A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
realtime-simulator-impl.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2008 University of Washington
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 */
17
19
20#include "assert.h"
21#include "boolean.h"
22#include "enum.h"
23#include "event-impl.h"
24#include "fatal-error.h"
25#include "log.h"
26#include "pointer.h"
27#include "ptr.h"
28#include "scheduler.h"
29#include "simulator.h"
30#include "synchronizer.h"
32
33#include <cmath>
34#include <mutex>
35#include <thread>
36
37/**
38 * \file
39 * \ingroup realtime
40 * ns3::RealTimeSimulatorImpl implementation.
41 */
42
43namespace ns3
44{
45
46// Note: Logging in this file is largely avoided due to the
47// number of calls that are made to these functions and the possibility
48// of causing recursions leading to stack overflow
49NS_LOG_COMPONENT_DEFINE("RealtimeSimulatorImpl");
50
51NS_OBJECT_ENSURE_REGISTERED(RealtimeSimulatorImpl);
52
53TypeId
55{
56 static TypeId tid =
57 TypeId("ns3::RealtimeSimulatorImpl")
59 .SetGroupName("Core")
60 .AddConstructor<RealtimeSimulatorImpl>()
61 .AddAttribute(
62 "SynchronizationMode",
63 "What to do if the simulation cannot keep up with real time.",
65 MakeEnumAccessor<SynchronizationMode>(
67 MakeEnumChecker(SYNC_BEST_EFFORT, "BestEffort", SYNC_HARD_LIMIT, "HardLimit"))
68 .AddAttribute("HardLimit",
69 "Maximum acceptable real-time jitter (used in conjunction with "
70 "SynchronizationMode=HardLimit)",
71 TimeValue(Seconds(0.1)),
74 return tid;
75}
76
78{
79 NS_LOG_FUNCTION(this);
80
81 m_stop = false;
82 m_running = false;
85 m_currentTs = 0;
88 m_eventCount = 0;
89
90 m_main = std::this_thread::get_id();
91
92 // Be very careful not to do anything that would cause a change or assignment
93 // of the underlying reference counts of m_synchronizer or you will be sorry.
94 m_synchronizer = CreateObject<WallClockSynchronizer>();
95}
96
98{
99 NS_LOG_FUNCTION(this);
100}
101
102void
104{
105 NS_LOG_FUNCTION(this);
106 while (!m_events->IsEmpty())
107 {
108 Scheduler::Event next = m_events->RemoveNext();
109 next.impl->Unref();
110 }
111 m_events = nullptr;
112 m_synchronizer = nullptr;
114}
115
116void
118{
119 NS_LOG_FUNCTION(this);
120
121 //
122 // This function is only called with the private version "disconnected" from
123 // the main simulator functions. We rely on the user not calling
124 // Simulator::Destroy while there is a chance that a worker thread could be
125 // accessing the current instance of the private object. In practice this
126 // means shutting down the workers and doing a Join() before calling the
127 // Simulator::Destroy().
128 //
129 while (!m_destroyEvents.empty())
130 {
131 Ptr<EventImpl> ev = m_destroyEvents.front().PeekEventImpl();
132 m_destroyEvents.pop_front();
133 NS_LOG_LOGIC("handle destroy " << ev);
134 if (!ev->IsCancelled())
135 {
136 ev->Invoke();
137 }
138 }
139}
140
141void
143{
144 NS_LOG_FUNCTION(this << schedulerFactory);
145
146 Ptr<Scheduler> scheduler = schedulerFactory.Create<Scheduler>();
147
148 {
149 std::unique_lock lock{m_mutex};
150
151 if (m_events)
152 {
153 while (!m_events->IsEmpty())
154 {
155 Scheduler::Event next = m_events->RemoveNext();
156 scheduler->Insert(next);
157 }
158 }
159 m_events = scheduler;
160 }
161}
162
163void
165{
166 //
167 // The idea here is to wait until the next event comes due. In the case of
168 // a realtime simulation, we want real time to be consumed between events.
169 // It is the realtime synchronizer that causes real time to be consumed by
170 // doing some kind of a wait.
171 //
172 // We need to be able to have external events (such as a packet reception event)
173 // cause us to re-evaluate our state. The way this works is that the synchronizer
174 // gets interrupted and returns. So, there is a possibility that things may change
175 // out from under us dynamically. In this case, we need to re-evaluate how long to
176 // wait in a for-loop until we have waited successfully (until a timeout) for the
177 // event at the head of the event list.
178 //
179 // m_synchronizer->Synchronize will return true if the wait was completed without
180 // interruption, otherwise it will return false indicating that something has changed
181 // out from under us. If we sit in the for-loop trying to synchronize until
182 // Synchronize() returns true, we will have successfully synchronized the execution
183 // time of the next event with the wall clock time of the synchronizer.
184 //
185
186 for (;;)
187 {
188 uint64_t tsDelay = 0;
189 uint64_t tsNext = 0;
190
191 //
192 // It is important to understand that m_currentTs is interpreted only as the
193 // timestamp of the last event we executed. Current time can a bit of a
194 // slippery concept in realtime mode. What we have here is a discrete event
195 // simulator, so the last event is, by definition, executed entirely at a single
196 // discrete time. This is the definition of m_currentTs. It really has
197 // nothing to do with the current real time, except that we are trying to arrange
198 // that at the instant of the beginning of event execution, the current real time
199 // and m_currentTs coincide.
200 //
201 // We use tsNow as the indication of the current real time.
202 //
203 uint64_t tsNow;
204
205 {
206 std::unique_lock lock{m_mutex};
207 //
208 // Since we are in realtime mode, the time to delay has got to be the
209 // difference between the current realtime and the timestamp of the next
210 // event. Since m_currentTs is actually the timestamp of the last event we
211 // executed, it's not particularly meaningful for us here since real time has
212 // certainly elapsed since it was last updated.
213 //
214 // It is possible that the current realtime has drifted past the next event
215 // time so we need to be careful about that and not delay in that case.
216 //
218 m_synchronizer->Realtime(),
219 "RealtimeSimulatorImpl::ProcessOneEvent (): Synchronizer reports not Realtime ()");
220
221 //
222 // tsNow is set to the normalized current real time. When the simulation was
223 // started, the current real time was effectively set to zero; so tsNow is
224 // the current "real" simulation time.
225 //
226 // tsNext is the simulation time of the next event we want to execute.
227 //
228 tsNow = m_synchronizer->GetCurrentRealtime();
229 tsNext = NextTs();
230
231 //
232 // tsDelay is therefore the real time we need to delay in order to bring the
233 // real time in sync with the simulation time. If we wait for this amount of
234 // real time, we will accomplish moving the simulation time at the same rate
235 // as the real time. This is typically called "pacing" the simulation time.
236 //
237 // We do have to be careful if we are falling behind. If so, tsDelay must be
238 // zero. If we're late, don't dawdle.
239 //
240 if (tsNext <= tsNow)
241 {
242 tsDelay = 0;
243 }
244 else
245 {
246 tsDelay = tsNext - tsNow;
247 }
248
249 //
250 // We've figured out how long we need to delay in order to pace the
251 // simulation time with the real time. We're going to sleep, but need
252 // to work with the synchronizer to make sure we're awakened if something
253 // external happens (like a packet is received). This next line resets
254 // the synchronizer so that any future event will cause it to interrupt.
255 //
256 m_synchronizer->SetCondition(false);
257 }
258
259 //
260 // We have a time to delay. This time may actually not be valid anymore
261 // since we released the critical section immediately above, and a real-time
262 // ScheduleReal or ScheduleRealNow may have snuck in, well, between the
263 // closing brace above and this comment so to speak. If this is the case,
264 // that schedule operation will have done a synchronizer Signal() that
265 // will set the condition variable to true and cause the Synchronize call
266 // below to return immediately.
267 //
268 // It's easiest to understand if you just consider a short tsDelay that only
269 // requires a SpinWait down in the synchronizer. What will happen is that
270 // when Synchronize calls SpinWait, SpinWait will look directly at its
271 // condition variable. Note that we set this condition variable to false
272 // inside the critical section above.
273 //
274 // SpinWait will go into a forever loop until either the time has expired or
275 // until the condition variable becomes true. A true condition indicates that
276 // the wait should stop. The condition is set to true by one of the Schedule
277 // methods of the simulator; so if we are in a wait down in Synchronize, and
278 // a Simulator::ScheduleReal is done, the wait down in Synchronize will exit and
279 // Synchronize will return false. This means we have not actually synchronized
280 // to the event expiration time. If no real-time schedule operation is done
281 // while down in Synchronize, the wait will time out and Synchronize will return
282 // true. This indicates that we have synchronized to the event time.
283 //
284 // So we need to stay in this for loop, looking for the next event timestamp and
285 // attempting to sleep until its due. If we've slept until the timestamp is due,
286 // Synchronize returns true and we break out of the sync loop. If an external
287 // event happens that requires a re-schedule, Synchronize returns false and
288 // we re-evaluate our timing by continuing in the loop.
289 //
290 // It is expected that tsDelay become shorter as external events interrupt our
291 // waits.
292 //
293 if (m_synchronizer->Synchronize(tsNow, tsDelay))
294 {
295 NS_LOG_LOGIC("Interrupted ...");
296 break;
297 }
298
299 //
300 // If we get to this point, we have been interrupted during a wait by a real-time
301 // schedule operation. This means all bets are off regarding tsDelay and we need
302 // to re-evaluate what it is we want to do. We'll loop back around in the
303 // for-loop and start again from scratch.
304 //
305 }
306
307 //
308 // If we break out of the for-loop above, we have waited until the time specified
309 // by the event that was at the head of the event list when we started the process.
310 // Since there is a bunch of code that was executed outside a critical section (the
311 // Synchronize call) we cannot be sure that the event at the head of the event list
312 // is the one we think it is. What we can be sure of is that it is time to execute
313 // whatever event is at the head of this list if the list is in time order.
314 //
315 Scheduler::Event next;
316
317 {
318 std::unique_lock lock{m_mutex};
319
320 //
321 // We do know we're waiting for an event, so there had better be an event on the
322 // event queue. Let's pull it off. When we release the critical section, the
323 // event we're working on won't be on the list and so subsequent operations won't
324 // mess with us.
325 //
326 NS_ASSERT_MSG(m_events->IsEmpty() == false,
327 "RealtimeSimulatorImpl::ProcessOneEvent(): event queue is empty");
328 next = m_events->RemoveNext();
329
330 PreEventHook(EventId(next.impl, next.key.m_ts, next.key.m_context, next.key.m_uid));
331
333 m_eventCount++;
334
335 //
336 // We cannot make any assumption that "next" is the same event we originally waited
337 // for. We can only assume that only that it must be due and cannot cause time
338 // to move backward.
339 //
341 "RealtimeSimulatorImpl::ProcessOneEvent(): "
342 "next.GetTs() earlier than m_currentTs (list order error)");
343 NS_LOG_LOGIC("handle " << next.key.m_ts);
344
345 //
346 // Update the current simulation time to be the timestamp of the event we're
347 // executing. From the rest of the simulation's point of view, simulation time
348 // is frozen until the next event is executed.
349 //
350 m_currentTs = next.key.m_ts;
352 m_currentUid = next.key.m_uid;
353
354 //
355 // We're about to run the event and we've done our best to synchronize this
356 // event execution time to real time. Now, if we're in SYNC_HARD_LIMIT mode
357 // we have to decide if we've done a good enough job and if we haven't, we've
358 // been asked to commit ritual suicide.
359 //
360 // We check the simulation time against the current real time to make this
361 // judgement.
362 //
364 {
365 uint64_t tsFinal = m_synchronizer->GetCurrentRealtime();
366 uint64_t tsJitter;
367
368 if (tsFinal >= m_currentTs)
369 {
370 tsJitter = tsFinal - m_currentTs;
371 }
372 else
373 {
374 tsJitter = m_currentTs - tsFinal;
375 }
376
377 if (tsJitter > static_cast<uint64_t>(m_hardLimit.GetTimeStep()))
378 {
379 NS_FATAL_ERROR("RealtimeSimulatorImpl::ProcessOneEvent (): "
380 "Hard real-time limit exceeded (jitter = "
381 << tsJitter << ")");
382 }
383 }
384 }
385
386 //
387 // We have got the event we're about to execute completely disentangled from the
388 // event list so we can execute it outside a critical section without fear of someone
389 // changing things out from under us.
390
391 EventImpl* event = next.impl;
392 m_synchronizer->EventStart();
393 event->Invoke();
394 m_synchronizer->EventEnd();
395 event->Unref();
396}
397
398bool
400{
401 bool rc;
402 {
403 std::unique_lock lock{m_mutex};
404 rc = m_events->IsEmpty() || m_stop;
405 }
406
407 return rc;
408}
409
410//
411// Peeks into event list. Should be called with critical section locked.
412//
413uint64_t
415{
416 NS_ASSERT_MSG(m_events->IsEmpty() == false,
417 "RealtimeSimulatorImpl::NextTs(): event queue is empty");
418 Scheduler::Event ev = m_events->PeekNext();
419 return ev.key.m_ts;
420}
421
422void
424{
425 NS_LOG_FUNCTION(this);
426
427 NS_ASSERT_MSG(m_running == false, "RealtimeSimulatorImpl::Run(): Simulator already running");
428
429 // Set the current threadId as the main threadId
430 m_main = std::this_thread::get_id();
431
432 m_stop = false;
433 m_running = true;
434 m_synchronizer->SetOrigin(m_currentTs);
435
436 // Sleep until signalled
437 uint64_t tsNow = 0;
438 uint64_t tsDelay = 1000000000; // wait time of 1 second (in nanoseconds)
439
440 while (!m_stop)
441 {
442 bool process = false;
443 {
444 std::unique_lock lock{m_mutex};
445
446 if (!m_events->IsEmpty())
447 {
448 process = true;
449 }
450 else
451 {
452 // Get current timestamp while holding the critical section
453 tsNow = m_synchronizer->GetCurrentRealtime();
454 }
455 }
456
457 if (process)
458 {
460 }
461 else
462 {
463 // Sleep until signalled and re-check event queue
464 m_synchronizer->Synchronize(tsNow, tsDelay);
465 }
466 }
467
468 //
469 // If the simulator stopped naturally by lack of events, make a
470 // consistency test to check that we didn't lose any events along the way.
471 //
472 {
473 std::unique_lock lock{m_mutex};
474
475 NS_ASSERT_MSG(m_events->IsEmpty() == false || m_unscheduledEvents == 0,
476 "RealtimeSimulatorImpl::Run(): Empty queue and unprocessed events");
477 }
478
479 m_running = false;
480}
481
482bool
484{
485 return m_running;
486}
487
488bool
490{
491 return m_synchronizer->Realtime();
492}
493
494void
496{
497 NS_LOG_FUNCTION(this);
498 m_stop = true;
499}
500
503{
504 NS_LOG_FUNCTION(this << delay);
505 return Simulator::Schedule(delay, &Simulator::Stop);
506}
507
508//
509// Schedule an event for a _relative_ time in the future.
510//
513{
514 NS_LOG_FUNCTION(this << delay << impl);
515
517 {
518 std::unique_lock lock{m_mutex};
519 //
520 // This is the reason we had to bring the absolute time calculation in from the
521 // simulator.h into the implementation. Since the implementations may be
522 // multi-threaded, we need this calculation to be atomic. You can see it is
523 // here since we are running in a CriticalSection.
524 //
525 Time tAbsolute = Simulator::Now() + delay;
526 NS_ASSERT_MSG(delay.IsPositive(), "RealtimeSimulatorImpl::Schedule(): Negative delay");
527 ev.impl = impl;
528 ev.key.m_ts = (uint64_t)tAbsolute.GetTimeStep();
529 ev.key.m_context = GetContext();
530 ev.key.m_uid = m_uid;
531 m_uid++;
533 m_events->Insert(ev);
534 m_synchronizer->Signal();
535 }
536
537 return EventId(impl, ev.key.m_ts, ev.key.m_context, ev.key.m_uid);
538}
539
540void
542{
543 NS_LOG_FUNCTION(this << context << delay << impl);
544
545 {
546 std::unique_lock lock{m_mutex};
547 uint64_t ts;
548
549 if (m_main == std::this_thread::get_id())
550 {
551 ts = m_currentTs + delay.GetTimeStep();
552 }
553 else
554 {
555 //
556 // If the simulator is running, we're pacing and have a meaningful
557 // realtime clock. If we're not, then m_currentTs is where we stopped.
558 //
559 ts = m_running ? m_synchronizer->GetCurrentRealtime() : m_currentTs;
560 ts += delay.GetTimeStep();
561 }
562
564 "RealtimeSimulatorImpl::ScheduleRealtime(): schedule for time < m_currentTs");
566 ev.impl = impl;
567 ev.key.m_ts = ts;
568 ev.key.m_context = context;
569 ev.key.m_uid = m_uid;
570 m_uid++;
572 m_events->Insert(ev);
573 m_synchronizer->Signal();
574 }
575}
576
579{
580 NS_LOG_FUNCTION(this << impl);
581 return Schedule(Time(0), impl);
582}
583
584Time
586{
587 return TimeStep(m_currentTs);
588}
589
590//
591// Schedule an event for a _relative_ time in the future.
592//
593void
595 const Time& time,
596 EventImpl* impl)
597{
598 NS_LOG_FUNCTION(this << context << time << impl);
599
600 {
601 std::unique_lock lock{m_mutex};
602
603 uint64_t ts = m_synchronizer->GetCurrentRealtime() + time.GetTimeStep();
605 "RealtimeSimulatorImpl::ScheduleRealtime(): schedule for time < m_currentTs");
607 ev.impl = impl;
608 ev.key.m_ts = ts;
609 ev.key.m_uid = m_uid;
610 m_uid++;
612 m_events->Insert(ev);
613 m_synchronizer->Signal();
614 }
615}
616
617void
619{
620 NS_LOG_FUNCTION(this << time << impl);
622}
623
624void
626{
627 NS_LOG_FUNCTION(this << context << impl);
628 {
629 std::unique_lock lock{m_mutex};
630
631 //
632 // If the simulator is running, we're pacing and have a meaningful
633 // realtime clock. If we're not, then m_currentTs is were we stopped.
634 //
635 uint64_t ts = m_running ? m_synchronizer->GetCurrentRealtime() : m_currentTs;
637 "RealtimeSimulatorImpl::ScheduleRealtimeNowWithContext(): schedule for time "
638 "< m_currentTs");
640 ev.impl = impl;
641 ev.key.m_ts = ts;
642 ev.key.m_uid = m_uid;
643 ev.key.m_context = context;
644 m_uid++;
646 m_events->Insert(ev);
647 m_synchronizer->Signal();
648 }
649}
650
651void
653{
654 NS_LOG_FUNCTION(this << impl);
656}
657
658Time
660{
661 return TimeStep(m_synchronizer->GetCurrentRealtime());
662}
663
666{
667 NS_LOG_FUNCTION(this << impl);
668
669 EventId id;
670 {
671 std::unique_lock lock{m_mutex};
672
673 //
674 // Time doesn't really matter here (especially in realtime mode). It is
675 // overridden by the uid of DESTROY which identifies this as an event to be
676 // executed at Simulator::Destroy time.
677 //
678 id = EventId(Ptr<EventImpl>(impl, false), m_currentTs, 0xffffffff, EventId::UID::DESTROY);
679 m_destroyEvents.push_back(id);
680 m_uid++;
681 }
682
683 return id;
684}
685
686Time
688{
689 //
690 // If the event has expired, there is no delay until it runs. It is not the
691 // case that there is a negative time until it runs.
692 //
693 if (IsExpired(id))
694 {
695 return TimeStep(0);
696 }
697
698 return TimeStep(id.GetTs() - m_currentTs);
699}
700
701void
703{
704 if (id.GetUid() == EventId::UID::DESTROY)
705 {
706 // destroy events.
707 for (auto i = m_destroyEvents.begin(); i != m_destroyEvents.end(); i++)
708 {
709 if (*i == id)
710 {
711 m_destroyEvents.erase(i);
712 break;
713 }
714 }
715 return;
716 }
717 if (IsExpired(id))
718 {
719 return;
720 }
721
722 {
723 std::unique_lock lock{m_mutex};
724
725 Scheduler::Event event;
726 event.impl = id.PeekEventImpl();
727 event.key.m_ts = id.GetTs();
728 event.key.m_context = id.GetContext();
729 event.key.m_uid = id.GetUid();
730
731 m_events->Remove(event);
733 event.impl->Cancel();
734 event.impl->Unref();
735 }
736}
737
738void
740{
741 if (!IsExpired(id))
742 {
743 id.PeekEventImpl()->Cancel();
744 }
745}
746
747bool
749{
750 if (id.GetUid() == EventId::UID::DESTROY)
751 {
752 if (id.PeekEventImpl() == nullptr || id.PeekEventImpl()->IsCancelled())
753 {
754 return true;
755 }
756 // destroy events.
757 for (auto i = m_destroyEvents.begin(); i != m_destroyEvents.end(); i++)
758 {
759 if (*i == id)
760 {
761 return false;
762 }
763 }
764 return true;
765 }
766
767 //
768 // If the time of the event is less than the current timestamp of the
769 // simulator, the simulator has gone past the invocation time of the
770 // event, so the statement ev.GetTs () < m_currentTs does mean that
771 // the event has been fired even in realtime mode.
772 //
773 // The same is true for the next line involving the m_currentUid.
774 //
775 return id.PeekEventImpl() == nullptr || id.GetTs() < m_currentTs ||
776 (id.GetTs() == m_currentTs && id.GetUid() <= m_currentUid) ||
777 id.PeekEventImpl()->IsCancelled();
778}
779
780Time
782{
783 return TimeStep(0x7fffffffffffffffLL);
784}
785
786// System ID for non-distributed simulation is always zero
789{
790 return 0;
791}
792
795{
796 return m_currentContext;
797}
798
799uint64_t
801{
802 return m_eventCount;
803}
804
805void
807{
808 NS_LOG_FUNCTION(this << mode);
810}
811
814{
815 NS_LOG_FUNCTION(this);
817}
818
819void
821{
822 NS_LOG_FUNCTION(this << limit);
823 m_hardLimit = limit;
824}
825
826Time
828{
829 NS_LOG_FUNCTION(this);
830 return m_hardLimit;
831}
832
833} // namespace ns3
NS_ASSERT() and NS_ASSERT_MSG() macro definitions.
ns3::BooleanValue attribute value declarations.
Hold variables of type enum.
Definition: enum.h:62
An identifier for simulation events.
Definition: event-id.h:55
@ INVALID
Invalid UID value.
Definition: event-id.h:61
@ VALID
Schedule(), etc.
Definition: event-id.h:69
@ DESTROY
ScheduleDestroy() events.
Definition: event-id.h:65
A simulation event.
Definition: event-impl.h:46
Instantiate subclasses of ns3::Object.
Ptr< Object > Create() const
Create an Object instance of the configured TypeId.
virtual void DoDispose()
Destructor implementation.
Definition: object.cc:444
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
Realtime version of SimulatorImpl.
Time RealtimeNow() const
Get the current real time from the synchronizer.
void ScheduleRealtime(const Time &delay, EventImpl *event)
Schedule a future event execution (in the same context).
uint64_t GetEventCount() const override
Get the number of events executed.
Ptr< Scheduler > m_events
The event list.
uint32_t GetContext() const override
Get the current simulation context.
DestroyEvents m_destroyEvents
Container for events to be run at destroy time.
uint32_t GetSystemId() const override
Get the system id of this simulator.
int m_unscheduledEvents
Unique id for the next event to be scheduled.
void Stop() override
Tell the Simulator the calling event should be the last one executed.
EventId ScheduleDestroy(EventImpl *event) override
Schedule an event to run at the end of the simulation, after the Stop() time or condition has been re...
Time GetHardLimit() const
Get the current fatal error threshold for SynchronizationMode SYNC_HARD_LIMIT.
void ScheduleRealtimeNow(EventImpl *event)
Schedule an event to run at the current virtual time.
void Run() override
Run the simulation.
bool m_running
Is the simulator currently running.
uint32_t m_currentContext
The event list.
bool IsExpired(const EventId &ev) const override
Check if an event has already run or been cancelled.
std::mutex m_mutex
Mutex to control access to key state.
SynchronizationMode m_synchronizationMode
SynchronizationMode policy.
void DoDispose() override
Destructor implementation.
uint64_t m_currentTs
Execution context.
void Cancel(const EventId &ev) override
Set the cancel bit on this event: the event's associated function will not be invoked when it expires...
EventId Schedule(const Time &delay, EventImpl *event) override
Schedule a future event execution (in the same context).
void SetHardLimit(Time limit)
Set the fatal error threshold for SynchronizationMode SYNC_HARD_LIMIT.
~RealtimeSimulatorImpl() override
Destructor.
uint32_t m_uid
Unique id of the current event.
uint64_t m_eventCount
The event count.
uint32_t m_currentUid
Timestep of the current event.
void ScheduleRealtimeNowWithContext(uint32_t context, EventImpl *event)
Schedule an event to run at the current virtual time.
bool m_stop
Has the stopping condition been reached?
Ptr< Synchronizer > m_synchronizer
The synchronizer in use to track real time.
bool IsFinished() const override
Check if the simulation should finish.
bool Realtime() const
Check that the Synchronizer is locked to the real time clock.
SynchronizationMode
What to do when we can't maintain real time synchrony.
@ SYNC_BEST_EFFORT
Make a best effort to keep synced to real-time.
@ SYNC_HARD_LIMIT
Keep to real time within the hard limit tolerance configured with SetHardLimit, or die trying.
Time m_hardLimit
The maximum allowable drift from real-time in SYNC_HARD_LIMIT mode.
static TypeId GetTypeId()
Get the registered TypeId for this class.
void ScheduleRealtimeWithContext(uint32_t context, const Time &delay, EventImpl *event)
Schedule a future event execution (in a different context).
Time GetDelayLeft(const EventId &id) const override
Get the remaining time until this event will execute.
void SetScheduler(ObjectFactory schedulerFactory) override
Set the Scheduler to be used to manage the event list.
void ScheduleWithContext(uint32_t context, const Time &delay, EventImpl *event) override
Schedule a future event execution (in a different context).
EventId ScheduleNow(EventImpl *event) override
Schedule an event to run at the current virtual time.
bool Running() const
Is the simulator running?
std::thread::id m_main
Main thread.
void ProcessOneEvent()
Process the next event.
Time Now() const override
Return the current simulation virtual time.
void Remove(const EventId &ev) override
Remove an event from the event list.
void Destroy() override
Execute the events scheduled with ScheduleDestroy().
void SetSynchronizationMode(RealtimeSimulatorImpl::SynchronizationMode mode)
Set the SynchronizationMode.
uint64_t NextTs() const
Get the timestep of the next event.
RealtimeSimulatorImpl::SynchronizationMode GetSynchronizationMode() const
Get the SynchronizationMode.
Time GetMaximumSimulationTime() const override
Get the maximum representable simulation time.
Maintain the event list.
Definition: scheduler.h:157
void Unref() const
Decrement the reference count.
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:571
@ NO_CONTEXT
Flag for events not associated with any particular context.
Definition: simulator.h:210
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:186
The SimulatorImpl base class.
virtual void PreEventHook(const EventId &id)
Hook called before processing each event.
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
bool IsPositive() const
Exactly equivalent to t >= 0.
Definition: nstime.h:333
int64_t GetTimeStep() const
Get the raw time value, in the current resolution unit.
Definition: nstime.h:445
AttributeValue implementation for Time.
Definition: nstime.h:1413
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:932
ns3::EnumValue attribute value declarations.
ns3::EventImpl declarations.
NS_FATAL_x macro definitions.
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeChecker > MakeTimeChecker()
Helper to make an unbounded Time checker.
Definition: nstime.h:1434
Ptr< const AttributeAccessor > MakeTimeAccessor(T1 a1)
Definition: nstime.h:1414
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1326
Debug message logging.
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Ptr< const AttributeChecker > MakeEnumChecker(T v, std::string n, Ts... args)
Make an EnumChecker pre-configured with a set of allowed values by name.
Definition: enum.h:189
ns3::PointerValue attribute value declarations and template implementations.
ns3::Ptr smart pointer declaration and implementation.
ns3::RealtimeSimulatorImpl declaration.
ns3::Scheduler abstract base class, ns3::Scheduler::Event and ns3::Scheduler::EventKey declarations.
ns3::Simulator declaration.
Scheduler event.
Definition: scheduler.h:184
EventKey key
Key for sorting and ordering Events.
Definition: scheduler.h:186
EventImpl * impl
Pointer to the event implementation.
Definition: scheduler.h:185
uint32_t m_context
Event context.
Definition: scheduler.h:173
uint64_t m_ts
Event time stamp.
Definition: scheduler.h:171
uint32_t m_uid
Event unique id.
Definition: scheduler.h:172
ns3::Synchronizer declaration.
ns3::WallClockSynchronizer declaration.