat == m_ulHarqProcessesStatus.end())
1707 {
1708 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1709 << uldci.m_rnti);
1710 }
1711 (*itStat).second.at(harqId) = 0;
1712 }
1713
1714 NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
1715 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1716 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1717 << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
1718 << (uint16_t)harqId);
1719
1720 // update TTI UE stats
1721 auto itStats = m_flowStatsUl.find((*it).first);
1722 if (itStats != m_flowStatsUl.end())
1723 {
1724 (*itStats).second.lastTtiBytesTransmitted = uldci.m_tbSize;
1725 }
1726 else
1727 {
1728 NS_LOG_DEBUG(this << " No Stats for this allocated UE");
1729 }
1730
1731 it++;
1732 if (it == m_ceBsrRxed.end())
1733 {
1734 // restart from the first
1735 it = m_ceBsrRxed.begin();
1736 }
1737 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1738 {
1739 // Stop allocation: no more PRBs
1740 m_nextRntiUl = (*it).first;
1741 break;
1742 }
1743 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1744
1745 // Update global UE stats
1746 // update UEs stats
1747 for (auto itStats = m_flowStatsUl.begin(); itStats != m_flowStatsUl.end(); itStats++)
1748 {
1749 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTransmitted;
1750 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1751 // Evolution, Ed Wiley)
1752 (*itStats).second.lastAveragedThroughput =
1753 ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1754 ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTransmitted / 0.001));
1755 NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1756 NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1757 (*itStats).second.lastTtiBytesTransmitted = 0;
1758 }
1759 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1761}
1762
1763void
1766{
1767 NS_LOG_FUNCTION(this);
1768}
1769
1770void
1773{
1774 NS_LOG_FUNCTION(this);
1775}
1776
1777void
1780{
1781 NS_LOG_FUNCTION(this);
1782
1783 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1784 {
1785 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1786 {
1787 // buffer status report
1788 // note that this scheduler does not differentiate the
1789 // allocation according to which LCGs have more/less bytes
1790 // to send.
1791 // Hence the BSR of different LCGs are just summed up to get
1792 // a total queue size that is used for allocation purposes.
1793
1794 uint32_t buffer = 0;
1795 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1796 {
1797 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1798 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1799 }
1800
1801 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1802 NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
1803 auto it = m_ceBsrRxed.find(rnti);
1804 if (it == m_ceBsrRxed.end())
1805 {
1806 // create the new entry
1807 m_ceBsrRxed[rnti] = buffer;
1808 }
1809 else
1810 {
1811 // update the buffer size value
1812 (*it).second = buffer;
1813 }
1814 }
1815 }
1816}
1817
1818void
1821{
1822 NS_LOG_FUNCTION(this);
1824
1825 // retrieve the allocation for this subframe
1826 switch (m_ulCqiFilter)
1827 {
1829 // filter all the CQIs that are not SRS based
1830 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1831 {
1832 return;
1833 }
1834 }
1835 break;
1837 // filter all the CQIs that are not SRS based
1838 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1839 {
1840 return;
1841 }
1842 }
1843 break;
1844
1845 default:
1846 NS_FATAL_ERROR("Unknown UL CQI type");
1847 }
1848
1849 switch (params.m_ulCqi.m_type)
1850 {
1851 case UlCqi_s::PUSCH: {
1852 NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
1853 << " subframe no. " << (0xF & params.m_sfnSf));
1854 auto itMap = m_allocationMaps.find(params.m_sfnSf);
1855 if (itMap == m_allocationMaps.end())
1856 {
1857 return;
1858 }
1859 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1860 {
1861 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1862 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1863 auto itCqi = m_ueCqi.find((*itMap).second.at(i));
1864 if (itCqi == m_ueCqi.end())
1865 {
1866 // create a new entry
1867 std::vector<double> newCqi;
1868 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1869 {
1870 if (i == j)
1871 {
1872 newCqi.push_back(sinr);
1873 }
1874 else
1875 {
1876 // initialize with NO_SINR value.
1877 newCqi.push_back(NO_SINR);
1878 }
1879 }
1880 m_ueCqi[(*itMap).second.at(i)] = newCqi;
1881 // generate correspondent timer
1882 m_ueCqiTimers[(*itMap).second.at(i)] = m_cqiTimersThreshold;
1883 }
1884 else
1885 {
1886 // update the value
1887 (*itCqi).second.at(i) = sinr;
1888 NS_LOG_DEBUG(this << " RNTI " << (*itMap).second.at(i) << " RB " << i << " SINR "
1889 << sinr);
1890 // update correspondent timer
1891 auto itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1892 (*itTimers).second = m_cqiTimersThreshold;
1893 }
1894 }
1895 // remove obsolete info on allocation
1896 m_allocationMaps.erase(itMap);
1897 }
1898 break;
1899 case UlCqi_s::SRS: {
1900 NS_LOG_DEBUG(this << " Collect SRS CQIs of Frame no. " << (params.m_sfnSf >> 4)
1901 << " subframe no. " << (0xF & params.m_sfnSf));
1902 // get the RNTI from vendor specific parameters
1903 uint16_t rnti = 0;
1904 NS_ASSERT(!params.m_vendorSpecificList.empty());
1905 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1906 {
1907 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1908 {
1909 Ptr<SrsCqiRntiVsp> vsp =
1910 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1911 rnti = vsp->GetRnti();
1912 }
1913 }
1914 auto itCqi = m_ueCqi.find(rnti);
1915 if (itCqi == m_ueCqi.end())
1916 {
1917 // create a new entry
1918 std::vector<double> newCqi;
1919 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1920 {
1921 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1922 newCqi.push_back(sinr);
1923 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1924 << sinr);
1925 }
1926 m_ueCqi[rnti] = newCqi;
1927 // generate correspondent timer
1929 }
1930 else
1931 {
1932 // update the values
1933 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1934 {
1935 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1936 (*itCqi).second.at(j) = sinr;
1937 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1938 << sinr);
1939 }
1940 // update correspondent timer
1941 auto itTimers = m_ueCqiTimers.find(rnti);
1942 (*itTimers).second = m_cqiTimersThreshold;
1943 }
1944 }
1945 break;
1946 case UlCqi_s::PUCCH_1:
1947 case UlCqi_s::PUCCH_2:
1948 case UlCqi_s::PRACH: {
1949 NS_FATAL_ERROR("PfFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1950 }
1951 break;
1952 default:
1953 NS_FATAL_ERROR("Unknown type of UL-CQI");
1954 }
1955}
1956
1957void
1959{
1960 // refresh DL CQI P01 Map
1961 auto itP10 = m_p10CqiTimers.begin();
1962 while (itP10 != m_p10CqiTimers.end())
1963 {
1964 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1965 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1966 if ((*itP10).second == 0)
1967 {
1968 // delete correspondent entries
1969 auto itMap = m_p10CqiRxed.find((*itP10).first);
1970 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1971 " Does not find CQI report for user " << (*itP10).first);
1972 NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
1973 m_p10CqiRxed.erase(itMap);
1974 auto temp = itP10;
1975 itP10++;
1976 m_p10CqiTimers.erase(temp);
1977 }
1978 else
1979 {
1980 (*itP10).second--;
1981 itP10++;
1982 }
1983 }
1984
1985 // refresh DL CQI A30 Map
1986 auto itA30 = m_a30CqiTimers.begin();
1987 while (itA30 != m_a30CqiTimers.end())
1988 {
1989 NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
1990 << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1991 if ((*itA30).second == 0)
1992 {
1993 // delete correspondent entries
1994 auto itMap = m_a30CqiRxed.find((*itA30).first);
1995 NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
1996 " Does not find CQI report for user " << (*itA30).first);
1997 NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
1998 m_a30CqiRxed.erase(itMap);
1999 auto temp = itA30;
2000 itA30++;
2001 m_a30CqiTimers.erase(temp);
2002 }
2003 else
2004 {
2005 (*itA30).second--;
2006 itA30++;
2007 }
2008 }
2009}
2010
2011void
2013{
2014 // refresh UL CQI Map
2015 auto itUl = m_ueCqiTimers.begin();
2016 while (itUl != m_ueCqiTimers.end())
2017 {
2018 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
2019 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2020 if ((*itUl).second == 0)
2021 {
2022 // delete correspondent entries
2023 auto itMap = m_ueCqi.find((*itUl).first);
2024 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
2025 " Does not find CQI report for user " << (*itUl).first);
2026 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
2027 (*itMap).second.clear();
2028 m_ueCqi.erase(itMap);
2029 auto temp = itUl;
2030 itUl++;
2031 m_ueCqiTimers.erase(temp);
2032 }
2033 else
2034 {
2035 (*itUl).second--;
2036 itUl++;
2037 }
2038 }
2039}
2040
2041void
2042PfFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
2043{
2044 LteFlowId_t flow(rnti, lcid);
2045 auto it = m_rlcBufferReq.find(flow);
2046 if (it != m_rlcBufferReq.end())
2047 {
2048 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
2049 << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
2050 << (*it).second.m_rlcRetransmissionQueueSize << " status "
2051 << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2052 // Update queues: RLC tx order Status, ReTx, Tx
2053 // Update status queue
2054 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2055 {
2056 (*it).second.m_rlcStatusPduSize = 0;
2057 }
2058 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
2059 (size >= (*it).second.m_rlcRetransmissionQueueSize))
2060 {
2061 (*it).second.m_rlcRetransmissionQueueSize = 0;
2062 }
2063 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2064 {
2065 uint32_t rlcOverhead;
2066 if (lcid == 1)
2067 {
2068 // for SRB1 (using RLC AM) it's better to
2069 // overestimate RLC overhead rather than
2070 // underestimate it and risk unneeded
2071 // segmentation which increases delay
2072 rlcOverhead = 4;
2073 }
2074 else
2075 {
2076 // minimum RLC overhead due to header
2077 rlcOverhead = 2;
2078 }
2079 // update transmission queue
2080 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2081 {
2082 (*it).second.m_rlcTransmissionQueueSize = 0;
2083 }
2084 else
2085 {
2086 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2087 }
2088 }
2089 }
2090 else
2091 {
2092 NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
2093 }
2094}
2095
2096void
2097PfFfMacScheduler::UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
2098{
2099 size = size - 2; // remove the minimum RLC overhead
2100 auto it = m_ceBsrRxed.find(rnti);
2101 if (it != m_ceBsrRxed.end())
2102 {
2103 NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2104 if ((*it).second >= size)
2105 {
2106 (*it).second -= size;
2107 }
2108 else
2109 {
2110 (*it).second = 0;
2111 }
2112 }
2113 else
2114 {
2115 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
2116 }
2117}
2118
2119void
2121{
2122 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2124 params.m_rnti = rnti;
2125 params.m_transmissionMode = txMode;
2127}
2128
2129} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigCnf(const CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
virtual void CschedUeConfigUpdateInd(const CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
virtual uint8_t GetTpc(uint16_t rnti)=0
GetTpc.
virtual std::vector< bool > GetAvailableUlRbg()=0
Get vector of available RB in UL for this Cell.
virtual void ReportUlCqiInfo(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)=0
ReportUlCqiInfo.
virtual bool IsUlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in UL.
virtual void ReportDlCqiInfo(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)=0
ReportDlCqiInfo.
virtual std::vector< bool > GetAvailableDlRbg()=0
Get vector of available RBG in DL for this Cell.
virtual uint16_t GetMinContinuousUlBandwidth()=0
Get the minimum continuous Ul bandwidth.
virtual bool IsDlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in DL.
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:140
Template for the implementation of the LteFfrSapUser as a member of an owner class of type C to which...
Definition: lte-ffr-sap.h:259
Implements the SCHED SAP and CSCHED SAP for a Proportional Fair scheduler.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
void DoCschedCellConfigReq(const FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
static TypeId GetTypeId()
Get the type ID.
~PfFfMacScheduler() override
Destructor.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
void DoSchedDlRlcBufferReq(const FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR.
void DoCschedLcReleaseReq(const FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
transmission mode configuration update
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
void DoSchedUlTriggerReq(const FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
void DoSchedUlMacCtrlInfoReq(const FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
void DoSchedUlNoiseInterferenceReq(const FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
LteFfrSapUser * GetLteFfrSapUser() override
void DoSchedDlMacBufferReq(const FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
friend class MemberCschedSapProvider< PfFfMacScheduler >
allow MemberCschedSapProvider<PfFfMacScheduler> class friend access
void DoSchedDlRachInfoReq(const FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
void DoSchedDlTriggerReq(const FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RCL buffer info.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
void DoSchedUlSrInfoReq(const FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
void DoDispose() override
Destructor implementation.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active per flow.
void RefreshDlCqiMaps()
Refresh DL CQI maps.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
friend class MemberSchedSapProvider< PfFfMacScheduler >
allow MemberSchedSapProvider<PfFfMacScheduler> class friend access
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
std::map< uint16_t, pfsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
void DoSchedUlCqiInfoReq(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
double m_timeWindow
time window
std::map< uint16_t, pfsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
void DoCschedLcConfigReq(const FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
void RefreshUlCqiMaps()
Refresh UL CQI maps.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RCL buffer info.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
std::vector< RachListElement_s > m_rachList
RACH list.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
void DoCschedUeReleaseReq(const FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
int GetRbgSize(int dlbandwidth)
Get RBG size.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
void DoCschedUeConfigReq(const FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
void DoSchedDlCqiInfoReq(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
void DoSchedDlPagingBufferReq(const FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:932
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:81
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
static const int PfType0AllocationRbg[4]
PF type 0 allocation RBG.
constexpr double NO_SINR
Value for SINR outside the range defined by FF-API, used to indicate that there is no CQI for this el...
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Vector of the 8 HARQ processes per UE.
@ SUCCESS
Definition: ff-mac-common.h:62
constexpr uint32_t HARQ_DL_TIMEOUT
HARQ DL timeout.
constexpr uint32_t HARQ_PROC_NUM
Number of HARQ processes.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector.
Definition: second.py:1
See section 4.3.8 buildDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< BuildDataListElement_s > m_buildDataList
build data list
std::vector< BuildRarListElement_s > m_buildRarList
build rar list
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:43
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
pfsFlowPerf_t structure
unsigned long totalBytesTransmitted
total bytes transmitted
unsigned int lastTtiBytesTransmitted
last total bytes transmitted
Time flowStart
flow start time
double lastAveragedThroughput
last averaged throughput