A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
tdbet-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Marco Miozzo <marco.miozzo@cttc.es>
18 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
19 */
20
22
23#include "lte-amc.h"
25
26#include <ns3/boolean.h>
27#include <ns3/log.h>
28#include <ns3/math.h>
29#include <ns3/pointer.h>
30#include <ns3/simulator.h>
31
32#include <cfloat>
33#include <set>
34
35namespace ns3
36{
37
38NS_LOG_COMPONENT_DEFINE("TdBetFfMacScheduler");
39
40/// TDBET type 0 allocation RBG
41static const int TdBetType0AllocationRbg[4] = {
42 10, // RBG size 1
43 26, // RBG size 2
44 63, // RBG size 3
45 110, // RBG size 4
46}; // see table 7.1.6.1-1 of 36.213
47
48NS_OBJECT_ENSURE_REGISTERED(TdBetFfMacScheduler);
49
51 : m_cschedSapUser(nullptr),
52 m_schedSapUser(nullptr),
53 m_timeWindow(99.0),
54 m_nextRntiUl(0)
55{
56 m_amc = CreateObject<LteAmc>();
59}
60
62{
63 NS_LOG_FUNCTION(this);
64}
65
66void
68{
69 NS_LOG_FUNCTION(this);
78 delete m_schedSapProvider;
79}
80
83{
84 static TypeId tid =
85 TypeId("ns3::TdBetFfMacScheduler")
87 .SetGroupName("Lte")
88 .AddConstructor<TdBetFfMacScheduler>()
89 .AddAttribute("CqiTimerThreshold",
90 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
91 UintegerValue(1000),
93 MakeUintegerChecker<uint32_t>())
94 .AddAttribute("HarqEnabled",
95 "Activate/Deactivate the HARQ [by default is active].",
96 BooleanValue(true),
99 .AddAttribute("UlGrantMcs",
100 "The MCS of the UL grant, must be [0..15] (default 0)",
101 UintegerValue(0),
103 MakeUintegerChecker<uint8_t>());
104 return tid;
105}
106
107void
109{
110 m_cschedSapUser = s;
111}
112
113void
115{
116 m_schedSapUser = s;
117}
118
121{
122 return m_cschedSapProvider;
123}
124
127{
128 return m_schedSapProvider;
129}
130
131void
133{
135}
136
139{
140 return m_ffrSapUser;
141}
142
143void
146{
147 NS_LOG_FUNCTION(this);
148 // Read the subset of parameters used
149 m_cschedCellConfig = params;
152 cnf.m_result = SUCCESS;
154}
155
156void
159{
160 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
161 << (uint16_t)params.m_transmissionMode);
162 auto it = m_uesTxMode.find(params.m_rnti);
163 if (it == m_uesTxMode.end())
164 {
165 m_uesTxMode[params.m_rnti] = params.m_transmissionMode;
166 // generate HARQ buffers
167 m_dlHarqCurrentProcessId[params.m_rnti] = 0;
168 DlHarqProcessesStatus_t dlHarqPrcStatus;
169 dlHarqPrcStatus.resize(8, 0);
170 m_dlHarqProcessesStatus[params.m_rnti] = dlHarqPrcStatus;
171 DlHarqProcessesTimer_t dlHarqProcessesTimer;
172 dlHarqProcessesTimer.resize(8, 0);
173 m_dlHarqProcessesTimer[params.m_rnti] = dlHarqProcessesTimer;
175 dlHarqdci.resize(8);
176 m_dlHarqProcessesDciBuffer[params.m_rnti] = dlHarqdci;
177 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
178 dlHarqRlcPdu.resize(2);
179 dlHarqRlcPdu.at(0).resize(8);
180 dlHarqRlcPdu.at(1).resize(8);
181 m_dlHarqProcessesRlcPduListBuffer[params.m_rnti] = dlHarqRlcPdu;
182 m_ulHarqCurrentProcessId[params.m_rnti] = 0;
183 UlHarqProcessesStatus_t ulHarqPrcStatus;
184 ulHarqPrcStatus.resize(8, 0);
185 m_ulHarqProcessesStatus[params.m_rnti] = ulHarqPrcStatus;
187 ulHarqdci.resize(8);
188 m_ulHarqProcessesDciBuffer[params.m_rnti] = ulHarqdci;
189 }
190 else
191 {
192 (*it).second = params.m_transmissionMode;
193 }
194}
195
196void
199{
200 NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
201
202 for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
203 {
204 auto it = m_flowStatsDl.find(params.m_rnti);
205
206 if (it == m_flowStatsDl.end())
207 {
208 tdbetsFlowPerf_t flowStatsDl;
209 flowStatsDl.flowStart = Simulator::Now();
210 flowStatsDl.totalBytesTransmitted = 0;
211 flowStatsDl.lastTtiBytesTransmitted = 0;
212 flowStatsDl.lastAveragedThroughput = 1;
213 m_flowStatsDl[params.m_rnti] = flowStatsDl;
214 tdbetsFlowPerf_t flowStatsUl;
215 flowStatsUl.flowStart = Simulator::Now();
216 flowStatsUl.totalBytesTransmitted = 0;
217 flowStatsUl.lastTtiBytesTransmitted = 0;
218 flowStatsUl.lastAveragedThroughput = 1;
219 m_flowStatsUl[params.m_rnti] = flowStatsUl;
220 }
221 }
222}
223
224void
227{
228 NS_LOG_FUNCTION(this);
229 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
230 {
231 auto it = m_rlcBufferReq.begin();
232 while (it != m_rlcBufferReq.end())
233 {
234 if (((*it).first.m_rnti == params.m_rnti) &&
235 ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
236 {
237 auto temp = it;
238 it++;
239 m_rlcBufferReq.erase(temp);
240 }
241 else
242 {
243 it++;
244 }
245 }
246 }
247}
248
249void
252{
253 NS_LOG_FUNCTION(this);
254
255 m_uesTxMode.erase(params.m_rnti);
256 m_dlHarqCurrentProcessId.erase(params.m_rnti);
257 m_dlHarqProcessesStatus.erase(params.m_rnti);
258 m_dlHarqProcessesTimer.erase(params.m_rnti);
259 m_dlHarqProcessesDciBuffer.erase(params.m_rnti);
260 m_dlHarqProcessesRlcPduListBuffer.erase(params.m_rnti);
261 m_ulHarqCurrentProcessId.erase(params.m_rnti);
262 m_ulHarqProcessesStatus.erase(params.m_rnti);
263 m_ulHarqProcessesDciBuffer.erase(params.m_rnti);
264 m_flowStatsDl.erase(params.m_rnti);
265 m_flowStatsUl.erase(params.m_rnti);
266 m_ceBsrRxed.erase(params.m_rnti);
267 auto it = m_rlcBufferReq.begin();
268 while (it != m_rlcBufferReq.end())
269 {
270 if ((*it).first.m_rnti == params.m_rnti)
271 {
272 auto temp = it;
273 it++;
274 m_rlcBufferReq.erase(temp);
275 }
276 else
277 {
278 it++;
279 }
280 }
281 if (m_nextRntiUl == params.m_rnti)
282 {
283 m_nextRntiUl = 0;
284 }
285}
286
287void
290{
291 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
292 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
293
294 LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
295
296 auto it = m_rlcBufferReq.find(flow);
297
298 if (it == m_rlcBufferReq.end())
299 {
300 m_rlcBufferReq[flow] = params;
301 }
302 else
303 {
304 (*it).second = params;
305 }
306}
307
308void
311{
312 NS_LOG_FUNCTION(this);
313 NS_FATAL_ERROR("method not implemented");
314}
315
316void
319{
320 NS_LOG_FUNCTION(this);
321 NS_FATAL_ERROR("method not implemented");
322}
323
324int
326{
327 for (int i = 0; i < 4; i++)
328 {
329 if (dlbandwidth < TdBetType0AllocationRbg[i])
330 {
331 return i + 1;
332 }
333 }
334
335 return -1;
336}
337
338unsigned int
340{
341 unsigned int lcActive = 0;
342 for (auto it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
343 {
344 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
345 ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
346 ((*it).second.m_rlcStatusPduSize > 0)))
347 {
348 lcActive++;
349 }
350 if ((*it).first.m_rnti > rnti)
351 {
352 break;
353 }
354 }
355 return lcActive;
356}
357
358bool
360{
361 NS_LOG_FUNCTION(this << rnti);
362
363 auto it = m_dlHarqCurrentProcessId.find(rnti);
364 if (it == m_dlHarqCurrentProcessId.end())
365 {
366 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
367 }
368 auto itStat = m_dlHarqProcessesStatus.find(rnti);
369 if (itStat == m_dlHarqProcessesStatus.end())
370 {
371 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
372 }
373 uint8_t i = (*it).second;
374 do
375 {
376 i = (i + 1) % HARQ_PROC_NUM;
377 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
378
379 return (*itStat).second.at(i) == 0;
380}
381
382uint8_t
384{
385 NS_LOG_FUNCTION(this << rnti);
386
387 if (!m_harqOn)
388 {
389 return 0;
390 }
391
392 auto it = m_dlHarqCurrentProcessId.find(rnti);
393 if (it == m_dlHarqCurrentProcessId.end())
394 {
395 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
396 }
397 auto itStat = m_dlHarqProcessesStatus.find(rnti);
398 if (itStat == m_dlHarqProcessesStatus.end())
399 {
400 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
401 }
402 uint8_t i = (*it).second;
403 do
404 {
405 i = (i + 1) % HARQ_PROC_NUM;
406 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
407 if ((*itStat).second.at(i) == 0)
408 {
409 (*it).second = i;
410 (*itStat).second.at(i) = 1;
411 }
412 else
413 {
414 NS_FATAL_ERROR("No HARQ process available for RNTI "
415 << rnti << " check before update with HarqProcessAvailability");
416 }
417
418 return (*it).second;
419}
420
421void
423{
424 NS_LOG_FUNCTION(this);
425
426 for (auto itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
427 itTimers++)
428 {
429 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
430 {
431 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
432 {
433 // reset HARQ process
434
435 NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
436 auto itStat = m_dlHarqProcessesStatus.find((*itTimers).first);
437 if (itStat == m_dlHarqProcessesStatus.end())
438 {
439 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
440 << (*itTimers).first);
441 }
442 (*itStat).second.at(i) = 0;
443 (*itTimers).second.at(i) = 0;
444 }
445 else
446 {
447 (*itTimers).second.at(i)++;
448 }
449 }
450 }
451}
452
453void
456{
457 NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
458 << (0xF & params.m_sfnSf));
459 // API generated by RLC for triggering the scheduling of a DL subframe
460
461 // evaluate the relative channel quality indicator for each UE per each RBG
462 // (since we are using allocation type 0 the small unit of allocation is RBG)
463 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
464
466
468 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
469 std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
470 std::vector<bool> rbgMap; // global RBGs map
471 uint16_t rbgAllocatedNum = 0;
472 std::set<uint16_t> rntiAllocated;
473 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
475
476 // update UL HARQ proc id
477 for (auto itProcId = m_ulHarqCurrentProcessId.begin();
478 itProcId != m_ulHarqCurrentProcessId.end();
479 itProcId++)
480 {
481 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
482 }
483
484 // RACH Allocation
486 uint16_t rbStart = 0;
487 for (auto itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
488 {
490 (*itRach).m_estimatedSize,
491 " Default UL Grant MCS does not allow to send RACH messages");
493 newRar.m_rnti = (*itRach).m_rnti;
494 // DL-RACH Allocation
495 // Ideal: no needs of configuring m_dci
496 // UL-RACH Allocation
497 newRar.m_grant.m_rnti = newRar.m_rnti;
498 newRar.m_grant.m_mcs = m_ulGrantMcs;
499 uint16_t rbLen = 1;
500 uint16_t tbSizeBits = 0;
501 // find lowest TB size that fits UL grant estimated size
502 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
503 (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
504 {
505 rbLen++;
506 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
507 }
508 if (tbSizeBits < (*itRach).m_estimatedSize)
509 {
510 // no more allocation space: finish allocation
511 break;
512 }
513 newRar.m_grant.m_rbStart = rbStart;
514 newRar.m_grant.m_rbLen = rbLen;
515 newRar.m_grant.m_tbSize = tbSizeBits / 8;
516 newRar.m_grant.m_hopping = false;
517 newRar.m_grant.m_tpc = 0;
518 newRar.m_grant.m_cqiRequest = false;
519 newRar.m_grant.m_ulDelay = false;
520 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
521 << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize "
522 << newRar.m_grant.m_tbSize);
523 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
524 {
525 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
526 }
527
528 if (m_harqOn)
529 {
530 // generate UL-DCI for HARQ retransmissions
531 UlDciListElement_s uldci;
532 uldci.m_rnti = newRar.m_rnti;
533 uldci.m_rbLen = rbLen;
534 uldci.m_rbStart = rbStart;
535 uldci.m_mcs = m_ulGrantMcs;
536 uldci.m_tbSize = tbSizeBits / 8;
537 uldci.m_ndi = 1;
538 uldci.m_cceIndex = 0;
539 uldci.m_aggrLevel = 1;
540 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
541 uldci.m_hopping = false;
542 uldci.m_n2Dmrs = 0;
543 uldci.m_tpc = 0; // no power control
544 uldci.m_cqiRequest = false; // only period CQI at this stage
545 uldci.m_ulIndex = 0; // TDD parameter
546 uldci.m_dai = 1; // TDD parameter
547 uldci.m_freqHopping = 0;
548 uldci.m_pdcchPowerOffset = 0; // not used
549
550 uint8_t harqId = 0;
551 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
552 if (itProcId == m_ulHarqCurrentProcessId.end())
553 {
554 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
555 }
556 harqId = (*itProcId).second;
557 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
558 if (itDci == m_ulHarqProcessesDciBuffer.end())
559 {
560 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
561 << uldci.m_rnti);
562 }
563 (*itDci).second.at(harqId) = uldci;
564 }
565
566 rbStart = rbStart + rbLen;
567 ret.m_buildRarList.push_back(newRar);
568 }
569 m_rachList.clear();
570
571 // Process DL HARQ feedback
573 // retrieve past HARQ retx buffered
574 if (!m_dlInfoListBuffered.empty())
575 {
576 if (!params.m_dlInfoList.empty())
577 {
578 NS_LOG_INFO(this << " Received DL-HARQ feedback");
580 params.m_dlInfoList.begin(),
581 params.m_dlInfoList.end());
582 }
583 }
584 else
585 {
586 if (!params.m_dlInfoList.empty())
587 {
588 m_dlInfoListBuffered = params.m_dlInfoList;
589 }
590 }
591 if (!m_harqOn)
592 {
593 // Ignore HARQ feedback
594 m_dlInfoListBuffered.clear();
595 }
596 std::vector<DlInfoListElement_s> dlInfoListUntxed;
597 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
598 {
599 auto itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
600 if (itRnti != rntiAllocated.end())
601 {
602 // RNTI already allocated for retx
603 continue;
604 }
605 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
606 std::vector<bool> retx;
607 NS_LOG_INFO(this << " Processing DLHARQ feedback");
608 if (nLayers == 1)
609 {
610 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
612 retx.push_back(false);
613 }
614 else
615 {
616 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
618 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
620 }
621 if (retx.at(0) || retx.at(1))
622 {
623 // retrieve HARQ process information
624 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
625 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
626 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
627 auto itHarq = m_dlHarqProcessesDciBuffer.find(rnti);
628 if (itHarq == m_dlHarqProcessesDciBuffer.end())
629 {
630 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
631 }
632
633 DlDciListElement_s dci = (*itHarq).second.at(harqId);
634 int rv = 0;
635 if (dci.m_rv.size() == 1)
636 {
637 rv = dci.m_rv.at(0);
638 }
639 else
640 {
641 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
642 }
643
644 if (rv == 3)
645 {
646 // maximum number of retx reached -> drop process
647 NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
648 auto it = m_dlHarqProcessesStatus.find(rnti);
649 if (it == m_dlHarqProcessesStatus.end())
650 {
651 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
652 << m_dlInfoListBuffered.at(i).m_rnti);
653 }
654 (*it).second.at(harqId) = 0;
655 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
656 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
657 {
658 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
659 << m_dlInfoListBuffered.at(i).m_rnti);
660 }
661 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
662 {
663 (*itRlcPdu).second.at(k).at(harqId).clear();
664 }
665 continue;
666 }
667 // check the feasibility of retransmitting on the same RBGs
668 // translate the DCI to Spectrum framework
669 std::vector<int> dciRbg;
670 uint32_t mask = 0x1;
671 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
672 for (int j = 0; j < 32; j++)
673 {
674 if (((dci.m_rbBitmap & mask) >> j) == 1)
675 {
676 dciRbg.push_back(j);
677 NS_LOG_INFO("\t" << j);
678 }
679 mask = (mask << 1);
680 }
681 bool free = true;
682 for (std::size_t j = 0; j < dciRbg.size(); j++)
683 {
684 if (rbgMap.at(dciRbg.at(j)))
685 {
686 free = false;
687 break;
688 }
689 }
690 if (free)
691 {
692 // use the same RBGs for the retx
693 // reserve RBGs
694 for (std::size_t j = 0; j < dciRbg.size(); j++)
695 {
696 rbgMap.at(dciRbg.at(j)) = true;
697 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
698 rbgAllocatedNum++;
699 }
700
701 NS_LOG_INFO(this << " Send retx in the same RBGs");
702 }
703 else
704 {
705 // find RBGs for sending HARQ retx
706 uint8_t j = 0;
707 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
708 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
709 std::vector<bool> rbgMapCopy = rbgMap;
710 while ((j < dciRbg.size()) && (startRbg != rbgId))
711 {
712 if (!rbgMapCopy.at(rbgId))
713 {
714 rbgMapCopy.at(rbgId) = true;
715 dciRbg.at(j) = rbgId;
716 j++;
717 }
718 rbgId = (rbgId + 1) % rbgNum;
719 }
720 if (j == dciRbg.size())
721 {
722 // find new RBGs -> update DCI map
723 uint32_t rbgMask = 0;
724 for (std::size_t k = 0; k < dciRbg.size(); k++)
725 {
726 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
727 rbgAllocatedNum++;
728 }
729 dci.m_rbBitmap = rbgMask;
730 rbgMap = rbgMapCopy;
731 NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
732 }
733 else
734 {
735 // HARQ retx cannot be performed on this TTI -> store it
736 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
737 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
738 }
739 }
740 // retrieve RLC PDU list for retx TBsize and update DCI
742 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
743 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
744 {
745 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
746 }
747 for (std::size_t j = 0; j < nLayers; j++)
748 {
749 if (retx.at(j))
750 {
751 if (j >= dci.m_ndi.size())
752 {
753 // for avoiding errors in MIMO transient phases
754 dci.m_ndi.push_back(0);
755 dci.m_rv.push_back(0);
756 dci.m_mcs.push_back(0);
757 dci.m_tbsSize.push_back(0);
758 NS_LOG_INFO(this << " layer " << (uint16_t)j
759 << " no txed (MIMO transition)");
760 }
761 else
762 {
763 dci.m_ndi.at(j) = 0;
764 dci.m_rv.at(j)++;
765 (*itHarq).second.at(harqId).m_rv.at(j)++;
766 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
767 << (uint16_t)dci.m_rv.at(j));
768 }
769 }
770 else
771 {
772 // empty TB of layer j
773 dci.m_ndi.at(j) = 0;
774 dci.m_rv.at(j) = 0;
775 dci.m_mcs.at(j) = 0;
776 dci.m_tbsSize.at(j) = 0;
777 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
778 }
779 }
780 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
781 {
782 std::vector<RlcPduListElement_s> rlcPduListPerLc;
783 for (std::size_t j = 0; j < nLayers; j++)
784 {
785 if (retx.at(j))
786 {
787 if (j < dci.m_ndi.size())
788 {
789 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
790 << dci.m_tbsSize.at(j));
791 rlcPduListPerLc.push_back(
792 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
793 }
794 }
795 else
796 { // if no retx needed on layer j, push an RlcPduListElement_s object with
797 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
798 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
799 RlcPduListElement_s emptyElement;
800 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
801 .second.at(j)
802 .at(dci.m_harqProcess)
803 .at(k)
804 .m_logicalChannelIdentity;
805 emptyElement.m_size = 0;
806 rlcPduListPerLc.push_back(emptyElement);
807 }
808 }
809
810 if (!rlcPduListPerLc.empty())
811 {
812 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
813 }
814 }
815 newEl.m_rnti = rnti;
816 newEl.m_dci = dci;
817 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
818 // refresh timer
819 auto itHarqTimer = m_dlHarqProcessesTimer.find(rnti);
820 if (itHarqTimer == m_dlHarqProcessesTimer.end())
821 {
822 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
823 }
824 (*itHarqTimer).second.at(harqId) = 0;
825 ret.m_buildDataList.push_back(newEl);
826 rntiAllocated.insert(rnti);
827 }
828 else
829 {
830 // update HARQ process status
831 NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
832 auto it = m_dlHarqProcessesStatus.find(m_dlInfoListBuffered.at(i).m_rnti);
833 if (it == m_dlHarqProcessesStatus.end())
834 {
835 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
836 << m_dlInfoListBuffered.at(i).m_rnti);
837 }
838 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
839 auto itRlcPdu =
841 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
842 {
843 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
844 << m_dlInfoListBuffered.at(i).m_rnti);
845 }
846 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
847 {
848 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
849 }
850 }
851 }
852 m_dlInfoListBuffered.clear();
853 m_dlInfoListBuffered = dlInfoListUntxed;
854
855 if (rbgAllocatedNum == rbgNum)
856 {
857 // all the RBGs are already allocated -> exit
858 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
859 {
861 }
862 return;
863 }
864
865 auto itMax = m_flowStatsDl.end();
866 double metricMax = 0.0;
867 for (auto it = m_flowStatsDl.begin(); it != m_flowStatsDl.end(); it++)
868 {
869 // check first what are channel conditions for this UE, if CQI!=0
870 auto itCqi = m_p10CqiRxed.find((*it).first);
871 auto itTxMode = m_uesTxMode.find((*it).first);
872 if (itTxMode == m_uesTxMode.end())
873 {
874 NS_FATAL_ERROR("No Transmission Mode info on user " << (*it).first);
875 }
876 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
877
878 uint8_t cqiSum = 0;
879 for (uint8_t j = 0; j < nLayer; j++)
880 {
881 if (itCqi == m_p10CqiRxed.end())
882 {
883 cqiSum += 1; // no info on this user -> lowest MCS
884 }
885 else
886 {
887 cqiSum = (*itCqi).second;
888 }
889 }
890 if (cqiSum == 0)
891 {
892 NS_LOG_INFO("Skip this flow, CQI==0, rnti:" << (*it).first);
893 continue;
894 }
895
896 auto itRnti = rntiAllocated.find((*it).first);
897 if ((itRnti != rntiAllocated.end()) || (!HarqProcessAvailability((*it).first)))
898 {
899 // UE already allocated for HARQ or without HARQ process available -> drop it
900 if (itRnti != rntiAllocated.end())
901 {
902 NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx" << (uint16_t)(*it).first);
903 }
904 if (!HarqProcessAvailability((*it).first))
905 {
906 NS_LOG_DEBUG(this << " RNTI discarded for HARQ id" << (uint16_t)(*it).first);
907 }
908 continue;
909 }
910
911 double metric = 1 / (*it).second.lastAveragedThroughput;
912
913 if (metric > metricMax)
914 {
915 metricMax = metric;
916 itMax = it;
917 }
918 } // end for m_flowStatsDl
919
920 if (itMax == m_flowStatsDl.end())
921 {
922 // no UE available for downlink
923 return;
924 }
925 else
926 {
927 // assign all RBGs to this UE
928 std::vector<uint16_t> tempMap;
929 tempMap.reserve(rbgNum);
930 for (int i = 0; i < rbgNum; i++)
931 {
932 tempMap.push_back(i);
933 }
934 allocationMap[(*itMax).first] = tempMap;
935 }
936
937 // reset TTI stats of users
938 for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
939 {
940 (*itStats).second.lastTtiBytesTransmitted = 0;
941 }
942
943 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
944 // creating the correspondent DCIs
945 auto itMap = allocationMap.begin();
946 while (itMap != allocationMap.end())
947 {
948 // create new BuildDataListElement_s for this LC
950 newEl.m_rnti = (*itMap).first;
951 // create the DlDciListElement_s
952 DlDciListElement_s newDci;
953 newDci.m_rnti = (*itMap).first;
954 newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
955
956 uint16_t lcActives = LcActivePerFlow((*itMap).first);
957 NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
958 if (lcActives == 0)
959 {
960 // Set to max value, to avoid divide by 0 below
961 lcActives = (uint16_t)65535; // UINT16_MAX;
962 }
963 uint16_t RbgPerRnti = (*itMap).second.size();
964 auto itCqi = m_p10CqiRxed.find((*itMap).first);
965 auto itTxMode = m_uesTxMode.find((*itMap).first);
966 if (itTxMode == m_uesTxMode.end())
967 {
968 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
969 }
970 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
971
972 uint32_t bytesTxed = 0;
973 for (uint8_t j = 0; j < nLayer; j++)
974 {
975 if (itCqi == m_p10CqiRxed.end())
976 {
977 newDci.m_mcs.push_back(0); // no info on this user -> lowest MCS
978 }
979 else
980 {
981 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
982 }
983
984 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RbgPerRnti * rbgSize) /
985 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
986 newDci.m_tbsSize.push_back(tbSize);
987 bytesTxed += tbSize;
988 }
989
990 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
991 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
992 uint32_t rbgMask = 0;
993 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
994 {
995 rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
996 NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
997 }
998 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
999
1000 // create the rlc PDUs -> equally divide resources among actives LCs
1001 for (auto itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1002 {
1003 if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1004 (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1005 ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1006 ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1007 {
1008 std::vector<RlcPduListElement_s> newRlcPduLe;
1009 for (uint8_t j = 0; j < nLayer; j++)
1010 {
1011 RlcPduListElement_s newRlcEl;
1012 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1013 newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1014 NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1015 << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1016 newRlcPduLe.push_back(newRlcEl);
1018 newRlcEl.m_logicalChannelIdentity,
1019 newRlcEl.m_size);
1020 if (m_harqOn)
1021 {
1022 // store RLC PDU list for HARQ
1023 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1024 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1025 {
1026 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1027 << (*itMap).first);
1028 }
1029 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1030 }
1031 }
1032 newEl.m_rlcPduList.push_back(newRlcPduLe);
1033 }
1034 if ((*itBufReq).first.m_rnti > (*itMap).first)
1035 {
1036 break;
1037 }
1038 }
1039 for (uint8_t j = 0; j < nLayer; j++)
1040 {
1041 newDci.m_ndi.push_back(1);
1042 newDci.m_rv.push_back(0);
1043 }
1044
1045 newDci.m_tpc = 1; // 1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1046
1047 newEl.m_dci = newDci;
1048
1049 if (m_harqOn)
1050 {
1051 // store DCI for HARQ
1052 auto itDci = m_dlHarqProcessesDciBuffer.find(newEl.m_rnti);
1053 if (itDci == m_dlHarqProcessesDciBuffer.end())
1054 {
1055 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1056 << newEl.m_rnti);
1057 }
1058 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1059 // refresh timer
1060 auto itHarqTimer = m_dlHarqProcessesTimer.find(newEl.m_rnti);
1061 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1062 {
1063 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1064 }
1065 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1066 }
1067
1068 // ...more parameters -> ignored in this version
1069
1070 ret.m_buildDataList.push_back(newEl);
1071 // update UE stats
1072 auto it = m_flowStatsDl.find((*itMap).first);
1073 if (it != m_flowStatsDl.end())
1074 {
1075 (*it).second.lastTtiBytesTransmitted = bytesTxed;
1076 NS_LOG_INFO(this << " UE total bytes txed " << (*it).second.lastTtiBytesTransmitted);
1077 }
1078 else
1079 {
1080 NS_FATAL_ERROR(this << " No Stats for this allocated UE");
1081 }
1082
1083 itMap++;
1084 } // end while allocation
1085 ret.m_nrOfPdcchOfdmSymbols = 1; /// \todo check correct value according the DCIs txed
1086
1087 // update UEs stats
1088 NS_LOG_INFO(this << " Update UEs statistics");
1089 for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
1090 {
1091 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTransmitted;
1092 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1093 // Evolution, Ed Wiley)
1094 (*itStats).second.lastAveragedThroughput =
1095 ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1096 ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTransmitted / 0.001));
1097 NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1098 NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1099 (*itStats).second.lastTtiBytesTransmitted = 0;
1100 }
1101
1103}
1104
1105void
1108{
1109 NS_LOG_FUNCTION(this);
1110
1111 m_rachList = params.m_rachList;
1112}
1113
1114void
1117{
1118 NS_LOG_FUNCTION(this);
1119
1120 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1121 {
1122 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1123 {
1124 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1125 << " reported");
1126 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1127 auto it = m_p10CqiRxed.find(rnti);
1128 if (it == m_p10CqiRxed.end())
1129 {
1130 // create the new entry
1131 m_p10CqiRxed[rnti] =
1132 params.m_cqiList.at(i).m_wbCqi.at(0); // only codeword 0 at this stage (SISO)
1133 // generate correspondent timer
1135 }
1136 else
1137 {
1138 // update the CQI value and refresh correspondent timer
1139 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1140 // update correspondent timer
1141 auto itTimers = m_p10CqiTimers.find(rnti);
1142 (*itTimers).second = m_cqiTimersThreshold;
1143 }
1144 }
1145 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1146 {
1147 // subband CQI reporting high layer configured
1148 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1149 auto it = m_a30CqiRxed.find(rnti);
1150 if (it == m_a30CqiRxed.end())
1151 {
1152 // create the new entry
1153 m_a30CqiRxed[rnti] = params.m_cqiList.at(i).m_sbMeasResult;
1155 }
1156 else
1157 {
1158 // update the CQI value and refresh correspondent timer
1159 (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1160 auto itTimers = m_a30CqiTimers.find(rnti);
1161 (*itTimers).second = m_cqiTimersThreshold;
1162 }
1163 }
1164 else
1165 {
1166 NS_LOG_ERROR(this << " CQI type unknown");
1167 }
1168 }
1169}
1170
1171double
1172TdBetFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1173{
1174 auto itCqi = m_ueCqi.find(rnti);
1175 if (itCqi == m_ueCqi.end())
1176 {
1177 // no cqi info about this UE
1178 return NO_SINR;
1179 }
1180 else
1181 {
1182 // take the average SINR value among the available
1183 double sinrSum = 0;
1184 unsigned int sinrNum = 0;
1185 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1186 {
1187 double sinr = (*itCqi).second.at(i);
1188 if (sinr != NO_SINR)
1189 {
1190 sinrSum += sinr;
1191 sinrNum++;
1192 }
1193 }
1194 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1195 // store the value
1196 (*itCqi).second.at(rb) = estimatedSinr;
1197 return estimatedSinr;
1198 }
1199}
1200
1201void
1204{
1205 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1206 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1207
1209
1210 // Generate RBs map
1212 std::vector<bool> rbMap;
1213 std::set<uint16_t> rntiAllocated;
1214 std::vector<uint16_t> rbgAllocationMap;
1215 // update with RACH allocation map
1216 rbgAllocationMap = m_rachAllocationMap;
1217 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1218 m_rachAllocationMap.clear();
1220
1221 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1222 // remove RACH allocation
1223 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1224 {
1225 if (rbgAllocationMap.at(i) != 0)
1226 {
1227 rbMap.at(i) = true;
1228 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1229 }
1230 }
1231
1232 if (m_harqOn)
1233 {
1234 // Process UL HARQ feedback
1235 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1236 {
1237 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1238 {
1239 // retx correspondent block: retrieve the UL-DCI
1240 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1241 auto itProcId = m_ulHarqCurrentProcessId.find(rnti);
1242 if (itProcId == m_ulHarqCurrentProcessId.end())
1243 {
1244 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1245 }
1246 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1247 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1248 << " i " << i << " size " << params.m_ulInfoList.size());
1249 auto itHarq = m_ulHarqProcessesDciBuffer.find(rnti);
1250 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1251 {
1252 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1253 continue;
1254 }
1255 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1256 auto itStat = m_ulHarqProcessesStatus.find(rnti);
1257 if (itStat == m_ulHarqProcessesStatus.end())
1258 {
1259 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1260 }
1261 if ((*itStat).second.at(harqId) >= 3)
1262 {
1263 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1264 continue;
1265 }
1266 bool free = true;
1267 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1268 {
1269 if (rbMap.at(j))
1270 {
1271 free = false;
1272 NS_LOG_INFO(this << " BUSY " << j);
1273 }
1274 }
1275 if (free)
1276 {
1277 // retx on the same RBs
1278 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1279 {
1280 rbMap.at(j) = true;
1281 rbgAllocationMap.at(j) = dci.m_rnti;
1282 NS_LOG_INFO("\tRB " << j);
1283 }
1284 NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1285 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1286 << (*itStat).second.at(harqId) + 1);
1287 }
1288 else
1289 {
1290 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1291 continue;
1292 }
1293 dci.m_ndi = 0;
1294 // Update HARQ buffers with new HarqId
1295 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1296 (*itStat).second.at(harqId) = 0;
1297 (*itHarq).second.at((*itProcId).second) = dci;
1298 ret.m_dciList.push_back(dci);
1299 rntiAllocated.insert(dci.m_rnti);
1300 }
1301 else
1302 {
1303 NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1304 << params.m_ulInfoList.at(i).m_rnti);
1305 }
1306 }
1307 }
1308
1309 std::map<uint16_t, uint32_t>::iterator it;
1310 int nflows = 0;
1311
1312 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1313 {
1314 auto itRnti = rntiAllocated.find((*it).first);
1315 // select UEs with queues not empty and not yet allocated for HARQ
1316 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1317 {
1318 nflows++;
1319 }
1320 }
1321
1322 if (nflows == 0)
1323 {
1324 if (!ret.m_dciList.empty())
1325 {
1326 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1328 }
1329
1330 return; // no flows to be scheduled
1331 }
1332
1333 // Divide the remaining resources equally among the active users starting from the subsequent
1334 // one served last scheduling trigger
1335 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size());
1336 if (rbPerFlow < 3)
1337 {
1338 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1339 // >= 7 bytes
1340 }
1341 int rbAllocated = 0;
1342
1343 if (m_nextRntiUl != 0)
1344 {
1345 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1346 {
1347 if ((*it).first == m_nextRntiUl)
1348 {
1349 break;
1350 }
1351 }
1352 if (it == m_ceBsrRxed.end())
1353 {
1354 NS_LOG_ERROR(this << " no user found");
1355 }
1356 }
1357 else
1358 {
1359 it = m_ceBsrRxed.begin();
1360 m_nextRntiUl = (*it).first;
1361 }
1362 do
1363 {
1364 auto itRnti = rntiAllocated.find((*it).first);
1365 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1366 {
1367 // UE already allocated for UL-HARQ -> skip it
1368 NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1369 << (*it).first);
1370 it++;
1371 if (it == m_ceBsrRxed.end())
1372 {
1373 // restart from the first
1374 it = m_ceBsrRxed.begin();
1375 }
1376 continue;
1377 }
1378 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1379 {
1380 // limit to physical resources last resource assignment
1381 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1382 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1383 if (rbPerFlow < 3)
1384 {
1385 // terminate allocation
1386 rbPerFlow = 0;
1387 }
1388 }
1389
1390 UlDciListElement_s uldci;
1391 uldci.m_rnti = (*it).first;
1392 uldci.m_rbLen = rbPerFlow;
1393 bool allocated = false;
1394 NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1395 << " flows " << nflows);
1396 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1397 (rbPerFlow != 0))
1398 {
1399 // check availability
1400 bool free = true;
1401 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1402 {
1403 if (rbMap.at(j))
1404 {
1405 free = false;
1406 break;
1407 }
1408 }
1409 if (free)
1410 {
1411 uldci.m_rbStart = rbAllocated;
1412
1413 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1414 {
1415 rbMap.at(j) = true;
1416 // store info on allocation for managing ul-cqi interpretation
1417 rbgAllocationMap.at(j) = (*it).first;
1418 }
1419 rbAllocated += rbPerFlow;
1420 allocated = true;
1421 break;
1422 }
1423 rbAllocated++;
1424 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1425 {
1426 // limit to physical resources last resource assignment
1427 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1428 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1429 if (rbPerFlow < 3)
1430 {
1431 // terminate allocation
1432 rbPerFlow = 0;
1433 }
1434 }
1435 }
1436 if (!allocated)
1437 {
1438 // unable to allocate new resource: finish scheduling
1439 m_nextRntiUl = (*it).first;
1440 if (!ret.m_dciList.empty())
1441 {
1443 }
1444 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1445 return;
1446 }
1447
1448 auto itCqi = m_ueCqi.find((*it).first);
1449 int cqi = 0;
1450 if (itCqi == m_ueCqi.end())
1451 {
1452 // no cqi info about this UE
1453 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1454 }
1455 else
1456 {
1457 // take the lowest CQI value (worst RB)
1458 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1459 "CQI of RNTI = " << (*it).first << " has expired");
1460 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1461 if (minSinr == NO_SINR)
1462 {
1463 minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1464 }
1465 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1466 {
1467 double sinr = (*itCqi).second.at(i);
1468 if (sinr == NO_SINR)
1469 {
1470 sinr = EstimateUlSinr((*it).first, i);
1471 }
1472 if (sinr < minSinr)
1473 {
1474 minSinr = sinr;
1475 }
1476 }
1477
1478 // translate SINR -> cqi: WILD ACK: same as DL
1479 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1480 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1481 if (cqi == 0)
1482 {
1483 it++;
1484 if (it == m_ceBsrRxed.end())
1485 {
1486 // restart from the first
1487 it = m_ceBsrRxed.begin();
1488 }
1489 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1490 // remove UE from allocation map
1491 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1492 {
1493 rbgAllocationMap.at(i) = 0;
1494 }
1495 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1496 }
1497 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1498 }
1499
1500 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1502 uldci.m_ndi = 1;
1503 uldci.m_cceIndex = 0;
1504 uldci.m_aggrLevel = 1;
1505 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1506 uldci.m_hopping = false;
1507 uldci.m_n2Dmrs = 0;
1508 uldci.m_tpc = 0; // no power control
1509 uldci.m_cqiRequest = false; // only period CQI at this stage
1510 uldci.m_ulIndex = 0; // TDD parameter
1511 uldci.m_dai = 1; // TDD parameter
1512 uldci.m_freqHopping = 0;
1513 uldci.m_pdcchPowerOffset = 0; // not used
1514 ret.m_dciList.push_back(uldci);
1515 // store DCI for HARQ_PERIOD
1516 uint8_t harqId = 0;
1517 if (m_harqOn)
1518 {
1519 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1520 if (itProcId == m_ulHarqCurrentProcessId.end())
1521 {
1522 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1523 }
1524 harqId = (*itProcId).second;
1525 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
1526 if (itDci == m_ulHarqProcessesDciBuffer.end())
1527 {
1528 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1529 << uldci.m_rnti);
1530 }
1531 (*itDci).second.at(harqId) = uldci;
1532 // Update HARQ process status (RV 0)
1533 auto itStat = m_ulHarqProcessesStatus.find(uldci.m_rnti);
1534 if (itStat == m_ulHarqProcessesStatus.end())
1535 {
1536 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1537 << uldci.m_rnti);
1538 }
1539 (*itStat).second.at(harqId) = 0;
1540 }
1541
1542 NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
1543 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1544 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1545 << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
1546 << (uint16_t)harqId);
1547
1548 // update TTI UE stats
1549 auto itStats = m_flowStatsUl.find((*it).first);
1550 if (itStats != m_flowStatsUl.end())
1551 {
1552 (*itStats).second.lastTtiBytesTransmitted = uldci.m_tbSize;
1553 }
1554 else
1555 {
1556 NS_LOG_DEBUG(this << " No Stats for this allocated UE");
1557 }
1558
1559 it++;
1560 if (it == m_ceBsrRxed.end())
1561 {
1562 // restart from the first
1563 it = m_ceBsrRxed.begin();
1564 }
1565 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1566 {
1567 // Stop allocation: no more PRBs
1568 m_nextRntiUl = (*it).first;
1569 break;
1570 }
1571 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1572
1573 // Update global UE stats
1574 // update UEs stats
1575 for (auto itStats = m_flowStatsUl.begin(); itStats != m_flowStatsUl.end(); itStats++)
1576 {
1577 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTransmitted;
1578 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1579 // Evolution, Ed Wiley)
1580 (*itStats).second.lastAveragedThroughput =
1581 ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1582 ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTransmitted / 0.001));
1583 NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1584 NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1585 (*itStats).second.lastTtiBytesTransmitted = 0;
1586 }
1587 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1589}
1590
1591void
1594{
1595 NS_LOG_FUNCTION(this);
1596}
1597
1598void
1601{
1602 NS_LOG_FUNCTION(this);
1603}
1604
1605void
1608{
1609 NS_LOG_FUNCTION(this);
1610
1611 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1612 {
1613 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1614 {
1615 // buffer status report
1616 // note that this scheduler does not differentiate the
1617 // allocation according to which LCGs have more/less bytes
1618 // to send.
1619 // Hence the BSR of different LCGs are just summed up to get
1620 // a total queue size that is used for allocation purposes.
1621
1622 uint32_t buffer = 0;
1623 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1624 {
1625 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1626 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1627 }
1628
1629 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1630 NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
1631 auto it = m_ceBsrRxed.find(rnti);
1632 if (it == m_ceBsrRxed.end())
1633 {
1634 // create the new entry
1635 m_ceBsrRxed[rnti] = buffer;
1636 }
1637 else
1638 {
1639 // update the buffer size value
1640 (*it).second = buffer;
1641 }
1642 }
1643 }
1644}
1645
1646void
1649{
1650 NS_LOG_FUNCTION(this);
1651 // retrieve the allocation for this subframe
1652 switch (m_ulCqiFilter)
1653 {
1655 // filter all the CQIs that are not SRS based
1656 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1657 {
1658 return;
1659 }
1660 }
1661 break;
1663 // filter all the CQIs that are not SRS based
1664 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1665 {
1666 return;
1667 }
1668 }
1669 break;
1670 default:
1671 NS_FATAL_ERROR("Unknown UL CQI type");
1672 }
1673
1674 switch (params.m_ulCqi.m_type)
1675 {
1676 case UlCqi_s::PUSCH: {
1677 NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
1678 << " subframe no. " << (0xF & params.m_sfnSf));
1679 auto itMap = m_allocationMaps.find(params.m_sfnSf);
1680 if (itMap == m_allocationMaps.end())
1681 {
1682 return;
1683 }
1684 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1685 {
1686 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1687 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1688 auto itCqi = m_ueCqi.find((*itMap).second.at(i));
1689 if (itCqi == m_ueCqi.end())
1690 {
1691 // create a new entry
1692 std::vector<double> newCqi;
1693 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1694 {
1695 if (i == j)
1696 {
1697 newCqi.push_back(sinr);
1698 }
1699 else
1700 {
1701 // initialize with NO_SINR value.
1702 newCqi.push_back(NO_SINR);
1703 }
1704 }
1705 m_ueCqi[(*itMap).second.at(i)] = newCqi;
1706 // generate correspondent timer
1707 m_ueCqiTimers[(*itMap).second.at(i)] = m_cqiTimersThreshold;
1708 }
1709 else
1710 {
1711 // update the value
1712 (*itCqi).second.at(i) = sinr;
1713 NS_LOG_DEBUG(this << " RNTI " << (*itMap).second.at(i) << " RB " << i << " SINR "
1714 << sinr);
1715 // update correspondent timer
1716 auto itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1717 (*itTimers).second = m_cqiTimersThreshold;
1718 }
1719 }
1720 // remove obsolete info on allocation
1721 m_allocationMaps.erase(itMap);
1722 }
1723 break;
1724 case UlCqi_s::SRS: {
1725 // get the RNTI from vendor specific parameters
1726 uint16_t rnti = 0;
1727 NS_ASSERT(!params.m_vendorSpecificList.empty());
1728 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1729 {
1730 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1731 {
1732 Ptr<SrsCqiRntiVsp> vsp =
1733 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1734 rnti = vsp->GetRnti();
1735 }
1736 }
1737 auto itCqi = m_ueCqi.find(rnti);
1738 if (itCqi == m_ueCqi.end())
1739 {
1740 // create a new entry
1741 std::vector<double> newCqi;
1742 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1743 {
1744 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1745 newCqi.push_back(sinr);
1746 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1747 << sinr);
1748 }
1749 m_ueCqi[rnti] = newCqi;
1750 // generate correspondent timer
1752 }
1753 else
1754 {
1755 // update the values
1756 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1757 {
1758 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1759 (*itCqi).second.at(j) = sinr;
1760 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1761 << sinr);
1762 }
1763 // update correspondent timer
1764 auto itTimers = m_ueCqiTimers.find(rnti);
1765 (*itTimers).second = m_cqiTimersThreshold;
1766 }
1767 }
1768 break;
1769 case UlCqi_s::PUCCH_1:
1770 case UlCqi_s::PUCCH_2:
1771 case UlCqi_s::PRACH: {
1772 NS_FATAL_ERROR("TdBetFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1773 }
1774 break;
1775 default:
1776 NS_FATAL_ERROR("Unknown type of UL-CQI");
1777 }
1778}
1779
1780void
1782{
1783 // refresh DL CQI P01 Map
1784 auto itP10 = m_p10CqiTimers.begin();
1785 while (itP10 != m_p10CqiTimers.end())
1786 {
1787 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1788 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1789 if ((*itP10).second == 0)
1790 {
1791 // delete correspondent entries
1792 auto itMap = m_p10CqiRxed.find((*itP10).first);
1793 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1794 " Does not find CQI report for user " << (*itP10).first);
1795 NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
1796 m_p10CqiRxed.erase(itMap);
1797 auto temp = itP10;
1798 itP10++;
1799 m_p10CqiTimers.erase(temp);
1800 }
1801 else
1802 {
1803 (*itP10).second--;
1804 itP10++;
1805 }
1806 }
1807
1808 // refresh DL CQI A30 Map
1809 auto itA30 = m_a30CqiTimers.begin();
1810 while (itA30 != m_a30CqiTimers.end())
1811 {
1812 NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
1813 << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1814 if ((*itA30).second == 0)
1815 {
1816 // delete correspondent entries
1817 auto itMap = m_a30CqiRxed.find((*itA30).first);
1818 NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
1819 " Does not find CQI report for user " << (*itA30).first);
1820 NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
1821 m_a30CqiRxed.erase(itMap);
1822 auto temp = itA30;
1823 itA30++;
1824 m_a30CqiTimers.erase(temp);
1825 }
1826 else
1827 {
1828 (*itA30).second--;
1829 itA30++;
1830 }
1831 }
1832}
1833
1834void
1836{
1837 // refresh UL CQI Map
1838 auto itUl = m_ueCqiTimers.begin();
1839 while (itUl != m_ueCqiTimers.end())
1840 {
1841 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
1842 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1843 if ((*itUl).second == 0)
1844 {
1845 // delete correspondent entries
1846 auto itMap = m_ueCqi.find((*itUl).first);
1847 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
1848 " Does not find CQI report for user " << (*itUl).first);
1849 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
1850 (*itMap).second.clear();
1851 m_ueCqi.erase(itMap);
1852 auto temp = itUl;
1853 itUl++;
1854 m_ueCqiTimers.erase(temp);
1855 }
1856 else
1857 {
1858 (*itUl).second--;
1859 itUl++;
1860 }
1861 }
1862}
1863
1864void
1865TdBetFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
1866{
1867 LteFlowId_t flow(rnti, lcid);
1868 auto it = m_rlcBufferReq.find(flow);
1869 if (it != m_rlcBufferReq.end())
1870 {
1871 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
1872 << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
1873 << (*it).second.m_rlcRetransmissionQueueSize << " status "
1874 << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1875 // Update queues: RLC tx order Status, ReTx, Tx
1876 // Update status queue
1877 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1878 {
1879 (*it).second.m_rlcStatusPduSize = 0;
1880 }
1881 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
1882 (size >= (*it).second.m_rlcRetransmissionQueueSize))
1883 {
1884 (*it).second.m_rlcRetransmissionQueueSize = 0;
1885 }
1886 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1887 {
1888 uint32_t rlcOverhead;
1889 if (lcid == 1)
1890 {
1891 // for SRB1 (using RLC AM) it's better to
1892 // overestimate RLC overhead rather than
1893 // underestimate it and risk unneeded
1894 // segmentation which increases delay
1895 rlcOverhead = 4;
1896 }
1897 else
1898 {
1899 // minimum RLC overhead due to header
1900 rlcOverhead = 2;
1901 }
1902 // update transmission queue
1903 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1904 {
1905 (*it).second.m_rlcTransmissionQueueSize = 0;
1906 }
1907 else
1908 {
1909 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1910 }
1911 }
1912 }
1913 else
1914 {
1915 NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
1916 }
1917}
1918
1919void
1921{
1922 size = size - 2; // remove the minimum RLC overhead
1923 auto it = m_ceBsrRxed.find(rnti);
1924 if (it != m_ceBsrRxed.end())
1925 {
1926 NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1927 if ((*it).second >= size)
1928 {
1929 (*it).second -= size;
1930 }
1931 else
1932 {
1933 (*it).second = 0;
1934 }
1935 }
1936 else
1937 {
1938 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
1939 }
1940}
1941
1942void
1944{
1945 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
1947 params.m_rnti = rnti;
1948 params.m_transmissionMode = txMode;
1950}
1951
1952} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigCnf(const CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
virtual void CschedUeConfigUpdateInd(const CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:140
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
Implements the SCHED SAP and CSCHED SAP for a Time Domain Blind Equal Throughput scheduler.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR function.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
void DoSchedUlNoiseInterferenceReq(const FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
void DoSchedDlPagingBufferReq(const FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
void DoCschedUeReleaseReq(const FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
std::map< uint16_t, tdbetsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
void DoCschedUeConfigReq(const FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
void DoCschedLcConfigReq(const FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
void RefreshDlCqiMaps()
Refresh DL CQI maps function.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ process ID.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
std::map< uint16_t, tdbetsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
std::vector< RachListElement_s > m_rachList
RACH list.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
void DoSchedUlMacCtrlInfoReq(const FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
void DoSchedUlSrInfoReq(const FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request.
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
void DoDispose() override
Destructor implementation.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
LteFfrSapUser * GetLteFfrSapUser() override
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
static TypeId GetTypeId()
Get the type ID.
void DoSchedUlTriggerReq(const FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
void DoSchedDlMacBufferReq(const FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
void DoSchedUlCqiInfoReq(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
friend class MemberSchedSapProvider< TdBetFfMacScheduler >
allow MemberSchedSapProvider<TdBetFfMacScheduler> class friend access
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
friend class MemberCschedSapProvider< TdBetFfMacScheduler >
allow MemberCschedSapProvider<TdBetFfMacScheduler> class friend access
void DoSchedDlRlcBufferReq(const FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
void DoSchedDlRachInfoReq(const FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
void RefreshUlCqiMaps()
Refresh UL CQI maps function.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
void DoSchedDlTriggerReq(const FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
void DoCschedLcReleaseReq(const FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
~TdBetFfMacScheduler() override
Destructor.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active flow function.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
void DoSchedDlCqiInfoReq(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
void DoCschedCellConfigReq(const FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:932
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:81
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
constexpr double NO_SINR
Value for SINR outside the range defined by FF-API, used to indicate that there is no CQI for this el...
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
static const int TdBetType0AllocationRbg[4]
TDBET type 0 allocation RBG.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Vector of the 8 HARQ processes per UE.
@ SUCCESS
Definition: ff-mac-common.h:62
constexpr uint32_t HARQ_DL_TIMEOUT
HARQ DL timeout.
constexpr uint32_t HARQ_PROC_NUM
Number of HARQ processes.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector.
See section 4.3.8 buildDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< BuildDataListElement_s > m_buildDataList
build data list
std::vector< BuildRarListElement_s > m_buildRarList
build rar list
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:43
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
tdbetsFlowPerf_t structure
double lastAveragedThroughput
last average throughput
Time flowStart
flow start time
unsigned long totalBytesTransmitted
total bytes transmitted
unsigned int lastTtiBytesTransmitted
last total bytes transmitted