A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
tap-bridge.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2009 University of Washington
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 */
17
18#include "tap-bridge.h"
19
20#include "tap-encode-decode.h"
21
22#include "ns3/abort.h"
23#include "ns3/boolean.h"
24#include "ns3/channel.h"
25#include "ns3/enum.h"
26#include "ns3/ethernet-header.h"
27#include "ns3/fd-reader.h"
28#include "ns3/ipv4.h"
29#include "ns3/llc-snap-header.h"
30#include "ns3/log.h"
31#include "ns3/node.h"
32#include "ns3/packet.h"
33#include "ns3/realtime-simulator-impl.h"
34#include "ns3/simulator.h"
35#include "ns3/string.h"
36#include "ns3/uinteger.h"
37
38#include <cerrno>
39#include <cstdlib>
40#include <limits>
41#include <net/if.h>
42#include <sys/ioctl.h>
43#include <sys/socket.h>
44#include <sys/stat.h>
45#include <sys/un.h>
46#include <sys/wait.h>
47#include <unistd.h>
48
49namespace ns3
50{
51
52NS_LOG_COMPONENT_DEFINE("TapBridge");
53
54FdReader::Data
56{
57 NS_LOG_FUNCTION(this);
58
59 uint32_t bufferSize = 65536;
60 auto buf = (uint8_t*)std::malloc(bufferSize);
61 NS_ABORT_MSG_IF(buf == nullptr, "malloc() failed");
62
63 NS_LOG_LOGIC("Calling read on tap device fd " << m_fd);
64 ssize_t len = read(m_fd, buf, bufferSize);
65 if (len <= 0)
66 {
67 NS_LOG_INFO("TapBridgeFdReader::DoRead(): done");
68 std::free(buf);
69 buf = nullptr;
70 len = 0;
71 }
72
73 return FdReader::Data(buf, len);
74}
75
76#define TAP_MAGIC 95549
77
79
80TypeId
82{
83 static TypeId tid =
84 TypeId("ns3::TapBridge")
86 .SetGroupName("TapBridge")
87 .AddConstructor<TapBridge>()
88 .AddAttribute("Mtu",
89 "The MAC-level Maximum Transmission Unit",
92 MakeUintegerChecker<uint16_t>())
93 .AddAttribute("DeviceName",
94 "The name of the tap device to create.",
95 StringValue(""),
98 .AddAttribute("Gateway",
99 "The IP address of the default gateway to assign to the host machine, "
100 "when in ConfigureLocal mode.",
101 Ipv4AddressValue("255.255.255.255"),
104 .AddAttribute(
105 "IpAddress",
106 "The IP address to assign to the tap device, when in ConfigureLocal mode. "
107 "This address will override the discovered IP address of the simulated device.",
108 Ipv4AddressValue("255.255.255.255"),
111 .AddAttribute(
112 "MacAddress",
113 "The MAC address to assign to the tap device, when in ConfigureLocal mode. "
114 "This address will override the discovered MAC address of the simulated device.",
115 Mac48AddressValue(Mac48Address("ff:ff:ff:ff:ff:ff")),
118 .AddAttribute(
119 "Netmask",
120 "The network mask to assign to the tap device, when in ConfigureLocal mode. "
121 "This address will override the discovered MAC address of the simulated device.",
122 Ipv4MaskValue("255.255.255.255"),
125 .AddAttribute("Start",
126 "The simulation time at which to spin up the tap device read thread.",
127 TimeValue(Seconds(0.)),
130 .AddAttribute("Stop",
131 "The simulation time at which to tear down the tap device read thread.",
132 TimeValue(Seconds(0.)),
135 .AddAttribute("Mode",
136 "The operating and configuration mode to use.",
138 MakeEnumAccessor<Mode>(&TapBridge::SetMode),
140 "ConfigureLocal",
141 USE_LOCAL,
142 "UseLocal",
144 "UseBridge"))
145 .AddAttribute("Verbose",
146 "Enable verbose output from tap-creator child process",
147 BooleanValue(false),
150 return tid;
151}
152
154 : m_node(nullptr),
155 m_ifIndex(0),
156 m_sock(-1),
157 m_startEvent(),
158 m_stopEvent(),
159 m_fdReader(nullptr),
160 m_ns3AddressRewritten(false)
161{
162 NS_LOG_FUNCTION(this);
163 m_packetBuffer = new uint8_t[65536];
165}
166
168{
169 NS_LOG_FUNCTION(this);
170
172
173 delete[] m_packetBuffer;
174 m_packetBuffer = nullptr;
175
176 m_bridgedDevice = nullptr;
177}
178
179void
181{
182 NS_LOG_FUNCTION(this);
184}
185
186void
188{
189 NS_LOG_FUNCTION(this << tStart);
190
191 //
192 // Cancel any pending start event and schedule a new one at some relative time in the future.
193 //
196}
197
198void
200{
201 NS_LOG_FUNCTION(this << tStop);
202 //
203 // Cancel any pending stop event and schedule a new one at some relative time in the future.
204 //
207}
208
209void
211{
212 NS_LOG_FUNCTION(this);
213
214 NS_ABORT_MSG_IF(m_sock != -1, "TapBridge::StartTapDevice(): Tap is already started");
215
216 //
217 // A similar story exists for the node ID. We can't just naively do a
218 // GetNode ()->GetId () since GetNode is going to give us a Ptr<Node> which
219 // is reference counted. We need to stash away the node ID for use in the
220 // read thread.
221 //
222 m_nodeId = GetNode()->GetId();
223
224 //
225 // Spin up the tap bridge and start receiving packets.
226 //
227 NS_LOG_LOGIC("Creating tap device");
228
229 //
230 // Call out to a separate process running as suid root in order to get the
231 // tap device allocated and set up. We do this to avoid having the entire
232 // simulation running as root. If this method returns, we'll have a socket
233 // waiting for us in m_sock that we can use to talk to the newly created
234 // tap device.
235 //
236 CreateTap();
237
238 // Declare the link up
239 NotifyLinkUp();
240
241 //
242 // Now spin up a read thread to read packets from the tap device.
243 //
244 NS_ABORT_MSG_IF(m_fdReader, "TapBridge::StartTapDevice(): Receive thread is already running");
245 NS_LOG_LOGIC("Spinning up read thread");
246
247 m_fdReader = Create<TapBridgeFdReader>();
249}
250
251void
253{
254 NS_LOG_FUNCTION(this);
255
256 if (m_fdReader)
257 {
258 m_fdReader->Stop();
259 m_fdReader = nullptr;
260 }
261
262 if (m_sock != -1)
263 {
264 close(m_sock);
265 m_sock = -1;
266 }
267}
268
269void
271{
272 NS_LOG_FUNCTION(this);
273
274 //
275 // The TapBridge has three distinct operating modes. At this point, the
276 // differences revolve around who is responsible for creating and configuring
277 // the underlying network tap that we use. In ConfigureLocal mode, the
278 // TapBridge has the responsibility for creating and configuring the TAP.
279 //
280 // In UseBridge or UseLocal modes, the user will provide us a configuration
281 // and we have to adapt to it. For example, in UseLocal mode, the user will
282 // be configuring a tap device outside the scope of the ns-3 simulation and
283 // will be expecting us to work with it. The user will do something like:
284 //
285 // sudo ip tuntap add mode tap tap0
286 // sudo ip address add 10.1.1.1/24 dev tap0
287 // sudo ip link set dev tap0 address 00:00:00:00:00:01 up
288 //
289 // The user will then set the "Mode" Attribute of the TapBridge to "UseLocal"
290 // and the "DeviceName" Attribute to "tap0" in this case.
291 //
292 // In ConfigureLocal mode, the user is asking the TapBridge to do the
293 // configuration and create a TAP with the provided "DeviceName" with which
294 // the user can later do what she wants. We need to extract values for the
295 // MAC address, IP address, net mask, etc, from the simulation itself and
296 // use them to initialize corresponding values on the created tap device.
297 //
298 // In UseBridge mode, the user is asking us to use an existing tap device
299 // has been included in an OS bridge. She is asking us to take the simulated
300 // net device and logically add it to the existing bridge. We expect that
301 // the user has done something like:
302 //
303 // sudo ip link add mybridge type bridge
304 // sudo ip tuntap add mode tap mytap
305 // sudo ip link set dev mytap address 00:00:00:00:00:01 up
306 // sudo ip link set dev mytap master mybridge
307 // sudo ip link set dev ... master mybridge
308 // sudo ip address add 10.1.1.1/24 dev mybridge
309 // sudo ip link set dev mybridge up
310 //
311 // The bottom line at this point is that we want to either create or use a
312 // tap device on the host based on the verb part "Use" or "Configure" of the
313 // operating mode. Unfortunately for us you have to have root privileges to
314 // do either. Instead of running the entire simulation as root, we decided
315 // to make a small program who's whole reason for being is to run as suid
316 // root and do what it takes to create the tap. We're just going to pass
317 // off the configuration information to that program and let it deal with
318 // the situation.
319 //
320 // We're going to fork and exec that program soon, but first we need to have
321 // a socket to talk to it with. So we create a local interprocess (Unix)
322 // socket for that purpose.
323 //
324 int sock = socket(PF_UNIX, SOCK_DGRAM, 0);
326 sock == -1,
327 "TapBridge::CreateTap(): Unix socket creation error, errno = " << std::strerror(errno));
328
329 //
330 // Bind to that socket and let the kernel allocate an endpoint
331 //
332 struct sockaddr_un un;
333 memset(&un, 0, sizeof(un));
334 un.sun_family = AF_UNIX;
335 int status = bind(sock, (struct sockaddr*)&un, sizeof(sa_family_t));
336 NS_ABORT_MSG_IF(status == -1,
337 "TapBridge::CreateTap(): Could not bind(): errno = " << std::strerror(errno));
338 NS_LOG_INFO("Created Unix socket");
339 NS_LOG_INFO("sun_family = " << un.sun_family);
340 NS_LOG_INFO("sun_path = " << un.sun_path);
341
342 //
343 // We have a socket here, but we want to get it there -- to the program we're
344 // going to exec. What we'll do is to do a getsockname and then encode the
345 // resulting address information as a string, and then send the string to the
346 // program as an argument. So we need to get the sock name.
347 //
348 socklen_t len = sizeof(un);
349 status = getsockname(sock, (struct sockaddr*)&un, &len);
351 status == -1,
352 "TapBridge::CreateTap(): Could not getsockname(): errno = " << std::strerror(errno));
353
354 //
355 // Now encode that socket name (family and path) as a string of hex digits
356 //
357 std::string path = TapBufferToString((uint8_t*)&un, len);
358 NS_LOG_INFO("Encoded Unix socket as \"" << path << "\"");
359
360 //
361 // Tom Goff reports the possibility of a deadlock when trying to acquire the
362 // python GIL here. He says that this might be due to trying to access Python
363 // objects after fork() without calling PyOS_AfterFork() to properly reset
364 // Python state (including the GIL). Originally these next three lines were
365 // done after the fork, but were moved here to work around the deadlock.
366 //
368 Ptr<Node> n = nd->GetNode();
369 Ptr<Ipv4> ipv4 = n->GetObject<Ipv4>();
370
371 //
372 // Fork and exec the process to create our socket. If we're us (the parent)
373 // we wait for the child (the creator) to complete and read the socket it
374 // created and passed back using the ancillary data mechanism.
375 //
376 pid_t pid = ::fork();
377 if (pid == 0)
378 {
379 NS_LOG_DEBUG("Child process");
380
381 //
382 // build a command line argument from the encoded endpoint string that
383 // the socket creation process will use to figure out how to respond to
384 // the (now) parent process. We're going to have to give this program
385 // quite a bit of information.
386 //
387 // -d<device-name> The name of the tap device we want to create;
388 // -g<gateway-address> The IP address to use as the default gateway;
389 // -i<IP-address> The IP address to assign to the new tap device;
390 // -m<MAC-address> The MAC-48 address to assign to the new tap device;
391 // -n<network-mask> The network mask to assign to the new tap device;
392 // -o<operating mode> The operating mode of the bridge (1=ConfigureLocal, 2=UseLocal,
393 // 3=UseBridge) -p<path> the path to the unix socket described above.
394 //
395 // Example tap-creator -dnewdev -g1.2.3.2 -i1.2.3.1 -m08:00:2e:00:01:23 -n255.255.255.0 -o1
396 // -pblah
397 //
398 // We want to get as much of this stuff automagically as possible.
399 //
400 // For CONFIGURE_LOCAL mode only:
401 // <IP-address> is the IP address we are going to set in the newly
402 // created Tap device on the Linux host. At the point in the simulation
403 // where devices are coming up, we should have all of our IP addresses
404 // assigned. That means that we can find the IP address to assign to
405 // the new Tap device from the IP address associated with the bridged
406 // net device.
407 //
408
409 bool wantIp = (m_mode == CONFIGURE_LOCAL);
410
411 if (wantIp && (!ipv4) && m_tapIp.IsBroadcast() && m_tapNetmask == Ipv4Mask::GetOnes())
412 {
413 NS_FATAL_ERROR("TapBridge::CreateTap(): Tap device IP configuration requested but "
414 "neither IP address nor IP netmask is provided");
415 }
416
417 // Some stub values to make tap-creator happy
418 Ipv4Address ipv4Address("255.255.255.255");
419 Ipv4Mask ipv4Mask("255.255.255.255");
420
421 if (ipv4)
422 {
423 uint32_t index = ipv4->GetInterfaceForDevice(nd);
424 if (ipv4->GetNAddresses(index) > 1)
425 {
427 "Underlying bridged NetDevice has multiple IP addresses; using first one.");
428 }
429 ipv4Address = ipv4->GetAddress(index, 0).GetLocal();
430
431 //
432 // The net mask is sitting right there next to the ipv4 address.
433 //
434 ipv4Mask = ipv4->GetAddress(index, 0).GetMask();
435 }
436
437 //
438 // The MAC address should also already be assigned and waiting for us in
439 // the bridged net device.
440 //
441 Address address = nd->GetAddress();
442 Mac48Address mac48Address = Mac48Address::ConvertFrom(address);
443
444 //
445 // The device-name is something we may want the system to make up in
446 // every case. We also rely on it being configured via an Attribute
447 // through the helper. By default, it is set to the empty string
448 // which tells the system to make up a device name such as "tap123".
449 //
450 std::ostringstream ossDeviceName;
451 ossDeviceName << "-d" << m_tapDeviceName;
452
453 //
454 // The gateway-address is something we can't derive, so we rely on it
455 // being configured via an Attribute through the helper.
456 //
457 std::ostringstream ossGateway;
458 ossGateway << "-g" << m_tapGateway;
459
460 //
461 // For flexibility, we do allow a client to override any of the values
462 // above via attributes, so only use our found values if the Attribute
463 // is not equal to its default value (empty string or broadcast address).
464 //
465 std::ostringstream ossIp;
466 if (m_tapIp.IsBroadcast())
467 {
468 ossIp << "-i" << ipv4Address;
469 }
470 else
471 {
472 ossIp << "-i" << m_tapIp;
473 }
474
475 std::ostringstream ossMac;
476 if (m_tapMac.IsBroadcast())
477 {
478 ossMac << "-m" << mac48Address;
479 }
480 else
481 {
482 ossMac << "-m" << m_tapMac;
483 }
484
485 std::ostringstream ossNetmask;
487 {
488 ossNetmask << "-n" << ipv4Mask;
489 }
490 else
491 {
492 ossNetmask << "-n" << m_tapNetmask;
493 }
494
495 std::ostringstream ossMode;
496 ossMode << "-o";
497 if (m_mode == CONFIGURE_LOCAL)
498 {
499 ossMode << "1";
500 }
501 else if (m_mode == USE_LOCAL)
502 {
503 ossMode << "2";
504 }
505 else
506 {
507 ossMode << "3";
508 }
509
510 std::ostringstream ossVerbose;
511 if (m_verbose)
512 {
513 ossVerbose << "-v";
514 }
515
516 std::ostringstream ossPath;
517 ossPath << "-p" << path;
518
519 NS_LOG_DEBUG("Executing: " << TAP_CREATOR << " " << ossDeviceName.str() << " "
520 << ossGateway.str() << " " << ossIp.str() << " " << ossMac.str()
521 << " " << ossNetmask.str() << " " << ossMode.str() << " "
522 << ossPath.str() << " " << ossVerbose.str());
523
524 //
525 // Execute the socket creation process image.
526 //
527 status = ::execlp(TAP_CREATOR,
528 TAP_CREATOR, // argv[0] (filename)
529 ossDeviceName.str().c_str(), // argv[1] (-d<device name>)
530 ossGateway.str().c_str(), // argv[2] (-g<gateway>)
531 ossIp.str().c_str(), // argv[3] (-i<IP address>)
532 ossMac.str().c_str(), // argv[4] (-m<MAC address>)
533 ossNetmask.str().c_str(), // argv[5] (-n<net mask>)
534 ossMode.str().c_str(), // argv[6] (-o<operating mode>)
535 ossPath.str().c_str(), // argv[7] (-p<path>)
536 ossVerbose.str().c_str(), // argv[8] (-v)
537 (char*)nullptr);
538
539 //
540 // If the execlp successfully completes, it never returns. If it returns it failed or the
541 // OS is broken. In either case, we bail.
542 //
543 NS_FATAL_ERROR("TapBridge::CreateTap(): Back from execlp(), status = "
544 << status << " errno = " << ::strerror(errno));
545 }
546 else
547 {
548 NS_LOG_DEBUG("Parent process");
549 //
550 // We're the process running the emu net device. We need to wait for the
551 // socket creator process to finish its job.
552 //
553 int st;
554 pid_t waited = waitpid(pid, &st, 0);
556 waited == -1,
557 "TapBridge::CreateTap(): waitpid() fails, errno = " << std::strerror(errno));
558 NS_ASSERT_MSG(pid == waited, "TapBridge::CreateTap(): pid mismatch");
559
560 //
561 // Check to see if the socket creator exited normally and then take a
562 // look at the exit code. If it bailed, so should we. If it didn't
563 // even exit normally, we bail too.
564 //
565 if (WIFEXITED(st))
566 {
567 int exitStatus = WEXITSTATUS(st);
568 NS_ABORT_MSG_IF(exitStatus != 0,
569 "TapBridge::CreateTap(): socket creator exited normally with status "
570 << exitStatus);
571 }
572 else if (WIFSIGNALED(st))
573 {
574 NS_FATAL_ERROR("TapBridge::CreateTap(): socket creator exited with signal "
575 << WTERMSIG(st));
576 }
577 else
578 {
579 NS_FATAL_ERROR("TapBridge::CreateTap(): socket creator exited abnormally");
580 }
581
582 //
583 // At this point, the socket creator has run successfully and should
584 // have created our tap device, initialized it with the information we
585 // passed and sent it back to the socket address we provided. A socket
586 // (fd) we can use to talk to this tap device should be waiting on the
587 // Unix socket we set up to receive information back from the creator
588 // program. We've got to do a bunch of grunt work to get at it, though.
589 //
590 // The struct iovec below is part of a scatter-gather list. It describes a
591 // buffer. In this case, it describes a buffer (an integer) that will
592 // get the data that comes back from the socket creator process. It will
593 // be a magic number that we use as a consistency/sanity check.
594 //
595 struct iovec iov;
596 uint32_t magic;
597 iov.iov_base = &magic;
598 iov.iov_len = sizeof(magic);
599
600 //
601 // The CMSG macros you'll see below are used to create and access control
602 // messages (which is another name for ancillary data). The ancillary
603 // data is made up of pairs of struct cmsghdr structures and associated
604 // data arrays.
605 //
606 // First, we're going to allocate a buffer on the stack to receive our
607 // data array (that contains the socket). Sometimes you'll see this called
608 // an "ancillary element" but the msghdr uses the control message termimology
609 // so we call it "control."
610 //
611 constexpr size_t msg_size = sizeof(int);
612 char control[CMSG_SPACE(msg_size)];
613
614 //
615 // There is a msghdr that is used to minimize the number of parameters
616 // passed to recvmsg (which we will use to receive our ancillary data).
617 // This structure uses terminology corresponding to control messages, so
618 // you'll see msg_control, which is the pointer to the ancillary data and
619 // controllen which is the size of the ancillary data array.
620 //
621 // So, initialize the message header that describes the ancillary/control
622 // data we expect to receive and point it to buffer.
623 //
624 struct msghdr msg;
625 msg.msg_name = nullptr;
626 msg.msg_namelen = 0;
627 msg.msg_iov = &iov;
628 msg.msg_iovlen = 1;
629 msg.msg_control = control;
630 msg.msg_controllen = sizeof(control);
631 msg.msg_flags = 0;
632
633 //
634 // Now we can actually receive the interesting bits from the tap
635 // creator process. Lots of pain to get four bytes.
636 //
637 ssize_t bytesRead = recvmsg(sock, &msg, 0);
638 NS_ABORT_MSG_IF(bytesRead != sizeof(int),
639 "TapBridge::CreateTap(): Wrong byte count from socket creator");
640
641 //
642 // There may be a number of message headers/ancillary data arrays coming in.
643 // Let's look for the one with a type SCM_RIGHTS which indicates it's the
644 // one we're interested in.
645 //
646 struct cmsghdr* cmsg;
647 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != nullptr; cmsg = CMSG_NXTHDR(&msg, cmsg))
648 {
649 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS)
650 {
651 //
652 // This is the type of message we want. Check to see if the magic
653 // number is correct and then pull out the socket we care about if
654 // it matches
655 //
656 if (magic == TAP_MAGIC)
657 {
658 NS_LOG_INFO("Got SCM_RIGHTS with correct magic " << magic);
659 int* rawSocket = (int*)CMSG_DATA(cmsg);
660 NS_LOG_INFO("Got the socket from the socket creator = " << *rawSocket);
661 m_sock = *rawSocket;
662 break;
663 }
664 else
665 {
666 NS_LOG_INFO("Got SCM_RIGHTS, but with bad magic " << magic);
667 }
668 }
669 }
670 if (cmsg == nullptr)
671 {
672 NS_FATAL_ERROR("Did not get the raw socket from the socket creator");
673 }
674
675 if (m_mode == USE_BRIDGE)
676 {
677 //
678 // Set the ns-3 device's mac address to the overlying container's
679 // mac address
680 //
681 struct ifreq s;
682 memset(&s, 0, sizeof(struct ifreq));
683 strncpy(s.ifr_name, m_tapDeviceName.c_str(), IFNAMSIZ - 1);
684
685 NS_LOG_INFO("Trying to get MacAddr of " << m_tapDeviceName);
686 int ioctlResult = ioctl(sock, SIOCGIFHWADDR, &s);
687 if (ioctlResult == 0)
688 {
689 Mac48Address learnedMac;
690 learnedMac.CopyFrom((uint8_t*)s.ifr_hwaddr.sa_data);
691 NS_LOG_INFO("Learned Tap device MacAddr is "
692 << learnedMac << ": setting ns-3 device to use this address");
693 m_bridgedDevice->SetAddress(learnedMac);
695 }
696
698 {
699 NS_LOG_INFO("Cannot get MacAddr of Tap device: "
701 << " while in USE_LOCAL/USE_BRIDGE mode: " << std::strerror(errno));
702 NS_LOG_INFO("Underlying ns-3 device will continue to use default address, what can "
703 "lead to connectivity errors");
704 }
705 }
706 }
707
708 close(sock);
709}
710
711void
712TapBridge::ReadCallback(uint8_t* buf, ssize_t len)
713{
714 NS_LOG_FUNCTION(this << buf << len);
715
716 NS_ASSERT_MSG(buf != nullptr, "invalid buf argument");
717 NS_ASSERT_MSG(len > 0, "invalid len argument");
718
719 //
720 // It's important to remember that we're in a completely different thread
721 // than the simulator is running in. We need to synchronize with that
722 // other thread to get the packet up into ns-3. What we will need to do
723 // is to schedule a method to deal with the packet using the multithreaded
724 // simulator we are most certainly running. However, I just said it -- we
725 // are talking about two threads here, so it is very, very dangerous to do
726 // any kind of reference counting on a shared object. Just don't do it.
727 // So what we're going to do is pass the buffer allocated on the heap
728 // into the ns-3 context thread where it will create the packet.
729 //
730
731 NS_LOG_INFO("TapBridge::ReadCallback(): Received packet on node " << m_nodeId);
732 NS_LOG_INFO("TapBridge::ReadCallback(): Scheduling handler");
734 Seconds(0.0),
736}
737
738void
739TapBridge::ForwardToBridgedDevice(uint8_t* buf, ssize_t len)
740{
741 NS_LOG_FUNCTION(this << buf << len);
742
743 //
744 // There are three operating modes for the TapBridge
745 //
746 // CONFIGURE_LOCAL means that ns-3 will create and configure a tap device
747 // and we are expected to use it. The tap device and the ns-3 net device
748 // will have the same MAC address by definition. Thus Send and SendFrom
749 // are equivalent in this case. We use Send to allow all ns-3 devices to
750 // participate in this mode.
751 //
752 // USE_LOCAL mode tells us that we have got to USE a pre-created tap device
753 // that will have a different MAC address from the ns-3 net device. We
754 // also enforce the requirement that there will only be one MAC address
755 // bridged on the Linux side so we can use Send (instead of SendFrom) in
756 // the linux to ns-3 direction. Again, all ns-3 devices can participate
757 // in this mode.
758 //
759 // USE_BRIDGE mode tells us that we are logically extending a Linux bridge
760 // on which lies our tap device. In this case there may be many linux
761 // net devices on the other side of the bridge and so we must use SendFrom
762 // to preserve the possibly many source addresses. Thus, ns-3 devices
763 // must support SendFrom in order to be considered for USE_BRIDGE mode.
764 //
765
766 //
767 // First, create a packet out of the byte buffer we received and free that
768 // buffer.
769 //
770 Ptr<Packet> packet = Create<Packet>(reinterpret_cast<const uint8_t*>(buf), len);
771 std::free(buf);
772 buf = nullptr;
773
774 //
775 // Make sure the packet we received is reasonable enough for the rest of the
776 // system to handle and get it ready to be injected directly into an ns-3
777 // device. What should come back is a packet with the Ethernet header
778 // (and possibly an LLC header as well) stripped off.
779 //
780 Address src;
781 Address dst;
782 uint16_t type;
783
784 NS_LOG_LOGIC("Received packet from tap device");
785
786 Ptr<Packet> p = Filter(packet, &src, &dst, &type);
787 if (!p)
788 {
790 "TapBridge::ForwardToBridgedDevice: Discarding packet as unfit for ns-3 consumption");
791 return;
792 }
793
794 NS_LOG_LOGIC("Pkt source is " << src);
795 NS_LOG_LOGIC("Pkt destination is " << dst);
796 NS_LOG_LOGIC("Pkt LengthType is " << type);
797 if (m_mode == USE_LOCAL)
798 {
799 //
800 // Packets we are going to forward should not be from a broadcast src
801 //
803 "TapBridge::ForwardToBridgedDevice: Source addr is broadcast");
805 {
806 //
807 // Set the ns-3 device's mac address to the overlying container's
808 // mac address
809 //
810 Mac48Address learnedMac = Mac48Address::ConvertFrom(src);
811 NS_LOG_LOGIC("Learned MacAddr is " << learnedMac
812 << ": setting ns-3 device to use this address");
813 m_bridgedDevice->SetAddress(Mac48Address::ConvertFrom(learnedMac));
815 }
816 //
817 // If we are operating in USE_LOCAL mode, we may be attached to an ns-3
818 // device that does not support bridging (SupportsSendFrom returns false).
819 // But, since the mac addresses are now aligned, we can call Send()
820 //
821 NS_LOG_LOGIC("Forwarding packet to ns-3 device via Send()");
822 m_bridgedDevice->Send(packet, dst, type);
823 return;
824 }
825
826 //
827 // If we are operating in USE_BRIDGE mode, we have the
828 // situation described below:
829 //
830 // Other Device <-bridge-> Tap Device <-bridge-> ns3 device
831 // Mac Addr A Mac Addr B Mac Addr C
832 //
833 // In Linux, "Other Device" and "Tap Device" are bridged together. By this
834 // we mean that a user has sone something in Linux like:
835 //
836 // ip link add mybridge type bridge
837 // ip link set dev other-device master mybridge
838 // ip link set dev tap-device master mybridge
839 //
840 // In USE_BRIDGE mode, we want to logically extend this Linux behavior to the
841 // simulated ns3 device and make it appear as if it is connected to the Linux
842 // subnet. As you may expect, this means that we need to act like a real
843 // Linux bridge and take all packets that come from "Tap Device" and ask
844 // "ns3 Device" to send them down its directly connected network. Just like
845 // in a normal everyday bridge we need to call SendFrom in order to preserve
846 // the original packet's from address.
847 //
848 // If we are operating in CONFIGURE_LOCAL mode, we simply simply take all packets
849 // that come from "Tap Device" and ask "ns3 Device" to send them down its
850 // directly connected network. A normal bridge would need to call SendFrom
851 // in order to preserve the original from address, but in CONFIGURE_LOCAL mode
852 // the tap device and the ns-3 device have the same MAC address by definition so
853 // we can call Send.
854 //
855 NS_LOG_LOGIC("Forwarding packet");
856
857 if (m_mode == USE_BRIDGE)
858 {
859 m_bridgedDevice->SendFrom(packet, src, dst, type);
860 }
861 else
862 {
864 "TapBridge::ForwardToBridgedDevice(): Internal error");
865 m_bridgedDevice->Send(packet, dst, type);
866 }
867}
868
870TapBridge::Filter(Ptr<Packet> p, Address* src, Address* dst, uint16_t* type)
871{
872 NS_LOG_FUNCTION(this << p);
874
875 //
876 // We have a candidate packet for injection into ns-3. We expect that since
877 // it came over a socket that provides Ethernet packets, it should be big
878 // enough to hold an EthernetHeader. If it can't, we signify the packet
879 // should be filtered out by returning 0.
880 //
881 pktSize = p->GetSize();
882 EthernetHeader header(false);
883 if (pktSize < header.GetSerializedSize())
884 {
885 return nullptr;
886 }
887
888 uint32_t headerSize = p->PeekHeader(header);
889 p->RemoveAtStart(headerSize);
890
891 NS_LOG_LOGIC("Pkt source is " << header.GetSource());
892 NS_LOG_LOGIC("Pkt destination is " << header.GetDestination());
893 NS_LOG_LOGIC("Pkt LengthType is " << header.GetLengthType());
894
895 //
896 // If the length/type is less than 1500, it corresponds to a length
897 // interpretation packet. In this case, it is an 802.3 packet and
898 // will also have an 802.2 LLC header. If greater than 1500, we
899 // find the protocol number (Ethernet type) directly.
900 //
901 if (header.GetLengthType() <= 1500)
902 {
903 *src = header.GetSource();
904 *dst = header.GetDestination();
905
906 pktSize = p->GetSize();
907 LlcSnapHeader llc;
908 if (pktSize < llc.GetSerializedSize())
909 {
910 return nullptr;
911 }
912
913 p->RemoveHeader(llc);
914 *type = llc.GetType();
915 }
916 else
917 {
918 *src = header.GetSource();
919 *dst = header.GetDestination();
920 *type = header.GetLengthType();
921 }
922
923 //
924 // What we give back is a packet without the Ethernet header (nor the
925 // possible llc/snap header) on it. We think it is ready to send on
926 // out the bridged net device.
927 //
928 return p;
929}
930
933{
934 NS_LOG_FUNCTION(this);
935 return m_bridgedDevice;
936}
937
938void
940{
941 NS_LOG_FUNCTION(this << bridgedDevice);
942
943 NS_ASSERT_MSG(m_node, "TapBridge::SetBridgedDevice: Bridge not installed in a node");
944 NS_ASSERT_MSG(bridgedDevice != this, "TapBridge::SetBridgedDevice: Cannot bridge to self");
945 NS_ASSERT_MSG(!m_bridgedDevice, "TapBridge::SetBridgedDevice: Already bridged");
946
947 if (!Mac48Address::IsMatchingType(bridgedDevice->GetAddress()))
948 {
949 NS_FATAL_ERROR("TapBridge::SetBridgedDevice: Device does not support eui 48 addresses: "
950 "cannot be added to bridge.");
951 }
952
953 if (m_mode == USE_BRIDGE && !bridgedDevice->SupportsSendFrom())
954 {
955 NS_FATAL_ERROR("TapBridge::SetBridgedDevice: Device does not support SendFrom: cannot be "
956 "added to bridge.");
957 }
958
959 //
960 // We need to disconnect the bridged device from the internet stack on our
961 // node to ensure that only one stack responds to packets inbound over the
962 // bridged device. That one stack lives outside ns-3 so we just blatantly
963 // steal the device callbacks.
964 //
965 // N.B This can be undone if someone does a RegisterProtocolHandler later
966 // on this node.
967 //
968 bridgedDevice->SetReceiveCallback(MakeCallback(&TapBridge::DiscardFromBridgedDevice, this));
969 bridgedDevice->SetPromiscReceiveCallback(
971 m_bridgedDevice = bridgedDevice;
972}
973
974bool
976 Ptr<const Packet> packet,
977 uint16_t protocol,
978 const Address& src)
979{
980 NS_LOG_FUNCTION(this << device << packet << protocol << src);
981 NS_LOG_LOGIC("Discarding packet stolen from bridged device " << device);
982 return true;
983}
984
985bool
987 Ptr<const Packet> packet,
988 uint16_t protocol,
989 const Address& src,
990 const Address& dst,
991 PacketType packetType)
992{
993 NS_LOG_FUNCTION(this << device << packet << protocol << src << dst << packetType);
995 "TapBridge::SetBridgedDevice: Received packet from unexpected device");
996 NS_LOG_DEBUG("Packet UID is " << packet->GetUid());
997
998 //
999 // There are three operating modes for the TapBridge
1000 //
1001 // CONFIGURE_LOCAL means that ns-3 will create and configure a tap device
1002 // and we are expected to use it. The tap device and the ns-3 net device
1003 // will have the same MAC address by definition.
1004 //
1005 // USE_LOCAL mode tells us that we have got to USE a pre-created tap device
1006 // that will have a different MAC address from the ns-3 net device. In this
1007 // case we will be spoofing the MAC address of a received packet to match
1008 // the single allowed address on the Linux side.
1009 //
1010 // USE_BRIDGE mode tells us that we are logically extending a Linux bridge
1011 // on which lies our tap device.
1012 //
1013
1014 if (m_mode == CONFIGURE_LOCAL && packetType == PACKET_OTHERHOST)
1015 {
1016 //
1017 // We hooked the promiscuous mode protocol handler so we could get the
1018 // destination address of the actual packet. This means we will be
1019 // getting PACKET_OTHERHOST packets (not broadcast, not multicast, not
1020 // unicast to the ns-3 net device, but to some other address). In
1021 // CONFIGURE_LOCAL mode we are not interested in these packets since they
1022 // don't refer to the single MAC address shared by the ns-3 device and
1023 // the TAP device. If, however, we are in USE_LOCAL or USE_BRIDGE mode,
1024 // we want to act like a bridge and forward these PACKET_OTHERHOST
1025 // packets.
1026 //
1027 return true;
1028 }
1029
1032
1033 Ptr<Packet> p = packet->Copy();
1034 EthernetHeader header = EthernetHeader(false);
1035 header.SetSource(from);
1036 header.SetDestination(to);
1037
1038 header.SetLengthType(protocol);
1039 p->AddHeader(header);
1040
1041 NS_LOG_LOGIC("Writing packet to Linux host");
1042 NS_LOG_LOGIC("Pkt source is " << header.GetSource());
1043 NS_LOG_LOGIC("Pkt destination is " << header.GetDestination());
1044 NS_LOG_LOGIC("Pkt LengthType is " << header.GetLengthType());
1045 NS_LOG_LOGIC("Pkt size is " << p->GetSize());
1046
1047 NS_ASSERT_MSG(p->GetSize() <= 65536,
1048 "TapBridge::ReceiveFromBridgedDevice: Packet too big " << p->GetSize());
1049 p->CopyData(m_packetBuffer, p->GetSize());
1050
1051 uint32_t bytesWritten = write(m_sock, m_packetBuffer, p->GetSize());
1052 NS_ABORT_MSG_IF(bytesWritten != p->GetSize(),
1053 "TapBridge::ReceiveFromBridgedDevice(): Write error.");
1054
1055 NS_LOG_LOGIC("End of receive packet handling on node " << m_node->GetId());
1056 return true;
1057}
1058
1059void
1061{
1062 NS_LOG_FUNCTION(this << index);
1063 m_ifIndex = index;
1064}
1065
1068{
1069 NS_LOG_FUNCTION(this);
1070 return m_ifIndex;
1071}
1072
1075{
1076 NS_LOG_FUNCTION(this);
1077 return nullptr;
1078}
1079
1080void
1082{
1083 NS_LOG_FUNCTION(this << address);
1085}
1086
1087Address
1089{
1090 NS_LOG_FUNCTION(this);
1091 return m_address;
1092}
1093
1094void
1096{
1097 NS_LOG_FUNCTION(this << mode);
1098 m_mode = mode;
1099}
1100
1103{
1104 NS_LOG_FUNCTION(this);
1105 return m_mode;
1106}
1107
1108bool
1109TapBridge::SetMtu(const uint16_t mtu)
1110{
1111 NS_LOG_FUNCTION(this << mtu);
1112 m_mtu = mtu;
1113 return true;
1114}
1115
1116uint16_t
1118{
1119 NS_LOG_FUNCTION(this);
1120 return m_mtu;
1121}
1122
1123void
1125{
1126 NS_LOG_FUNCTION(this);
1127 if (!m_linkUp)
1128 {
1129 m_linkUp = true;
1131 }
1132}
1133
1134bool
1136{
1137 NS_LOG_FUNCTION(this);
1138 return m_linkUp;
1139}
1140
1141void
1143{
1144 NS_LOG_FUNCTION(this);
1146}
1147
1148bool
1150{
1151 NS_LOG_FUNCTION(this);
1152 return true;
1153}
1154
1155Address
1157{
1158 NS_LOG_FUNCTION(this);
1160}
1161
1162bool
1164{
1165 NS_LOG_FUNCTION(this);
1166 return true;
1167}
1168
1169Address
1171{
1172 NS_LOG_FUNCTION(this << multicastGroup);
1173 Mac48Address multicast = Mac48Address::GetMulticast(multicastGroup);
1174 return multicast;
1175}
1176
1177bool
1179{
1180 NS_LOG_FUNCTION(this);
1181 return false;
1182}
1183
1184bool
1186{
1187 NS_LOG_FUNCTION(this);
1188 //
1189 // Returning false from IsBridge in a device called TapBridge may seem odd
1190 // at first glance, but this test is for a device that bridges ns-3 devices
1191 // together. The Tap bridge doesn't do that -- it bridges an ns-3 device to
1192 // a Linux device. This is a completely different story.
1193 //
1194 return false;
1195}
1196
1197bool
1198TapBridge::Send(Ptr<Packet> packet, const Address& dst, uint16_t protocol)
1199{
1200 NS_LOG_FUNCTION(this << packet << dst << protocol);
1201 NS_FATAL_ERROR("TapBridge::Send: You may not call Send on a TapBridge directly");
1202 return false;
1203}
1204
1205bool
1206TapBridge::SendFrom(Ptr<Packet> packet, const Address& src, const Address& dst, uint16_t protocol)
1207{
1208 NS_LOG_FUNCTION(this << packet << src << dst << protocol);
1209 NS_FATAL_ERROR("TapBridge::Send: You may not call SendFrom on a TapBridge directly");
1210 return false;
1211}
1212
1215{
1216 NS_LOG_FUNCTION(this);
1217 return m_node;
1218}
1219
1220void
1222{
1223 NS_LOG_FUNCTION(this);
1224 m_node = node;
1225}
1226
1227bool
1229{
1230 NS_LOG_FUNCTION(this);
1231 return true;
1232}
1233
1234void
1236{
1237 NS_LOG_FUNCTION(this);
1238 m_rxCallback = cb;
1239}
1240
1241void
1243{
1244 NS_LOG_FUNCTION(this);
1246}
1247
1248bool
1250{
1251 NS_LOG_FUNCTION(this);
1252 return true;
1253}
1254
1255Address
1257{
1258 NS_LOG_FUNCTION(this << addr);
1259 return Mac48Address::GetMulticast(addr);
1260}
1261
1262} // namespace ns3
a polymophic address class
Definition: address.h:101
AttributeValue implementation for Boolean.
Definition: boolean.h:37
Callback template class.
Definition: callback.h:438
Hold variables of type enum.
Definition: enum.h:62
Packet header for Ethernet.
uint16_t GetLengthType() const
uint32_t GetSerializedSize() const override
void SetDestination(Mac48Address destination)
Mac48Address GetDestination() const
void SetLengthType(uint16_t size)
void SetSource(Mac48Address source)
Mac48Address GetSource() const
int m_fd
The file descriptor to read from.
Definition: fd-reader.h:135
Ipv4 addresses are stored in host order in this class.
Definition: ipv4-address.h:42
bool IsBroadcast() const
AttributeValue implementation for Ipv4Address.
Definition: ipv4-address.h:341
Access to the IPv4 forwarding table, interfaces, and configuration.
Definition: ipv4.h:80
a class to represent an Ipv4 address mask
Definition: ipv4-address.h:257
static Ipv4Mask GetOnes()
AttributeValue implementation for Ipv4Mask.
Definition: ipv4-address.h:342
Describes an IPv6 address.
Definition: ipv6-address.h:49
Header for the LLC/SNAP encapsulation.
uint16_t GetType()
Return the Ethertype.
uint32_t GetSerializedSize() const override
an EUI-48 address
Definition: mac48-address.h:46
static Mac48Address GetMulticast(Ipv4Address address)
static bool IsMatchingType(const Address &address)
void CopyFrom(const uint8_t buffer[6])
static Mac48Address ConvertFrom(const Address &address)
static Mac48Address GetBroadcast()
bool IsBroadcast() const
AttributeValue implementation for Mac48Address.
Network layer to device interface.
Definition: net-device.h:98
PacketType
Packet types are used as they are in Linux.
Definition: net-device.h:300
@ PACKET_OTHERHOST
Packet addressed to someone else.
Definition: net-device.h:307
uint32_t GetId() const
Definition: node.cc:117
virtual void DoDispose()
Destructor implementation.
Definition: object.cc:444
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:571
static void Cancel(const EventId &id)
Set the cancel bit on this event: the event's associated function will not be invoked when it expires...
Definition: simulator.cc:285
static void ScheduleWithContext(uint32_t context, const Time &delay, FUNC f, Ts &&... args)
Schedule an event with the given context.
Definition: simulator.h:588
Hold variables of type string.
Definition: string.h:56
FdReader::Data DoRead() override
The read implementation.
Definition: tap-bridge.cc:55
A bridge to make it appear that a real host process is connected to an ns-3 net device.
Definition: tap-bridge.h:109
void SetBridgedNetDevice(Ptr< NetDevice > bridgedDevice)
Set the ns-3 net device to bridge.
Definition: tap-bridge.cc:939
bool ReceiveFromBridgedDevice(Ptr< NetDevice > device, Ptr< const Packet > packet, uint16_t protocol, const Address &src, const Address &dst, PacketType packetType)
Receives a packet from a bridged Device.
Definition: tap-bridge.cc:986
void CreateTap()
Call out to a separate process running as suid root in order to get our tap device created.
Definition: tap-bridge.cc:270
void SetIfIndex(const uint32_t index) override
Definition: tap-bridge.cc:1060
uint32_t m_nodeId
a copy of the node id so the read thread doesn't have to GetNode() in in order to find the node ID.
Definition: tap-bridge.h:455
static TypeId GetTypeId()
Get the type ID.
Definition: tap-bridge.cc:81
bool m_ns3AddressRewritten
Whether the MAC address of the underlying ns-3 device has already been rewritten is stored in this va...
Definition: tap-bridge.h:443
void AddLinkChangeCallback(Callback< void > callback) override
Definition: tap-bridge.cc:1142
uint8_t * m_packetBuffer
A 64K buffer to hold packet data while it is being sent.
Definition: tap-bridge.h:448
bool m_linkUp
Flag indicating whether or not the link is up.
Definition: tap-bridge.h:462
Address GetAddress() const override
Definition: tap-bridge.cc:1088
TracedCallback m_linkChangeCallbacks
Callbacks to fire if the link changes state (up or down).
Definition: tap-bridge.h:474
void SetMode(TapBridge::Mode mode)
Set the operating mode of this device.
Definition: tap-bridge.cc:1095
NetDevice::PromiscReceiveCallback m_promiscRxCallback
Callback used to hook the promiscuous packet receive callback of the TapBridge ns-3 net device.
Definition: tap-bridge.h:341
~TapBridge() override
Definition: tap-bridge.cc:167
void SetReceiveCallback(NetDevice::ReceiveCallback cb) override
Definition: tap-bridge.cc:1235
bool SendFrom(Ptr< Packet > packet, const Address &source, const Address &dest, uint16_t protocolNumber) override
Definition: tap-bridge.cc:1206
int m_sock
The socket (actually interpreted as fd) to use to talk to the Tap device on the real internet host.
Definition: tap-bridge.h:362
void StopTapDevice()
Tear down the device.
Definition: tap-bridge.cc:252
Address GetBroadcast() const override
Definition: tap-bridge.cc:1156
uint32_t m_ifIndex
The ns-3 interface index of this TapBridge net device.
Definition: tap-bridge.h:351
bool DiscardFromBridgedDevice(Ptr< NetDevice > device, Ptr< const Packet > packet, uint16_t protocol, const Address &src)
Receives a packet from a bridged Device.
Definition: tap-bridge.cc:975
bool NeedsArp() const override
Definition: tap-bridge.cc:1228
void SetPromiscReceiveCallback(NetDevice::PromiscReceiveCallback cb) override
Definition: tap-bridge.cc:1242
NetDevice::ReceiveCallback m_rxCallback
Callback used to hook the standard packet receive callback of the TapBridge ns-3 net device.
Definition: tap-bridge.h:330
Mac48Address m_address
The (unused) MAC address of the TapBridge net device.
Definition: tap-bridge.h:394
void Start(Time tStart)
Set a start time for the device.
Definition: tap-bridge.cc:187
bool SetMtu(const uint16_t mtu) override
Definition: tap-bridge.cc:1109
bool IsLinkUp() const override
Definition: tap-bridge.cc:1135
bool IsPointToPoint() const override
Return true if the net device is on a point-to-point link.
Definition: tap-bridge.cc:1178
bool IsBridge() const override
Return true if the net device is acting as a bridge.
Definition: tap-bridge.cc:1185
Ptr< TapBridgeFdReader > m_fdReader
Includes the ns-3 read thread used to do blocking reads on the fd corresponding to the host device.
Definition: tap-bridge.h:380
uint16_t m_mtu
The common mtu to use for the net devices.
Definition: tap-bridge.h:356
void ReadCallback(uint8_t *buf, ssize_t len)
Callback to process packets that are read.
Definition: tap-bridge.cc:712
Ipv4Address m_tapIp
The IP address to use as the device IP on the host.
Definition: tap-bridge.h:420
Ipv4Mask m_tapNetmask
The network mask to assign to the device created on the host.
Definition: tap-bridge.h:433
bool m_verbose
Flag indicating whether or not the link is up.
Definition: tap-bridge.h:469
bool SupportsSendFrom() const override
Definition: tap-bridge.cc:1249
void StartTapDevice()
Spin up the device.
Definition: tap-bridge.cc:210
Ptr< Packet > Filter(Ptr< Packet > packet, Address *src, Address *dst, uint16_t *type)
The host we are bridged to is in the evil real world.
Definition: tap-bridge.cc:870
Mode m_mode
The operating mode of the bridge.
Definition: tap-bridge.h:386
Ptr< Node > m_node
Pointer to the (ghost) Node to which we are connected.
Definition: tap-bridge.h:346
EventId m_stopEvent
The ID of the ns-3 event used to schedule the tear down of the underlying host Tap device and ns-3 re...
Definition: tap-bridge.h:374
void ForwardToBridgedDevice(uint8_t *buf, ssize_t len)
Forward a packet received from the tap device to the bridged ns-3 device.
Definition: tap-bridge.cc:739
void Stop(Time tStop)
Set a stop time for the device.
Definition: tap-bridge.cc:199
void NotifyLinkUp()
Notifies that the link is up and ready.
Definition: tap-bridge.cc:1124
Ptr< NetDevice > m_bridgedDevice
The ns-3 net device to which we are bridging.
Definition: tap-bridge.h:438
bool IsBroadcast() const override
Definition: tap-bridge.cc:1149
Mode
Enumeration of the operating modes supported in the class.
Definition: tap-bridge.h:122
@ USE_BRIDGE
ns-3 uses a pre-created tap, and bridges to a bridging net device
Definition: tap-bridge.h:126
@ USE_LOCAL
ns-3 uses a pre-created tap, without configuring it
Definition: tap-bridge.h:125
@ CONFIGURE_LOCAL
ns-3 creates and configures tap device
Definition: tap-bridge.h:124
void SetAddress(Address address) override
Set the address of this interface.
Definition: tap-bridge.cc:1081
Ptr< Node > GetNode() const override
Definition: tap-bridge.cc:1214
EventId m_startEvent
The ID of the ns-3 event used to schedule the start up of the underlying host Tap device and ns-3 rea...
Definition: tap-bridge.h:368
bool IsMulticast() const override
Definition: tap-bridge.cc:1163
Time m_tStart
Time to start spinning up the device.
Definition: tap-bridge.h:399
Ipv4Address m_tapGateway
The IP address to use as the device default gateway on the host.
Definition: tap-bridge.h:415
TapBridge::Mode GetMode()
Get the operating mode of this device.
Definition: tap-bridge.cc:1102
Ptr< NetDevice > GetBridgedNetDevice()
Get the bridged net device.
Definition: tap-bridge.cc:932
Time m_tStop
Time to start tearing down the device.
Definition: tap-bridge.h:404
void SetNode(Ptr< Node > node) override
Definition: tap-bridge.cc:1221
std::string m_tapDeviceName
The name of the device to create on the host.
Definition: tap-bridge.h:410
Address GetMulticast(Ipv4Address multicastGroup) const override
Make and return a MAC multicast address using the provided multicast group.
Definition: tap-bridge.cc:1170
void DoDispose() override
Call out to a separate process running as suid root in order to get our tap device created.
Definition: tap-bridge.cc:180
uint16_t GetMtu() const override
Definition: tap-bridge.cc:1117
bool Send(Ptr< Packet > packet, const Address &dest, uint16_t protocolNumber) override
Definition: tap-bridge.cc:1198
Ptr< Channel > GetChannel() const override
Definition: tap-bridge.cc:1074
uint32_t GetIfIndex() const override
Definition: tap-bridge.cc:1067
Mac48Address m_tapMac
The MAC address to use as the hardware address on the host; only used in UseLocal mode.
Definition: tap-bridge.h:428
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
AttributeValue implementation for Time.
Definition: nstime.h:1413
void ConnectWithoutContext(const CallbackBase &callback)
Append a Callback to the chain (without a context).
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:932
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:81
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeChecker > MakeIpv4AddressChecker()
Ptr< const AttributeAccessor > MakeIpv4AddressAccessor(T1 a1)
Definition: ipv4-address.h:341
Ptr< const AttributeChecker > MakeIpv4MaskChecker()
Ptr< const AttributeAccessor > MakeIpv4MaskAccessor(T1 a1)
Definition: ipv4-address.h:342
Ptr< const AttributeAccessor > MakeMac48AddressAccessor(T1 a1)
Ptr< const AttributeChecker > MakeMac48AddressChecker()
Ptr< const AttributeChecker > MakeStringChecker()
Definition: string.cc:30
Ptr< const AttributeAccessor > MakeStringAccessor(T1 a1)
Definition: string.h:57
Ptr< const AttributeChecker > MakeTimeChecker()
Helper to make an unbounded Time checker.
Definition: nstime.h:1434
Ptr< const AttributeAccessor > MakeTimeAccessor(T1 a1)
Definition: nstime.h:1414
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
std::enable_if_t< std::is_member_pointer_v< MEM >, EventImpl * > MakeEvent(MEM mem_ptr, OBJ obj, Ts... args)
Make an EventImpl from class method members which take varying numbers of arguments.
Definition: make-event.h:142
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_WARN(msg)
Use NS_LOG to output a message of level LOG_WARN.
Definition: log.h:261
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1326
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Callback< R, Args... > MakeCallback(R(T::*memPtr)(Args...), OBJ objPtr)
Build Callbacks for class method members which take varying numbers of arguments and potentially retu...
Definition: callback.h:704
Ptr< const AttributeChecker > MakeEnumChecker(T v, std::string n, Ts... args)
Make an EnumChecker pre-configured with a set of allowed values by name.
Definition: enum.h:189
std::string TapBufferToString(uint8_t *buffer, uint32_t len)
Convert a byte buffer to a string containing a hex representation of the buffer.
A structure representing data read.
Definition: fd-reader.h:91
#define TAP_MAGIC
uint32_t pktSize
packet size used for the simulation (in bytes)