A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
fdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Marco Miozzo <marco.miozzo@cttc.es>
18 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
19 */
20
22
23#include "lte-amc.h"
25
26#include <ns3/boolean.h>
27#include <ns3/log.h>
28#include <ns3/math.h>
29#include <ns3/pointer.h>
30#include <ns3/simulator.h>
31
32#include <cfloat>
33#include <set>
34
35namespace ns3
36{
37
38NS_LOG_COMPONENT_DEFINE("FdMtFfMacScheduler");
39
40/// FdMtType0AllocationRbg size array
41static const int FdMtType0AllocationRbg[4] = {
42 10, // RGB size 1
43 26, // RGB size 2
44 63, // RGB size 3
45 110, // RGB size 4
46}; // see table 7.1.6.1-1 of 36.213
47
48NS_OBJECT_ENSURE_REGISTERED(FdMtFfMacScheduler);
49
51 : m_cschedSapUser(nullptr),
52 m_schedSapUser(nullptr),
53 m_nextRntiUl(0)
54{
55 m_amc = CreateObject<LteAmc>();
58}
59
61{
62 NS_LOG_FUNCTION(this);
63}
64
65void
67{
68 NS_LOG_FUNCTION(this);
77 delete m_schedSapProvider;
78}
79
82{
83 static TypeId tid =
84 TypeId("ns3::FdMtFfMacScheduler")
86 .SetGroupName("Lte")
87 .AddConstructor<FdMtFfMacScheduler>()
88 .AddAttribute("CqiTimerThreshold",
89 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
90 UintegerValue(1000),
92 MakeUintegerChecker<uint32_t>())
93 .AddAttribute("HarqEnabled",
94 "Activate/Deactivate the HARQ [by default is active].",
95 BooleanValue(true),
98 .AddAttribute("UlGrantMcs",
99 "The MCS of the UL grant, must be [0..15] (default 0)",
100 UintegerValue(0),
102 MakeUintegerChecker<uint8_t>());
103 return tid;
104}
105
106void
108{
109 m_cschedSapUser = s;
110}
111
112void
114{
115 m_schedSapUser = s;
116}
117
120{
121 return m_cschedSapProvider;
122}
123
126{
127 return m_schedSapProvider;
128}
129
130void
132{
134}
135
138{
139 return m_ffrSapUser;
140}
141
142void
145{
146 NS_LOG_FUNCTION(this);
147 // Read the subset of parameters used
148 m_cschedCellConfig = params;
151 cnf.m_result = SUCCESS;
153}
154
155void
158{
159 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
160 << (uint16_t)params.m_transmissionMode);
161 auto it = m_uesTxMode.find(params.m_rnti);
162 if (it == m_uesTxMode.end())
163 {
164 m_uesTxMode[params.m_rnti] = params.m_transmissionMode;
165 // generate HARQ buffers
166 m_dlHarqCurrentProcessId[params.m_rnti] = 0;
167 DlHarqProcessesStatus_t dlHarqPrcStatus;
168 dlHarqPrcStatus.resize(8, 0);
169 m_dlHarqProcessesStatus[params.m_rnti] = dlHarqPrcStatus;
170 DlHarqProcessesTimer_t dlHarqProcessesTimer;
171 dlHarqProcessesTimer.resize(8, 0);
172 m_dlHarqProcessesTimer[params.m_rnti] = dlHarqProcessesTimer;
174 dlHarqdci.resize(8);
175 m_dlHarqProcessesDciBuffer[params.m_rnti] = dlHarqdci;
176 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
177 dlHarqRlcPdu.resize(2);
178 dlHarqRlcPdu.at(0).resize(8);
179 dlHarqRlcPdu.at(1).resize(8);
180 m_dlHarqProcessesRlcPduListBuffer[params.m_rnti] = dlHarqRlcPdu;
181 m_ulHarqCurrentProcessId[params.m_rnti] = 0;
182 UlHarqProcessesStatus_t ulHarqPrcStatus;
183 ulHarqPrcStatus.resize(8, 0);
184 m_ulHarqProcessesStatus[params.m_rnti] = ulHarqPrcStatus;
186 ulHarqdci.resize(8);
187 m_ulHarqProcessesDciBuffer[params.m_rnti] = ulHarqdci;
188 }
189 else
190 {
191 (*it).second = params.m_transmissionMode;
192 }
193}
194
195void
198{
199 NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
200
201 for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
202 {
203 auto it = m_flowStatsDl.find(params.m_rnti);
204
205 if (it == m_flowStatsDl.end())
206 {
207 m_flowStatsDl.insert(params.m_rnti);
208 m_flowStatsUl.insert(params.m_rnti);
209 }
210 }
211}
212
213void
216{
217 NS_LOG_FUNCTION(this);
218 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
219 {
220 auto it = m_rlcBufferReq.begin();
221 while (it != m_rlcBufferReq.end())
222 {
223 if (((*it).first.m_rnti == params.m_rnti) &&
224 ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
225 {
226 auto temp = it;
227 it++;
228 m_rlcBufferReq.erase(temp);
229 }
230 else
231 {
232 it++;
233 }
234 }
235 }
236}
237
238void
241{
242 NS_LOG_FUNCTION(this);
243
244 m_uesTxMode.erase(params.m_rnti);
245 m_dlHarqCurrentProcessId.erase(params.m_rnti);
246 m_dlHarqProcessesStatus.erase(params.m_rnti);
247 m_dlHarqProcessesTimer.erase(params.m_rnti);
248 m_dlHarqProcessesDciBuffer.erase(params.m_rnti);
249 m_dlHarqProcessesRlcPduListBuffer.erase(params.m_rnti);
250 m_ulHarqCurrentProcessId.erase(params.m_rnti);
251 m_ulHarqProcessesStatus.erase(params.m_rnti);
252 m_ulHarqProcessesDciBuffer.erase(params.m_rnti);
253 m_flowStatsDl.erase(params.m_rnti);
254 m_flowStatsUl.erase(params.m_rnti);
255 m_ceBsrRxed.erase(params.m_rnti);
256 auto it = m_rlcBufferReq.begin();
257 while (it != m_rlcBufferReq.end())
258 {
259 if ((*it).first.m_rnti == params.m_rnti)
260 {
261 auto temp = it;
262 it++;
263 m_rlcBufferReq.erase(temp);
264 }
265 else
266 {
267 it++;
268 }
269 }
270 if (m_nextRntiUl == params.m_rnti)
271 {
272 m_nextRntiUl = 0;
273 }
274}
275
276void
279{
280 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
281 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
282
283 LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
284
285 auto it = m_rlcBufferReq.find(flow);
286
287 if (it == m_rlcBufferReq.end())
288 {
289 m_rlcBufferReq[flow] = params;
290 }
291 else
292 {
293 (*it).second = params;
294 }
295}
296
297void
300{
301 NS_LOG_FUNCTION(this);
302 NS_FATAL_ERROR("method not implemented");
303}
304
305void
308{
309 NS_LOG_FUNCTION(this);
310 NS_FATAL_ERROR("method not implemented");
311}
312
313int
315{
316 for (int i = 0; i < 4; i++)
317 {
318 if (dlbandwidth < FdMtType0AllocationRbg[i])
319 {
320 return i + 1;
321 }
322 }
323
324 return -1;
325}
326
327unsigned int
329{
330 unsigned int lcActive = 0;
331 for (auto it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
332 {
333 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
334 ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
335 ((*it).second.m_rlcStatusPduSize > 0)))
336 {
337 lcActive++;
338 }
339 if ((*it).first.m_rnti > rnti)
340 {
341 break;
342 }
343 }
344 return lcActive;
345}
346
347bool
349{
350 NS_LOG_FUNCTION(this << rnti);
351
352 auto it = m_dlHarqCurrentProcessId.find(rnti);
353 if (it == m_dlHarqCurrentProcessId.end())
354 {
355 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
356 }
357 auto itStat = m_dlHarqProcessesStatus.find(rnti);
358 if (itStat == m_dlHarqProcessesStatus.end())
359 {
360 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
361 }
362 uint8_t i = (*it).second;
363 do
364 {
365 i = (i + 1) % HARQ_PROC_NUM;
366 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
367
368 return (*itStat).second.at(i) == 0;
369}
370
371uint8_t
373{
374 NS_LOG_FUNCTION(this << rnti);
375
376 if (!m_harqOn)
377 {
378 return 0;
379 }
380
381 auto it = m_dlHarqCurrentProcessId.find(rnti);
382 if (it == m_dlHarqCurrentProcessId.end())
383 {
384 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
385 }
386 auto itStat = m_dlHarqProcessesStatus.find(rnti);
387 if (itStat == m_dlHarqProcessesStatus.end())
388 {
389 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
390 }
391 uint8_t i = (*it).second;
392 do
393 {
394 i = (i + 1) % HARQ_PROC_NUM;
395 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
396 if ((*itStat).second.at(i) == 0)
397 {
398 (*it).second = i;
399 (*itStat).second.at(i) = 1;
400 }
401 else
402 {
403 NS_FATAL_ERROR("No HARQ process available for RNTI "
404 << rnti << " check before update with HarqProcessAvailability");
405 }
406
407 return (*it).second;
408}
409
410void
412{
413 NS_LOG_FUNCTION(this);
414
415 for (auto itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
416 itTimers++)
417 {
418 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
419 {
420 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
421 {
422 // reset HARQ process
423
424 NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
425 auto itStat = m_dlHarqProcessesStatus.find((*itTimers).first);
426 if (itStat == m_dlHarqProcessesStatus.end())
427 {
428 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
429 << (*itTimers).first);
430 }
431 (*itStat).second.at(i) = 0;
432 (*itTimers).second.at(i) = 0;
433 }
434 else
435 {
436 (*itTimers).second.at(i)++;
437 }
438 }
439 }
440}
441
442void
445{
446 NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
447 << (0xF & params.m_sfnSf));
448 // API generated by RLC for triggering the scheduling of a DL subframe
449
450 // evaluate the relative channel quality indicator for each UE per each RBG
451 // (since we are using allocation type 0 the small unit of allocation is RBG)
452 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
453
455
457 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
458 std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
459 std::vector<bool> rbgMap; // global RBGs map
460 uint16_t rbgAllocatedNum = 0;
461 std::set<uint16_t> rntiAllocated;
462 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
464
465 // update UL HARQ proc id
466 for (auto itProcId = m_ulHarqCurrentProcessId.begin();
467 itProcId != m_ulHarqCurrentProcessId.end();
468 itProcId++)
469 {
470 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
471 }
472
473 // RACH Allocation
475 uint16_t rbStart = 0;
476 for (auto itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
477 {
479 (*itRach).m_estimatedSize,
480 " Default UL Grant MCS does not allow to send RACH messages");
482 newRar.m_rnti = (*itRach).m_rnti;
483 // DL-RACH Allocation
484 // Ideal: no needs of configuring m_dci
485 // UL-RACH Allocation
486 newRar.m_grant.m_rnti = newRar.m_rnti;
487 newRar.m_grant.m_mcs = m_ulGrantMcs;
488 uint16_t rbLen = 1;
489 uint16_t tbSizeBits = 0;
490 // find lowest TB size that fits UL grant estimated size
491 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
492 (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
493 {
494 rbLen++;
495 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
496 }
497 if (tbSizeBits < (*itRach).m_estimatedSize)
498 {
499 // no more allocation space: finish allocation
500 break;
501 }
502 newRar.m_grant.m_rbStart = rbStart;
503 newRar.m_grant.m_rbLen = rbLen;
504 newRar.m_grant.m_tbSize = tbSizeBits / 8;
505 newRar.m_grant.m_hopping = false;
506 newRar.m_grant.m_tpc = 0;
507 newRar.m_grant.m_cqiRequest = false;
508 newRar.m_grant.m_ulDelay = false;
509 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
510 << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize "
511 << newRar.m_grant.m_tbSize);
512 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
513 {
514 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
515 }
516
517 if (m_harqOn)
518 {
519 // generate UL-DCI for HARQ retransmissions
520 UlDciListElement_s uldci;
521 uldci.m_rnti = newRar.m_rnti;
522 uldci.m_rbLen = rbLen;
523 uldci.m_rbStart = rbStart;
524 uldci.m_mcs = m_ulGrantMcs;
525 uldci.m_tbSize = tbSizeBits / 8;
526 uldci.m_ndi = 1;
527 uldci.m_cceIndex = 0;
528 uldci.m_aggrLevel = 1;
529 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
530 uldci.m_hopping = false;
531 uldci.m_n2Dmrs = 0;
532 uldci.m_tpc = 0; // no power control
533 uldci.m_cqiRequest = false; // only period CQI at this stage
534 uldci.m_ulIndex = 0; // TDD parameter
535 uldci.m_dai = 1; // TDD parameter
536 uldci.m_freqHopping = 0;
537 uldci.m_pdcchPowerOffset = 0; // not used
538
539 uint8_t harqId = 0;
540 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
541 if (itProcId == m_ulHarqCurrentProcessId.end())
542 {
543 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
544 }
545 harqId = (*itProcId).second;
546 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
547 if (itDci == m_ulHarqProcessesDciBuffer.end())
548 {
549 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
550 << uldci.m_rnti);
551 }
552 (*itDci).second.at(harqId) = uldci;
553 }
554
555 rbStart = rbStart + rbLen;
556 ret.m_buildRarList.push_back(newRar);
557 }
558 m_rachList.clear();
559
560 // Process DL HARQ feedback
562 // retrieve past HARQ retx buffered
563 if (!m_dlInfoListBuffered.empty())
564 {
565 if (!params.m_dlInfoList.empty())
566 {
567 NS_LOG_INFO(this << " Received DL-HARQ feedback");
569 params.m_dlInfoList.begin(),
570 params.m_dlInfoList.end());
571 }
572 }
573 else
574 {
575 if (!params.m_dlInfoList.empty())
576 {
577 m_dlInfoListBuffered = params.m_dlInfoList;
578 }
579 }
580 if (!m_harqOn)
581 {
582 // Ignore HARQ feedback
583 m_dlInfoListBuffered.clear();
584 }
585 std::vector<DlInfoListElement_s> dlInfoListUntxed;
586 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
587 {
588 auto itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
589 if (itRnti != rntiAllocated.end())
590 {
591 // RNTI already allocated for retx
592 continue;
593 }
594 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
595 std::vector<bool> retx;
596 NS_LOG_INFO(this << " Processing DLHARQ feedback");
597 if (nLayers == 1)
598 {
599 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
601 retx.push_back(false);
602 }
603 else
604 {
605 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
607 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
609 }
610 if (retx.at(0) || retx.at(1))
611 {
612 // retrieve HARQ process information
613 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
614 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
615 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
616 auto itHarq = m_dlHarqProcessesDciBuffer.find(rnti);
617 if (itHarq == m_dlHarqProcessesDciBuffer.end())
618 {
619 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
620 }
621
622 DlDciListElement_s dci = (*itHarq).second.at(harqId);
623 int rv = 0;
624 if (dci.m_rv.size() == 1)
625 {
626 rv = dci.m_rv.at(0);
627 }
628 else
629 {
630 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
631 }
632
633 if (rv == 3)
634 {
635 // maximum number of retx reached -> drop process
636 NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
637 auto it = m_dlHarqProcessesStatus.find(rnti);
638 if (it == m_dlHarqProcessesStatus.end())
639 {
640 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
641 << m_dlInfoListBuffered.at(i).m_rnti);
642 }
643 (*it).second.at(harqId) = 0;
644 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
645 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
646 {
647 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
648 << m_dlInfoListBuffered.at(i).m_rnti);
649 }
650 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
651 {
652 (*itRlcPdu).second.at(k).at(harqId).clear();
653 }
654 continue;
655 }
656 // check the feasibility of retransmitting on the same RBGs
657 // translate the DCI to Spectrum framework
658 std::vector<int> dciRbg;
659 uint32_t mask = 0x1;
660 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
661 for (int j = 0; j < 32; j++)
662 {
663 if (((dci.m_rbBitmap & mask) >> j) == 1)
664 {
665 dciRbg.push_back(j);
666 NS_LOG_INFO("\t" << j);
667 }
668 mask = (mask << 1);
669 }
670 bool free = true;
671 for (std::size_t j = 0; j < dciRbg.size(); j++)
672 {
673 if (rbgMap.at(dciRbg.at(j)))
674 {
675 free = false;
676 break;
677 }
678 }
679 if (free)
680 {
681 // use the same RBGs for the retx
682 // reserve RBGs
683 for (std::size_t j = 0; j < dciRbg.size(); j++)
684 {
685 rbgMap.at(dciRbg.at(j)) = true;
686 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
687 rbgAllocatedNum++;
688 }
689
690 NS_LOG_INFO(this << " Send retx in the same RBGs");
691 }
692 else
693 {
694 // find RBGs for sending HARQ retx
695 uint8_t j = 0;
696 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
697 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
698 std::vector<bool> rbgMapCopy = rbgMap;
699 while ((j < dciRbg.size()) && (startRbg != rbgId))
700 {
701 if (!rbgMapCopy.at(rbgId))
702 {
703 rbgMapCopy.at(rbgId) = true;
704 dciRbg.at(j) = rbgId;
705 j++;
706 }
707 rbgId = (rbgId + 1) % rbgNum;
708 }
709 if (j == dciRbg.size())
710 {
711 // find new RBGs -> update DCI map
712 uint32_t rbgMask = 0;
713 for (std::size_t k = 0; k < dciRbg.size(); k++)
714 {
715 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
716 rbgAllocatedNum++;
717 }
718 dci.m_rbBitmap = rbgMask;
719 rbgMap = rbgMapCopy;
720 NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
721 }
722 else
723 {
724 // HARQ retx cannot be performed on this TTI -> store it
725 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
726 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
727 }
728 }
729 // retrieve RLC PDU list for retx TBsize and update DCI
731 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
732 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
733 {
734 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
735 }
736 for (std::size_t j = 0; j < nLayers; j++)
737 {
738 if (retx.at(j))
739 {
740 if (j >= dci.m_ndi.size())
741 {
742 // for avoiding errors in MIMO transient phases
743 dci.m_ndi.push_back(0);
744 dci.m_rv.push_back(0);
745 dci.m_mcs.push_back(0);
746 dci.m_tbsSize.push_back(0);
747 NS_LOG_INFO(this << " layer " << (uint16_t)j
748 << " no txed (MIMO transition)");
749 }
750 else
751 {
752 dci.m_ndi.at(j) = 0;
753 dci.m_rv.at(j)++;
754 (*itHarq).second.at(harqId).m_rv.at(j)++;
755 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
756 << (uint16_t)dci.m_rv.at(j));
757 }
758 }
759 else
760 {
761 // empty TB of layer j
762 dci.m_ndi.at(j) = 0;
763 dci.m_rv.at(j) = 0;
764 dci.m_mcs.at(j) = 0;
765 dci.m_tbsSize.at(j) = 0;
766 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
767 }
768 }
769 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
770 {
771 std::vector<RlcPduListElement_s> rlcPduListPerLc;
772 for (std::size_t j = 0; j < nLayers; j++)
773 {
774 if (retx.at(j))
775 {
776 if (j < dci.m_ndi.size())
777 {
778 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
779 << dci.m_tbsSize.at(j));
780 rlcPduListPerLc.push_back(
781 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
782 }
783 }
784 else
785 { // if no retx needed on layer j, push an RlcPduListElement_s object with
786 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
787 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
788 RlcPduListElement_s emptyElement;
789 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
790 .second.at(j)
791 .at(dci.m_harqProcess)
792 .at(k)
793 .m_logicalChannelIdentity;
794 emptyElement.m_size = 0;
795 rlcPduListPerLc.push_back(emptyElement);
796 }
797 }
798
799 if (!rlcPduListPerLc.empty())
800 {
801 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
802 }
803 }
804 newEl.m_rnti = rnti;
805 newEl.m_dci = dci;
806 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
807 // refresh timer
808 auto itHarqTimer = m_dlHarqProcessesTimer.find(rnti);
809 if (itHarqTimer == m_dlHarqProcessesTimer.end())
810 {
811 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
812 }
813 (*itHarqTimer).second.at(harqId) = 0;
814 ret.m_buildDataList.push_back(newEl);
815 rntiAllocated.insert(rnti);
816 }
817 else
818 {
819 // update HARQ process status
820 NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
821 auto it = m_dlHarqProcessesStatus.find(m_dlInfoListBuffered.at(i).m_rnti);
822 if (it == m_dlHarqProcessesStatus.end())
823 {
824 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
825 << m_dlInfoListBuffered.at(i).m_rnti);
826 }
827 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
828 auto itRlcPdu =
830 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
831 {
832 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
833 << m_dlInfoListBuffered.at(i).m_rnti);
834 }
835 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
836 {
837 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
838 }
839 }
840 }
841 m_dlInfoListBuffered.clear();
842 m_dlInfoListBuffered = dlInfoListUntxed;
843
844 if (rbgAllocatedNum == rbgNum)
845 {
846 // all the RBGs are already allocated -> exit
847 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
848 {
850 }
851 return;
852 }
853
854 for (int i = 0; i < rbgNum; i++)
855 {
856 NS_LOG_INFO(this << " ALLOCATION for RBG " << i << " of " << rbgNum);
857 if (!rbgMap.at(i))
858 {
859 auto itMax = m_flowStatsDl.end();
860 double rcqiMax = 0.0;
861 for (auto it = m_flowStatsDl.begin(); it != m_flowStatsDl.end(); it++)
862 {
863 auto itRnti = rntiAllocated.find(*it);
864 if (itRnti != rntiAllocated.end() || !HarqProcessAvailability(*it))
865 {
866 // UE already allocated for HARQ or without HARQ process available -> drop it
867 if (itRnti != rntiAllocated.end())
868 {
869 NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx" << (uint16_t)(*it));
870 }
871 if (!HarqProcessAvailability(*it))
872 {
873 NS_LOG_DEBUG(this << " RNTI discarded for HARQ id" << (uint16_t)(*it));
874 }
875 continue;
876 }
877
878 auto itCqi = m_a30CqiRxed.find(*it);
879 auto itTxMode = m_uesTxMode.find(*it);
880 if (itTxMode == m_uesTxMode.end())
881 {
882 NS_FATAL_ERROR("No Transmission Mode info on user " << (*it));
883 }
884 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
885 std::vector<uint8_t> sbCqi;
886 if (itCqi == m_a30CqiRxed.end())
887 {
888 sbCqi = std::vector<uint8_t>(nLayer, 1); // start with lowest value
889 }
890 else
891 {
892 sbCqi = (*itCqi).second.m_higherLayerSelected.at(i).m_sbCqi;
893 }
894 uint8_t cqi1 = sbCqi.at(0);
895 uint8_t cqi2 = 0;
896 if (sbCqi.size() > 1)
897 {
898 cqi2 = sbCqi.at(1);
899 }
900 if ((cqi1 > 0) ||
901 (cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
902 {
903 if (LcActivePerFlow(*it) > 0)
904 {
905 // this UE has data to transmit
906 double achievableRate = 0.0;
907 uint8_t mcs = 0;
908 for (uint8_t k = 0; k < nLayer; k++)
909 {
910 if (sbCqi.size() > k)
911 {
912 mcs = m_amc->GetMcsFromCqi(sbCqi.at(k));
913 }
914 else
915 {
916 // no info on this subband -> worst MCS
917 mcs = 0;
918 }
919 achievableRate += ((m_amc->GetDlTbSizeFromMcs(mcs, rbgSize) / 8) /
920 0.001); // = TB size / TTI
921 }
922
923 double rcqi = achievableRate;
924 NS_LOG_INFO(this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs
925 << " achievableRate " << achievableRate << " RCQI "
926 << rcqi);
927
928 if (rcqi > rcqiMax)
929 {
930 rcqiMax = rcqi;
931 itMax = it;
932 }
933 }
934 } // end if cqi
935
936 } // end for m_rlcBufferReq
937
938 if (itMax == m_flowStatsDl.end())
939 {
940 // no UE available for this RB
941 NS_LOG_INFO(this << " any UE found");
942 }
943 else
944 {
945 rbgMap.at(i) = true;
946 auto itMap = allocationMap.find(*itMax);
947 if (itMap == allocationMap.end())
948 {
949 // insert new element
950 std::vector<uint16_t> tempMap;
951 tempMap.push_back(i);
952 allocationMap[*itMax] = tempMap;
953 }
954 else
955 {
956 (*itMap).second.push_back(i);
957 }
958 NS_LOG_INFO(this << " UE assigned " << (*itMax));
959 }
960 } // end for RBG free
961 } // end for RBGs
962
963 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
964 // creating the correspondent DCIs
965 auto itMap = allocationMap.begin();
966 while (itMap != allocationMap.end())
967 {
968 // create new BuildDataListElement_s for this LC
970 newEl.m_rnti = (*itMap).first;
971 // create the DlDciListElement_s
972 DlDciListElement_s newDci;
973 newDci.m_rnti = (*itMap).first;
974 newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
975
976 uint16_t lcActives = LcActivePerFlow((*itMap).first);
977 NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
978 if (lcActives == 0)
979 {
980 // Set to max value, to avoid divide by 0 below
981 lcActives = (uint16_t)65535; // UINT16_MAX;
982 }
983 uint16_t RgbPerRnti = (*itMap).second.size();
984 auto itCqi = m_a30CqiRxed.find((*itMap).first);
985 auto itTxMode = m_uesTxMode.find((*itMap).first);
986 if (itTxMode == m_uesTxMode.end())
987 {
988 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
989 }
990 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
991 std::vector<uint8_t> worstCqi(2, 15);
992 if (itCqi != m_a30CqiRxed.end())
993 {
994 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
995 {
996 if ((*itCqi).second.m_higherLayerSelected.size() > (*itMap).second.at(k))
997 {
998 NS_LOG_INFO(this << " RBG " << (*itMap).second.at(k) << " CQI "
999 << (uint16_t)((*itCqi)
1000 .second.m_higherLayerSelected
1001 .at((*itMap).second.at(k))
1002 .m_sbCqi.at(0)));
1003 for (uint8_t j = 0; j < nLayer; j++)
1004 {
1005 if ((*itCqi)
1006 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1007 .m_sbCqi.size() > j)
1008 {
1009 if (((*itCqi)
1010 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1011 .m_sbCqi.at(j)) < worstCqi.at(j))
1012 {
1013 worstCqi.at(j) =
1014 ((*itCqi)
1015 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1016 .m_sbCqi.at(j));
1017 }
1018 }
1019 else
1020 {
1021 // no CQI for this layer of this suband -> worst one
1022 worstCqi.at(j) = 1;
1023 }
1024 }
1025 }
1026 else
1027 {
1028 for (uint8_t j = 0; j < nLayer; j++)
1029 {
1030 worstCqi.at(j) = 1; // try with lowest MCS in RBG with no info on channel
1031 }
1032 }
1033 }
1034 }
1035 else
1036 {
1037 for (uint8_t j = 0; j < nLayer; j++)
1038 {
1039 worstCqi.at(j) = 1; // try with lowest MCS in RBG with no info on channel
1040 }
1041 }
1042 for (uint8_t j = 0; j < nLayer; j++)
1043 {
1044 NS_LOG_INFO(this << " Layer " << (uint16_t)j << " CQI selected "
1045 << (uint16_t)worstCqi.at(j));
1046 }
1047 for (uint8_t j = 0; j < nLayer; j++)
1048 {
1049 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi(worstCqi.at(j)));
1050 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RgbPerRnti * rbgSize) /
1051 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1052 newDci.m_tbsSize.push_back(tbSize);
1053 NS_LOG_INFO(this << " Layer " << (uint16_t)j << " MCS selected"
1054 << m_amc->GetMcsFromCqi(worstCqi.at(j)));
1055 }
1056
1057 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1058 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1059 uint32_t rbgMask = 0;
1060 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1061 {
1062 rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
1063 NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
1064 }
1065 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1066
1067 // create the rlc PDUs -> equally divide resources among actives LCs
1068 for (auto itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1069 {
1070 if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1071 (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1072 ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1073 ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1074 {
1075 std::vector<RlcPduListElement_s> newRlcPduLe;
1076 for (uint8_t j = 0; j < nLayer; j++)
1077 {
1078 RlcPduListElement_s newRlcEl;
1079 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1080 newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1081 NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1082 << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1083 newRlcPduLe.push_back(newRlcEl);
1085 newRlcEl.m_logicalChannelIdentity,
1086 newRlcEl.m_size);
1087 if (m_harqOn)
1088 {
1089 // store RLC PDU list for HARQ
1090 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1091 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1092 {
1093 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1094 << (*itMap).first);
1095 }
1096 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1097 }
1098 }
1099 newEl.m_rlcPduList.push_back(newRlcPduLe);
1100 }
1101 if ((*itBufReq).first.m_rnti > (*itMap).first)
1102 {
1103 break;
1104 }
1105 }
1106 for (uint8_t j = 0; j < nLayer; j++)
1107 {
1108 newDci.m_ndi.push_back(1);
1109 newDci.m_rv.push_back(0);
1110 }
1111
1112 newDci.m_tpc = 1; // 1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1113
1114 newEl.m_dci = newDci;
1115
1116 if (m_harqOn)
1117 {
1118 // store DCI for HARQ
1119 auto itDci = m_dlHarqProcessesDciBuffer.find(newEl.m_rnti);
1120 if (itDci == m_dlHarqProcessesDciBuffer.end())
1121 {
1122 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1123 << newEl.m_rnti);
1124 }
1125 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1126 // refresh timer
1127 auto itHarqTimer = m_dlHarqProcessesTimer.find(newEl.m_rnti);
1128 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1129 {
1130 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1131 }
1132 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1133 }
1134
1135 // ...more parameters -> ignored in this version
1136
1137 ret.m_buildDataList.push_back(newEl);
1138
1139 itMap++;
1140 } // end while allocation
1141 ret.m_nrOfPdcchOfdmSymbols = 1; /// \todo check correct value according the DCIs txed
1142
1144}
1145
1146void
1149{
1150 NS_LOG_FUNCTION(this);
1151
1152 m_rachList = params.m_rachList;
1153}
1154
1155void
1158{
1159 NS_LOG_FUNCTION(this);
1160
1161 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1162 {
1163 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1164 {
1165 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1166 << " reported");
1167 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1168 auto it = m_p10CqiRxed.find(rnti);
1169 if (it == m_p10CqiRxed.end())
1170 {
1171 // create the new entry
1172 m_p10CqiRxed[rnti] =
1173 params.m_cqiList.at(i).m_wbCqi.at(0); // only codeword 0 at this stage (SISO)
1174 // generate correspondent timer
1176 }
1177 else
1178 {
1179 // update the CQI value and refresh correspondent timer
1180 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1181 // update correspondent timer
1182 auto itTimers = m_p10CqiTimers.find(rnti);
1183 (*itTimers).second = m_cqiTimersThreshold;
1184 }
1185 }
1186 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1187 {
1188 // subband CQI reporting high layer configured
1189 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1190 auto it = m_a30CqiRxed.find(rnti);
1191 if (it == m_a30CqiRxed.end())
1192 {
1193 // create the new entry
1194 m_a30CqiRxed[rnti] = params.m_cqiList.at(i).m_sbMeasResult;
1196 }
1197 else
1198 {
1199 // update the CQI value and refresh correspondent timer
1200 (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1201 auto itTimers = m_a30CqiTimers.find(rnti);
1202 (*itTimers).second = m_cqiTimersThreshold;
1203 }
1204 }
1205 else
1206 {
1207 NS_LOG_ERROR(this << " CQI type unknown");
1208 }
1209 }
1210}
1211
1212double
1213FdMtFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1214{
1215 auto itCqi = m_ueCqi.find(rnti);
1216 if (itCqi == m_ueCqi.end())
1217 {
1218 // no cqi info about this UE
1219 return NO_SINR;
1220 }
1221 else
1222 {
1223 // take the average SINR value among the available
1224 double sinrSum = 0;
1225 unsigned int sinrNum = 0;
1226 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1227 {
1228 double sinr = (*itCqi).second.at(i);
1229 if (sinr != NO_SINR)
1230 {
1231 sinrSum += sinr;
1232 sinrNum++;
1233 }
1234 }
1235 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1236 // store the value
1237 (*itCqi).second.at(rb) = estimatedSinr;
1238 return estimatedSinr;
1239 }
1240}
1241
1242void
1245{
1246 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1247 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1248
1250
1251 // Generate RBs map
1253 std::vector<bool> rbMap;
1254 std::set<uint16_t> rntiAllocated;
1255 std::vector<uint16_t> rbgAllocationMap;
1256 // update with RACH allocation map
1257 rbgAllocationMap = m_rachAllocationMap;
1258 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1259 m_rachAllocationMap.clear();
1261
1262 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1263 // remove RACH allocation
1264 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1265 {
1266 if (rbgAllocationMap.at(i) != 0)
1267 {
1268 rbMap.at(i) = true;
1269 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1270 }
1271 }
1272
1273 if (m_harqOn)
1274 {
1275 // Process UL HARQ feedback
1276 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1277 {
1278 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1279 {
1280 // retx correspondent block: retrieve the UL-DCI
1281 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1282 auto itProcId = m_ulHarqCurrentProcessId.find(rnti);
1283 if (itProcId == m_ulHarqCurrentProcessId.end())
1284 {
1285 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1286 }
1287 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1288 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1289 << " i " << i << " size " << params.m_ulInfoList.size());
1290 auto itHarq = m_ulHarqProcessesDciBuffer.find(rnti);
1291 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1292 {
1293 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1294 continue;
1295 }
1296 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1297 auto itStat = m_ulHarqProcessesStatus.find(rnti);
1298 if (itStat == m_ulHarqProcessesStatus.end())
1299 {
1300 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1301 }
1302 if ((*itStat).second.at(harqId) >= 3)
1303 {
1304 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1305 continue;
1306 }
1307 bool free = true;
1308 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1309 {
1310 if (rbMap.at(j))
1311 {
1312 free = false;
1313 NS_LOG_INFO(this << " BUSY " << j);
1314 }
1315 }
1316 if (free)
1317 {
1318 // retx on the same RBs
1319 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1320 {
1321 rbMap.at(j) = true;
1322 rbgAllocationMap.at(j) = dci.m_rnti;
1323 NS_LOG_INFO("\tRB " << j);
1324 }
1325 NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1326 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1327 << (*itStat).second.at(harqId) + 1);
1328 }
1329 else
1330 {
1331 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1332 continue;
1333 }
1334 dci.m_ndi = 0;
1335 // Update HARQ buffers with new HarqId
1336 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1337 (*itStat).second.at(harqId) = 0;
1338 (*itHarq).second.at((*itProcId).second) = dci;
1339 ret.m_dciList.push_back(dci);
1340 rntiAllocated.insert(dci.m_rnti);
1341 }
1342 else
1343 {
1344 NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1345 << params.m_ulInfoList.at(i).m_rnti);
1346 }
1347 }
1348 }
1349
1350 std::map<uint16_t, uint32_t>::iterator it;
1351 int nflows = 0;
1352
1353 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1354 {
1355 auto itRnti = rntiAllocated.find((*it).first);
1356 // select UEs with queues not empty and not yet allocated for HARQ
1357 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1358 {
1359 nflows++;
1360 }
1361 }
1362
1363 if (nflows == 0)
1364 {
1365 if (!ret.m_dciList.empty())
1366 {
1367 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1369 }
1370
1371 return; // no flows to be scheduled
1372 }
1373
1374 // Divide the remaining resources equally among the active users starting from the subsequent
1375 // one served last scheduling trigger
1376 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size());
1377 if (rbPerFlow < 3)
1378 {
1379 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1380 // >= 7 bytes
1381 }
1382 int rbAllocated = 0;
1383
1384 if (m_nextRntiUl != 0)
1385 {
1386 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1387 {
1388 if ((*it).first == m_nextRntiUl)
1389 {
1390 break;
1391 }
1392 }
1393 if (it == m_ceBsrRxed.end())
1394 {
1395 NS_LOG_ERROR(this << " no user found");
1396 }
1397 }
1398 else
1399 {
1400 it = m_ceBsrRxed.begin();
1401 m_nextRntiUl = (*it).first;
1402 }
1403 do
1404 {
1405 auto itRnti = rntiAllocated.find((*it).first);
1406 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1407 {
1408 // UE already allocated for UL-HARQ -> skip it
1409 NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1410 << (*it).first);
1411 it++;
1412 if (it == m_ceBsrRxed.end())
1413 {
1414 // restart from the first
1415 it = m_ceBsrRxed.begin();
1416 }
1417 continue;
1418 }
1419 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1420 {
1421 // limit to physical resources last resource assignment
1422 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1423 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1424 if (rbPerFlow < 3)
1425 {
1426 // terminate allocation
1427 rbPerFlow = 0;
1428 }
1429 }
1430
1431 UlDciListElement_s uldci;
1432 uldci.m_rnti = (*it).first;
1433 uldci.m_rbLen = rbPerFlow;
1434 bool allocated = false;
1435 NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1436 << " flows " << nflows);
1437 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1438 (rbPerFlow != 0))
1439 {
1440 // check availability
1441 bool free = true;
1442 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1443 {
1444 if (rbMap.at(j))
1445 {
1446 free = false;
1447 break;
1448 }
1449 }
1450 if (free)
1451 {
1452 uldci.m_rbStart = rbAllocated;
1453
1454 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1455 {
1456 rbMap.at(j) = true;
1457 // store info on allocation for managing ul-cqi interpretation
1458 rbgAllocationMap.at(j) = (*it).first;
1459 }
1460 rbAllocated += rbPerFlow;
1461 allocated = true;
1462 break;
1463 }
1464 rbAllocated++;
1465 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1466 {
1467 // limit to physical resources last resource assignment
1468 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1469 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1470 if (rbPerFlow < 3)
1471 {
1472 // terminate allocation
1473 rbPerFlow = 0;
1474 }
1475 }
1476 }
1477 if (!allocated)
1478 {
1479 // unable to allocate new resource: finish scheduling
1480 m_nextRntiUl = (*it).first;
1481 if (!ret.m_dciList.empty())
1482 {
1484 }
1485 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1486 return;
1487 }
1488
1489 auto itCqi = m_ueCqi.find((*it).first);
1490 int cqi = 0;
1491 if (itCqi == m_ueCqi.end())
1492 {
1493 // no cqi info about this UE
1494 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1495 }
1496 else
1497 {
1498 // take the lowest CQI value (worst RB)
1499 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1500 "CQI of RNTI = " << (*it).first << " has expired");
1501 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1502 if (minSinr == NO_SINR)
1503 {
1504 minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1505 }
1506 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1507 {
1508 double sinr = (*itCqi).second.at(i);
1509 if (sinr == NO_SINR)
1510 {
1511 sinr = EstimateUlSinr((*it).first, i);
1512 }
1513 if (sinr < minSinr)
1514 {
1515 minSinr = sinr;
1516 }
1517 }
1518
1519 // translate SINR -> cqi: WILD ACK: same as DL
1520 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1521 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1522 if (cqi == 0)
1523 {
1524 it++;
1525 if (it == m_ceBsrRxed.end())
1526 {
1527 // restart from the first
1528 it = m_ceBsrRxed.begin();
1529 }
1530 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1531 // remove UE from allocation map
1532 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1533 {
1534 rbgAllocationMap.at(i) = 0;
1535 }
1536 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1537 }
1538 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1539 }
1540
1541 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1543 uldci.m_ndi = 1;
1544 uldci.m_cceIndex = 0;
1545 uldci.m_aggrLevel = 1;
1546 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1547 uldci.m_hopping = false;
1548 uldci.m_n2Dmrs = 0;
1549 uldci.m_tpc = 0; // no power control
1550 uldci.m_cqiRequest = false; // only period CQI at this stage
1551 uldci.m_ulIndex = 0; // TDD parameter
1552 uldci.m_dai = 1; // TDD parameter
1553 uldci.m_freqHopping = 0;
1554 uldci.m_pdcchPowerOffset = 0; // not used
1555 ret.m_dciList.push_back(uldci);
1556 // store DCI for HARQ_PERIOD
1557 uint8_t harqId = 0;
1558 if (m_harqOn)
1559 {
1560 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1561 if (itProcId == m_ulHarqCurrentProcessId.end())
1562 {
1563 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1564 }
1565 harqId = (*itProcId).second;
1566 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
1567 if (itDci == m_ulHarqProcessesDciBuffer.end())
1568 {
1569 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1570 << uldci.m_rnti);
1571 }
1572 (*itDci).second.at(harqId) = uldci;
1573 // Update HARQ process status (RV 0)
1574 auto itStat = m_ulHarqProcessesStatus.find(uldci.m_rnti);
1575 if (itStat == m_ulHarqProcessesStatus.end())
1576 {
1577 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1578 << uldci.m_rnti);
1579 }
1580 (*itStat).second.at(harqId) = 0;
1581 }
1582
1583 NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
1584 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1585 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1586 << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
1587 << (uint16_t)harqId);
1588
1589 it++;
1590 if (it == m_ceBsrRxed.end())
1591 {
1592 // restart from the first
1593 it = m_ceBsrRxed.begin();
1594 }
1595 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1596 {
1597 // Stop allocation: no more PRBs
1598 m_nextRntiUl = (*it).first;
1599 break;
1600 }
1601 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1602
1603 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1605}
1606
1607void
1610{
1611 NS_LOG_FUNCTION(this);
1612}
1613
1614void
1617{
1618 NS_LOG_FUNCTION(this);
1619}
1620
1621void
1624{
1625 NS_LOG_FUNCTION(this);
1626
1627 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1628 {
1629 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1630 {
1631 // buffer status report
1632 // note that this scheduler does not differentiate the
1633 // allocation according to which LCGs have more/less bytes
1634 // to send.
1635 // Hence the BSR of different LCGs are just summed up to get
1636 // a total queue size that is used for allocation purposes.
1637
1638 uint32_t buffer = 0;
1639 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1640 {
1641 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1642 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1643 }
1644
1645 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1646 NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
1647 auto it = m_ceBsrRxed.find(rnti);
1648 if (it == m_ceBsrRxed.end())
1649 {
1650 // create the new entry
1651 m_ceBsrRxed[rnti] = buffer;
1652 }
1653 else
1654 {
1655 // update the buffer size value
1656 (*it).second = buffer;
1657 }
1658 }
1659 }
1660}
1661
1662void
1665{
1666 NS_LOG_FUNCTION(this);
1667 // retrieve the allocation for this subframe
1668 switch (m_ulCqiFilter)
1669 {
1671 // filter all the CQIs that are not SRS based
1672 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1673 {
1674 return;
1675 }
1676 }
1677 break;
1679 // filter all the CQIs that are not SRS based
1680 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1681 {
1682 return;
1683 }
1684 }
1685 break;
1686 default:
1687 NS_FATAL_ERROR("Unknown UL CQI type");
1688 }
1689
1690 switch (params.m_ulCqi.m_type)
1691 {
1692 case UlCqi_s::PUSCH: {
1693 NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
1694 << " subframe no. " << (0xF & params.m_sfnSf));
1695 auto itMap = m_allocationMaps.find(params.m_sfnSf);
1696 if (itMap == m_allocationMaps.end())
1697 {
1698 return;
1699 }
1700 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1701 {
1702 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1703 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1704 auto itCqi = m_ueCqi.find((*itMap).second.at(i));
1705 if (itCqi == m_ueCqi.end())
1706 {
1707 // create a new entry
1708 std::vector<double> newCqi;
1709 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1710 {
1711 if (i == j)
1712 {
1713 newCqi.push_back(sinr);
1714 }
1715 else
1716 {
1717 // initialize with NO_SINR value.
1718 newCqi.push_back(NO_SINR);
1719 }
1720 }
1721 m_ueCqi[(*itMap).second.at(i)] = newCqi;
1722 // generate correspondent timer
1723 m_ueCqiTimers[(*itMap).second.at(i)] = m_cqiTimersThreshold;
1724 }
1725 else
1726 {
1727 // update the value
1728 (*itCqi).second.at(i) = sinr;
1729 NS_LOG_DEBUG(this << " RNTI " << (*itMap).second.at(i) << " RB " << i << " SINR "
1730 << sinr);
1731 // update correspondent timer
1732 auto itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1733 (*itTimers).second = m_cqiTimersThreshold;
1734 }
1735 }
1736 // remove obsolete info on allocation
1737 m_allocationMaps.erase(itMap);
1738 }
1739 break;
1740 case UlCqi_s::SRS: {
1741 // get the RNTI from vendor specific parameters
1742 uint16_t rnti = 0;
1743 NS_ASSERT(!params.m_vendorSpecificList.empty());
1744 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1745 {
1746 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1747 {
1748 Ptr<SrsCqiRntiVsp> vsp =
1749 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1750 rnti = vsp->GetRnti();
1751 }
1752 }
1753 auto itCqi = m_ueCqi.find(rnti);
1754 if (itCqi == m_ueCqi.end())
1755 {
1756 // create a new entry
1757 std::vector<double> newCqi;
1758 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1759 {
1760 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1761 newCqi.push_back(sinr);
1762 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1763 << sinr);
1764 }
1765 m_ueCqi[rnti] = newCqi;
1766 // generate correspondent timer
1768 }
1769 else
1770 {
1771 // update the values
1772 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1773 {
1774 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1775 (*itCqi).second.at(j) = sinr;
1776 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1777 << sinr);
1778 }
1779 // update correspondent timer
1780 auto itTimers = m_ueCqiTimers.find(rnti);
1781 (*itTimers).second = m_cqiTimersThreshold;
1782 }
1783 }
1784 break;
1785 case UlCqi_s::PUCCH_1:
1786 case UlCqi_s::PUCCH_2:
1787 case UlCqi_s::PRACH: {
1788 NS_FATAL_ERROR("FdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1789 }
1790 break;
1791 default:
1792 NS_FATAL_ERROR("Unknown type of UL-CQI");
1793 }
1794}
1795
1796void
1798{
1799 // refresh DL CQI P01 Map
1800 auto itP10 = m_p10CqiTimers.begin();
1801 while (itP10 != m_p10CqiTimers.end())
1802 {
1803 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1804 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1805 if ((*itP10).second == 0)
1806 {
1807 // delete correspondent entries
1808 auto itMap = m_p10CqiRxed.find((*itP10).first);
1809 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1810 " Does not find CQI report for user " << (*itP10).first);
1811 NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
1812 m_p10CqiRxed.erase(itMap);
1813 auto temp = itP10;
1814 itP10++;
1815 m_p10CqiTimers.erase(temp);
1816 }
1817 else
1818 {
1819 (*itP10).second--;
1820 itP10++;
1821 }
1822 }
1823
1824 // refresh DL CQI A30 Map
1825 auto itA30 = m_a30CqiTimers.begin();
1826 while (itA30 != m_a30CqiTimers.end())
1827 {
1828 NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
1829 << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1830 if ((*itA30).second == 0)
1831 {
1832 // delete correspondent entries
1833 auto itMap = m_a30CqiRxed.find((*itA30).first);
1834 NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
1835 " Does not find CQI report for user " << (*itA30).first);
1836 NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
1837 m_a30CqiRxed.erase(itMap);
1838 auto temp = itA30;
1839 itA30++;
1840 m_a30CqiTimers.erase(temp);
1841 }
1842 else
1843 {
1844 (*itA30).second--;
1845 itA30++;
1846 }
1847 }
1848}
1849
1850void
1852{
1853 // refresh UL CQI Map
1854 auto itUl = m_ueCqiTimers.begin();
1855 while (itUl != m_ueCqiTimers.end())
1856 {
1857 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
1858 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1859 if ((*itUl).second == 0)
1860 {
1861 // delete correspondent entries
1862 auto itMap = m_ueCqi.find((*itUl).first);
1863 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
1864 " Does not find CQI report for user " << (*itUl).first);
1865 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
1866 (*itMap).second.clear();
1867 m_ueCqi.erase(itMap);
1868 auto temp = itUl;
1869 itUl++;
1870 m_ueCqiTimers.erase(temp);
1871 }
1872 else
1873 {
1874 (*itUl).second--;
1875 itUl++;
1876 }
1877 }
1878}
1879
1880void
1881FdMtFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
1882{
1883 LteFlowId_t flow(rnti, lcid);
1884 auto it = m_rlcBufferReq.find(flow);
1885 if (it != m_rlcBufferReq.end())
1886 {
1887 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
1888 << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
1889 << (*it).second.m_rlcRetransmissionQueueSize << " status "
1890 << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1891 // Update queues: RLC tx order Status, ReTx, Tx
1892 // Update status queue
1893 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1894 {
1895 (*it).second.m_rlcStatusPduSize = 0;
1896 }
1897 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
1898 (size >= (*it).second.m_rlcRetransmissionQueueSize))
1899 {
1900 (*it).second.m_rlcRetransmissionQueueSize = 0;
1901 }
1902 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1903 {
1904 uint32_t rlcOverhead;
1905 if (lcid == 1)
1906 {
1907 // for SRB1 (using RLC AM) it's better to
1908 // overestimate RLC overhead rather than
1909 // underestimate it and risk unneeded
1910 // segmentation which increases delay
1911 rlcOverhead = 4;
1912 }
1913 else
1914 {
1915 // minimum RLC overhead due to header
1916 rlcOverhead = 2;
1917 }
1918 // update transmission queue
1919 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1920 {
1921 (*it).second.m_rlcTransmissionQueueSize = 0;
1922 }
1923 else
1924 {
1925 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1926 }
1927 }
1928 }
1929 else
1930 {
1931 NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
1932 }
1933}
1934
1935void
1937{
1938 size = size - 2; // remove the minimum RLC overhead
1939 auto it = m_ceBsrRxed.find(rnti);
1940 if (it != m_ceBsrRxed.end())
1941 {
1942 NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1943 if ((*it).second >= size)
1944 {
1945 (*it).second -= size;
1946 }
1947 else
1948 {
1949 (*it).second = 0;
1950 }
1951 }
1952 else
1953 {
1954 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
1955 }
1956}
1957
1958void
1960{
1961 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
1963 params.m_rnti = rnti;
1964 params.m_transmissionMode = txMode;
1966}
1967
1968} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Maximize Throughput scheduler.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
void DoSchedUlMacCtrlInfoReq(const FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request function.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SNR function.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
static TypeId GetTypeId()
Get the type ID.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
std::vector< RachListElement_s > m_rachList
RACH list.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void RefreshUlCqiMaps()
Refresh UL CGI maps function.
~FdMtFfMacScheduler() override
Destructor.
void DoSchedUlNoiseInterferenceReq(const FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request function.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
void DoCschedCellConfigReq(const FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
Csched cell config request function.
unsigned int LcActivePerFlow(uint16_t rnti)
LC Active per flow function.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
int GetRbgSize(int dlbandwidth)
Get RBG size function.
void DoCschedLcConfigReq(const FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request function.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
std::set< uint16_t > m_flowStatsUl
Set of UE statistics (per RNTI basis)
FfMacCschedSapProvider * m_cschedSapProvider
csched SAP provider
void DoSchedDlRlcBufferReq(const FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request function.
void DoSchedDlTriggerReq(const FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request function.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
void DoSchedUlCqiInfoReq(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request function.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
FfMacSchedSapProvider * m_schedSapProvider
sched SAP provider
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
void DoSchedUlSrInfoReq(const FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request function.
void DoSchedDlCqiInfoReq(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request function.
std::set< uint16_t > m_flowStatsDl
Set of UE statistics (per RNTI basis) in downlink.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
sched cell config
void DoCschedUeReleaseReq(const FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request function.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
void DoDispose() override
Destructor implementation.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
bool m_harqOn
m_harqOn when false inhibit tte HARQ mechanisms (by default active)
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
friend class MemberSchedSapProvider< FdMtFfMacScheduler >
allow MemberSchedSapProvider<FdMtFfMacScheduler> clss friend access
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
FfMacSchedSapUser * m_schedSapUser
sched SAP user
FfMacCschedSapUser * m_cschedSapUser
csched SAP user
void DoCschedUeConfigReq(const FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request function.
void DoSchedDlRachInfoReq(const FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request function.
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
void DoSchedDlMacBufferReq(const FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request function.
void DoSchedUlTriggerReq(const FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request function.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARDQ process timer.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
LteFfrSapUser * GetLteFfrSapUser() override
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
void DoSchedDlPagingBufferReq(const FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request function.
void RefreshDlCqiMaps()
Refresh DL CGI maps function.
void DoCschedLcReleaseReq(const FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request function.
friend class MemberCschedSapProvider< FdMtFfMacScheduler >
allow MemberCschedSapProvider<FdMtFfMacScheduler> class friend access
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigCnf(const CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
virtual void CschedUeConfigUpdateInd(const CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:140
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:932
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:81
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
constexpr double NO_SINR
Value for SINR outside the range defined by FF-API, used to indicate that there is no CQI for this el...
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Vector of the 8 HARQ processes per UE.
@ SUCCESS
Definition: ff-mac-common.h:62
constexpr uint32_t HARQ_DL_TIMEOUT
HARQ DL timeout.
static const int FdMtType0AllocationRbg[4]
FdMtType0AllocationRbg size array.
constexpr uint32_t HARQ_PROC_NUM
Number of HARQ processes.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector.
Definition: second.py:1
See section 4.3.8 buildDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< BuildDataListElement_s > m_buildDataList
build data list
std::vector< BuildRarListElement_s > m_buildRarList
build rar list
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:43
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.