A Discrete-Event Network Simulator
API
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
fdbet-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/fdbet-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <set>
32 #include <cfloat>
33 
34 NS_LOG_COMPONENT_DEFINE ("FdBetFfMacScheduler");
35 
36 namespace ns3 {
37 
39  10, // RGB size 1
40  26, // RGB size 2
41  63, // RGB size 3
42  110 // RGB size 4
43 }; // see table 7.1.6.1-1 of 36.213
44 
45 
46 NS_OBJECT_ENSURE_REGISTERED (FdBetFfMacScheduler);
47 
48 
49 
51 {
52 public:
54 
55  // inherited from FfMacCschedSapProvider
56  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
57  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
58  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
59  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
60  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
61 
62 private:
65 };
66 
68 {
69 }
70 
72 {
73 }
74 
75 
76 void
78 {
80 }
81 
82 void
84 {
86 }
87 
88 
89 void
91 {
93 }
94 
95 void
97 {
99 }
100 
101 void
103 {
105 }
106 
107 
108 
109 
111 {
112 public:
114 
115  // inherited from FfMacSchedSapProvider
116  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
117  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
118  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
119  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
120  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
121  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
122  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
123  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
124  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
125  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
126  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
127 
128 
129 private:
132 };
133 
134 
135 
137 {
138 }
139 
140 
142  : m_scheduler (scheduler)
143 {
144 }
145 
146 void
148 {
150 }
151 
152 void
154 {
156 }
157 
158 void
160 {
162 }
163 
164 void
166 {
168 }
169 
170 void
172 {
174 }
175 
176 void
178 {
180 }
181 
182 void
184 {
186 }
187 
188 void
190 {
192 }
193 
194 void
196 {
198 }
199 
200 void
202 {
204 }
205 
206 void
208 {
210 }
211 
212 
213 
214 
215 
217  : m_cschedSapUser (0),
218  m_schedSapUser (0),
219  m_timeWindow (99.0),
220  m_nextRntiUl (0)
221 {
222  m_amc = CreateObject <LteAmc> ();
225 }
226 
228 {
229  NS_LOG_FUNCTION (this);
230 }
231 
232 void
234 {
235  NS_LOG_FUNCTION (this);
237  m_dlHarqProcessesTimer.clear ();
239  m_dlInfoListBuffered.clear ();
240  m_ulHarqCurrentProcessId.clear ();
241  m_ulHarqProcessesStatus.clear ();
243  delete m_cschedSapProvider;
244  delete m_schedSapProvider;
245 }
246 
247 TypeId
249 {
250  static TypeId tid = TypeId ("ns3::FdBetFfMacScheduler")
252  .AddConstructor<FdBetFfMacScheduler> ()
253  .AddAttribute ("CqiTimerThreshold",
254  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
255  UintegerValue (1000),
256  MakeUintegerAccessor (&FdBetFfMacScheduler::m_cqiTimersThreshold),
257  MakeUintegerChecker<uint32_t> ())
258  .AddAttribute ("HarqEnabled",
259  "Activate/Deactivate the HARQ [by default is active].",
260  BooleanValue (true),
261  MakeBooleanAccessor (&FdBetFfMacScheduler::m_harqOn),
262  MakeBooleanChecker ())
263  .AddAttribute ("UlGrantMcs",
264  "The MCS of the UL grant, must be [0..15] (default 0)",
265  UintegerValue (0),
266  MakeUintegerAccessor (&FdBetFfMacScheduler::m_ulGrantMcs),
267  MakeUintegerChecker<uint8_t> ())
268  ;
269  return tid;
270 }
271 
272 
273 
274 void
276 {
277  m_cschedSapUser = s;
278 }
279 
280 void
282 {
283  m_schedSapUser = s;
284 }
285 
288 {
289  return m_cschedSapProvider;
290 }
291 
294 {
295  return m_schedSapProvider;
296 }
297 
298 void
300 {
301  NS_LOG_FUNCTION (this);
302  // Read the subset of parameters used
303  m_cschedCellConfig = params;
306  cnf.m_result = SUCCESS;
308  return;
309 }
310 
311 void
313 {
314  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
315  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
316  if (it == m_uesTxMode.end ())
317  {
318  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
319  // generate HARQ buffers
320  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
321  DlHarqProcessesStatus_t dlHarqPrcStatus;
322  dlHarqPrcStatus.resize (8,0);
323  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
324  DlHarqProcessesTimer_t dlHarqProcessesTimer;
325  dlHarqProcessesTimer.resize (8,0);
326  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
327  DlHarqProcessesDciBuffer_t dlHarqdci;
328  dlHarqdci.resize (8);
329  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
330  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
331  dlHarqRlcPdu.resize (2);
332  dlHarqRlcPdu.at (0).resize (8);
333  dlHarqRlcPdu.at (1).resize (8);
334  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
335  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
336  UlHarqProcessesStatus_t ulHarqPrcStatus;
337  ulHarqPrcStatus.resize (8,0);
338  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
339  UlHarqProcessesDciBuffer_t ulHarqdci;
340  ulHarqdci.resize (8);
341  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
342  }
343  else
344  {
345  (*it).second = params.m_transmissionMode;
346  }
347  return;
348 }
349 
350 void
352 {
353  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
354 
355  std::map <uint16_t, fdbetsFlowPerf_t>::iterator it;
356  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
357  {
358  it = m_flowStatsDl.find (params.m_rnti);
359 
360  if (it == m_flowStatsDl.end ())
361  {
362  fdbetsFlowPerf_t flowStatsDl;
363  flowStatsDl.flowStart = Simulator::Now ();
364  flowStatsDl.totalBytesTransmitted = 0;
365  flowStatsDl.lastTtiBytesTrasmitted = 0;
366  flowStatsDl.lastAveragedThroughput = 1;
367  m_flowStatsDl.insert (std::pair<uint16_t, fdbetsFlowPerf_t> (params.m_rnti, flowStatsDl));
368  fdbetsFlowPerf_t flowStatsUl;
369  flowStatsUl.flowStart = Simulator::Now ();
370  flowStatsUl.totalBytesTransmitted = 0;
371  flowStatsUl.lastTtiBytesTrasmitted = 0;
372  flowStatsUl.lastAveragedThroughput = 1;
373  m_flowStatsUl.insert (std::pair<uint16_t, fdbetsFlowPerf_t> (params.m_rnti, flowStatsUl));
374  }
375  }
376 
377  return;
378 }
379 
380 void
382 {
383  NS_LOG_FUNCTION (this);
384  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
385  {
386  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
387  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
388  while (it!=m_rlcBufferReq.end ())
389  {
390  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
391  {
392  temp = it;
393  it++;
394  m_rlcBufferReq.erase (temp);
395  }
396  else
397  {
398  it++;
399  }
400  }
401  }
402  return;
403 }
404 
405 void
407 {
408  NS_LOG_FUNCTION (this);
409 
410  m_uesTxMode.erase (params.m_rnti);
411  m_dlHarqCurrentProcessId.erase (params.m_rnti);
412  m_dlHarqProcessesStatus.erase (params.m_rnti);
413  m_dlHarqProcessesTimer.erase (params.m_rnti);
414  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
416  m_ulHarqCurrentProcessId.erase (params.m_rnti);
417  m_ulHarqProcessesStatus.erase (params.m_rnti);
418  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
419  m_flowStatsDl.erase (params.m_rnti);
420  m_flowStatsUl.erase (params.m_rnti);
421  m_ceBsrRxed.erase (params.m_rnti);
422  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
423  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
424  while (it!=m_rlcBufferReq.end ())
425  {
426  if ((*it).first.m_rnti == params.m_rnti)
427  {
428  temp = it;
429  it++;
430  m_rlcBufferReq.erase (temp);
431  }
432  else
433  {
434  it++;
435  }
436  }
437  if (m_nextRntiUl == params.m_rnti)
438  {
439  m_nextRntiUl = 0;
440  }
441 
442  return;
443 }
444 
445 
446 void
448 {
449  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
450  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
451 
452  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
453 
454  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
455 
456  it = m_rlcBufferReq.find (flow);
457 
458  if (it == m_rlcBufferReq.end ())
459  {
460  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
461  }
462  else
463  {
464  (*it).second = params;
465  }
466 
467  return;
468 }
469 
470 void
472 {
473  NS_LOG_FUNCTION (this);
474  NS_FATAL_ERROR ("method not implemented");
475  return;
476 }
477 
478 void
480 {
481  NS_LOG_FUNCTION (this);
482  NS_FATAL_ERROR ("method not implemented");
483  return;
484 }
485 
486 int
488 {
489  for (int i = 0; i < 4; i++)
490  {
491  if (dlbandwidth < FdBetType0AllocationRbg[i])
492  {
493  return (i + 1);
494  }
495  }
496 
497  return (-1);
498 }
499 
500 
501 int
503 {
504  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
505  int lcActive = 0;
506  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
507  {
508  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
509  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
510  || ((*it).second.m_rlcStatusPduSize > 0) ))
511  {
512  lcActive++;
513  }
514  if ((*it).first.m_rnti > rnti)
515  {
516  break;
517  }
518  }
519  return (lcActive);
520 
521 }
522 
523 
524 uint8_t
526 {
527  NS_LOG_FUNCTION (this << rnti);
528 
529  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
530  if (it == m_dlHarqCurrentProcessId.end ())
531  {
532  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
533  }
534  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
535  if (itStat == m_dlHarqProcessesStatus.end ())
536  {
537  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
538  }
539  uint8_t i = (*it).second;
540  do
541  {
542  i = (i + 1) % HARQ_PROC_NUM;
543  }
544  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
545  if ((*itStat).second.at (i) == 0)
546  {
547  return (true);
548  }
549  else
550  {
551  return (false); // return a not valid harq proc id
552  }
553 }
554 
555 
556 
557 uint8_t
559 {
560  NS_LOG_FUNCTION (this << rnti);
561 
562  if (m_harqOn == false)
563  {
564  return (0);
565  }
566 
567 
568  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
569  if (it == m_dlHarqCurrentProcessId.end ())
570  {
571  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
572  }
573  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
574  if (itStat == m_dlHarqProcessesStatus.end ())
575  {
576  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
577  }
578  uint8_t i = (*it).second;
579  do
580  {
581  i = (i + 1) % HARQ_PROC_NUM;
582  }
583  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
584  if ((*itStat).second.at (i) == 0)
585  {
586  (*it).second = i;
587  (*itStat).second.at (i) = 1;
588  }
589  else
590  {
591  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
592  }
593 
594  return ((*it).second);
595 }
596 
597 
598 void
600 {
601  NS_LOG_FUNCTION (this);
602 
603  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
604  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
605  {
606  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
607  {
608  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
609  {
610  // reset HARQ process
611 
612  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
613  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
614  if (itStat == m_dlHarqProcessesStatus.end ())
615  {
616  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
617  }
618  (*itStat).second.at (i) = 0;
619  (*itTimers).second.at (i) = 0;
620  }
621  else
622  {
623  (*itTimers).second.at (i)++;
624  }
625  }
626  }
627 
628 }
629 
630 
631 void
633 {
634  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
635  // API generated by RLC for triggering the scheduling of a DL subframe
636 
637 
638  // evaluate the relative channel quality indicator for each UE per each RBG
639  // (since we are using allocation type 0 the small unit of allocation is RBG)
640  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
641 
642  RefreshDlCqiMaps ();
643 
645  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
646  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
647  std::vector <bool> rbgMap; // global RBGs map
648  uint16_t rbgAllocatedNum = 0;
649  std::set <uint16_t> rntiAllocated;
650  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
652 
653  // RACH Allocation
655  uint16_t rbStart = 0;
656  std::vector <struct RachListElement_s>::iterator itRach;
657  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
658  {
659  NS_ASSERT_MSG (m_amc->GetTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
660  BuildRarListElement_s newRar;
661  newRar.m_rnti = (*itRach).m_rnti;
662  // DL-RACH Allocation
663  // Ideal: no needs of configuring m_dci
664  // UL-RACH Allocation
665  newRar.m_grant.m_rnti = newRar.m_rnti;
666  newRar.m_grant.m_mcs = m_ulGrantMcs;
667  uint16_t rbLen = 1;
668  uint16_t tbSizeBits = 0;
669  // find lowest TB size that fits UL grant estimated size
670  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
671  {
672  rbLen++;
673  tbSizeBits = m_amc->GetTbSizeFromMcs (m_ulGrantMcs, rbLen);
674  }
675  if (tbSizeBits < (*itRach).m_estimatedSize)
676  {
677  // no more allocation space: finish allocation
678  break;
679  }
680  newRar.m_grant.m_rbStart = rbStart;
681  newRar.m_grant.m_rbLen = rbLen;
682  newRar.m_grant.m_tbSize = tbSizeBits / 8;
683  newRar.m_grant.m_hopping = false;
684  newRar.m_grant.m_tpc = 0;
685  newRar.m_grant.m_cqiRequest = false;
686  newRar.m_grant.m_ulDelay = false;
687  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
688  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
689  {
690  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
691  }
692  rbStart = rbStart + rbLen;
693 
694  ret.m_buildRarList.push_back (newRar);
695  }
696  m_rachList.clear ();
697 
698 
699  // Process DL HARQ feedback
701  // retrieve past HARQ retx buffered
702  if (m_dlInfoListBuffered.size () > 0)
703  {
704  if (params.m_dlInfoList.size () > 0)
705  {
706  NS_LOG_INFO (this << " Received DL-HARQ feedback");
707  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
708  }
709  }
710  else
711  {
712  if (params.m_dlInfoList.size () > 0)
713  {
715  }
716  }
717  if (m_harqOn == false)
718  {
719  // Ignore HARQ feedback
720  m_dlInfoListBuffered.clear ();
721  }
722  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
723  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
724  {
725  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
726  if (itRnti != rntiAllocated.end ())
727  {
728  // RNTI already allocated for retx
729  continue;
730  }
731  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
732  std::vector <bool> retx;
733  NS_LOG_INFO (this << " Processing DLHARQ feedback");
734  if (nLayers == 1)
735  {
736  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
737  retx.push_back (false);
738  }
739  else
740  {
741  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
742  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
743  }
744  if (retx.at (0) || retx.at (1))
745  {
746  // retrieve HARQ process information
747  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
748  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
749  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
750  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
751  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
752  {
753  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
754  }
755 
756  DlDciListElement_s dci = (*itHarq).second.at (harqId);
757  int rv = 0;
758  if (dci.m_rv.size () == 1)
759  {
760  rv = dci.m_rv.at (0);
761  }
762  else
763  {
764  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
765  }
766 
767  if (rv == 3)
768  {
769  // maximum number of retx reached -> drop process
770  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
771  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
772  if (it == m_dlHarqProcessesStatus.end ())
773  {
774  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
775  }
776  (*it).second.at (harqId) = 0;
777  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
778  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
779  {
780  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
781  }
782  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
783  {
784  (*itRlcPdu).second.at (k).at (harqId).clear ();
785  }
786  continue;
787  }
788  // check the feasibility of retransmitting on the same RBGs
789  // translate the DCI to Spectrum framework
790  std::vector <int> dciRbg;
791  uint32_t mask = 0x1;
792  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
793  for (int j = 0; j < 32; j++)
794  {
795  if (((dci.m_rbBitmap & mask) >> j) == 1)
796  {
797  dciRbg.push_back (j);
798  NS_LOG_INFO ("\t" << j);
799  }
800  mask = (mask << 1);
801  }
802  bool free = true;
803  for (uint8_t j = 0; j < dciRbg.size (); j++)
804  {
805  if (rbgMap.at (dciRbg.at (j)) == true)
806  {
807  free = false;
808  break;
809  }
810  }
811  if (free)
812  {
813  // use the same RBGs for the retx
814  // reserve RBGs
815  for (uint8_t j = 0; j < dciRbg.size (); j++)
816  {
817  rbgMap.at (dciRbg.at (j)) = true;
818  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
819  rbgAllocatedNum++;
820  }
821 
822  NS_LOG_INFO (this << " Send retx in the same RBGs");
823  }
824  else
825  {
826  // find RBGs for sending HARQ retx
827  uint8_t j = 0;
828  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
829  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
830  std::vector <bool> rbgMapCopy = rbgMap;
831  while ((j < dciRbg.size ())&&(startRbg != rbgId))
832  {
833  if (rbgMapCopy.at (rbgId) == false)
834  {
835  rbgMapCopy.at (rbgId) = true;
836  dciRbg.at (j) = rbgId;
837  j++;
838  }
839  rbgId++;
840  }
841  if (j == dciRbg.size ())
842  {
843  // find new RBGs -> update DCI map
844  uint32_t rbgMask = 0;
845  for (uint16_t k = 0; k < dciRbg.size (); k++)
846  {
847  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
848  rbgAllocatedNum++;
849  }
850  dci.m_rbBitmap = rbgMask;
851  rbgMap = rbgMapCopy;
852  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
853  }
854  else
855  {
856  // HARQ retx cannot be performed on this TTI -> store it
857  dlInfoListUntxed.push_back (params.m_dlInfoList.at (i));
858  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
859  }
860  }
861  // retrieve RLC PDU list for retx TBsize and update DCI
863  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
864  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
865  {
866  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
867  }
868  for (uint8_t j = 0; j < nLayers; j++)
869  {
870  if (retx.at (j))
871  {
872  if (j >= dci.m_ndi.size ())
873  {
874  // for avoiding errors in MIMO transient phases
875  dci.m_ndi.push_back (0);
876  dci.m_rv.push_back (0);
877  dci.m_mcs.push_back (0);
878  dci.m_tbsSize.push_back (0);
879  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
880  }
881  else
882  {
883  dci.m_ndi.at (j) = 0;
884  dci.m_rv.at (j)++;
885  (*itHarq).second.at (harqId).m_rv.at (j)++;
886  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
887  }
888  }
889  else
890  {
891  // empty TB of layer j
892  dci.m_ndi.at (j) = 0;
893  dci.m_rv.at (j) = 0;
894  dci.m_mcs.at (j) = 0;
895  dci.m_tbsSize.at (j) = 0;
896  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
897  }
898  }
899  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
900  {
901  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
902  for (uint8_t j = 0; j < nLayers; j++)
903  {
904  if (retx.at (j))
905  {
906  if (j < dci.m_ndi.size ())
907  {
908  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
909  }
910  }
911  }
912 
913  if (rlcPduListPerLc.size () > 0)
914  {
915  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
916  }
917  }
918  newEl.m_rnti = rnti;
919  newEl.m_dci = dci;
920  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
921  // refresh timer
922  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
923  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
924  {
925  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
926  }
927  (*itHarqTimer).second.at (harqId) = 0;
928  ret.m_buildDataList.push_back (newEl);
929  rntiAllocated.insert (rnti);
930  }
931  else
932  {
933  // update HARQ process status
934  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
935  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
936  if (it == m_dlHarqProcessesStatus.end ())
937  {
938  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
939  }
940  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
941  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
942  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
943  {
944  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
945  }
946  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
947  {
948  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
949  }
950  }
951  }
952  m_dlInfoListBuffered.clear ();
953  m_dlInfoListBuffered = dlInfoListUntxed;
954 
955  std::map <uint16_t, fdbetsFlowPerf_t>::iterator itFlow;
956  std::map <uint16_t, double> estAveThr; // store expected average throughput for UE
957  std::map <uint16_t, double>::iterator itMax = estAveThr.end ();
958  std::map <uint16_t, double>::iterator it;
959  std::map <uint16_t, int> rbgPerRntiLog; // record the number of RBG assigned to UE
960  double metricMax = 0.0;
961  for (itFlow = m_flowStatsDl.begin (); itFlow != m_flowStatsDl.end (); itFlow++)
962  {
963  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*itFlow).first);
964  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*itFlow).first)))
965  {
966  // UE already allocated for HARQ or without HARQ process available -> drop it
967  if (itRnti != rntiAllocated.end ())
968  {
969  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*itFlow).first);
970  }
971  if (!HarqProcessAvailability ((*itFlow).first))
972  {
973  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*itFlow).first);
974  }
975  continue;
976  }
977 
978  estAveThr.insert (std::pair <uint16_t, double> ((*itFlow).first, (*itFlow).second.lastAveragedThroughput));
979  }
980 
981  if (estAveThr.size () != 0)
982  {
983  // Find UE with largest priority metric
984  for (it = estAveThr.begin (); it != estAveThr.end (); it++)
985  {
986  double metric = 1 / (*it).second;
987  if (metric > metricMax)
988  {
989  metricMax = metric;
990  itMax = it;
991  }
992  rbgPerRntiLog.insert (std::pair<uint16_t, int> ((*it).first, 1));
993  }
994 
995 
996  // The scheduler tries the best to achieve the equal throughput among all UEs
997  int i = 0;
998  do
999  {
1000  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1001  if (rbgMap.at (i) == false)
1002  {
1003  // allocate one RBG to current UE
1004  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1005  std::vector <uint16_t> tempMap;
1006  itMap = allocationMap.find ((*itMax).first);
1007  if (itMap == allocationMap.end ())
1008  {
1009  tempMap.push_back (i);
1010  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax).first, tempMap));
1011  }
1012  else
1013  {
1014  (*itMap).second.push_back (i);
1015  }
1016 
1017  // caculate expected throughput for current UE
1018  std::map <uint16_t,uint8_t>::iterator itCqi;
1019  itCqi = m_p10CqiRxed.find ((*itMax).first);
1020  std::map <uint16_t,uint8_t>::iterator itTxMode;
1021  itTxMode = m_uesTxMode.find ((*itMax).first);
1022  if (itTxMode == m_uesTxMode.end ())
1023  {
1024  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMax).first);
1025  }
1026  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1027  std::vector <uint8_t> mcs;
1028  for (uint8_t j = 0; j < nLayer; j++)
1029  {
1030  if (itCqi == m_p10CqiRxed.end ())
1031  {
1032  mcs.push_back (0); // no info on this user -> lowest MCS
1033  }
1034  else
1035  {
1036  mcs.push_back (m_amc->GetMcsFromCqi ((*itCqi).second));
1037  }
1038  }
1039 
1040  std::map <uint16_t,int>::iterator itRbgPerRntiLog;
1041  itRbgPerRntiLog = rbgPerRntiLog.find ((*itMax).first);
1042  std::map <uint16_t, fdbetsFlowPerf_t>::iterator itPastAveThr;
1043  itPastAveThr = m_flowStatsDl.find ((*itMax).first);
1044  uint32_t bytesTxed = 0;
1045  for (uint8_t j = 0; j < nLayer; j++)
1046  {
1047  int tbSize = (m_amc->GetTbSizeFromMcs (mcs.at (0), (*itRbgPerRntiLog).second * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1048  bytesTxed += tbSize;
1049  }
1050  double expectedAveThr = ((1.0 - (1.0 / m_timeWindow)) * (*itPastAveThr).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)(bytesTxed / 0.001));
1051 
1052  int rbgPerRnti = (*itRbgPerRntiLog).second;
1053  rbgPerRnti++;
1054  rbgPerRntiLog[(*itMax).first] = rbgPerRnti;
1055  estAveThr[(*itMax).first] = expectedAveThr;
1056 
1057  // find new UE with largest priority metric
1058  metricMax = 0.0;
1059  for (it = estAveThr.begin (); it != estAveThr.end (); it++)
1060  {
1061  double metric = 1 / (*it).second;
1062  if (metric > metricMax)
1063  {
1064  itMax = it;
1065  metricMax = metric;
1066  }
1067  } // end for estAveThr
1068 
1069  rbgMap.at (i) = true;
1070 
1071  } // end for free RBGs
1072 
1073  i++;
1074 
1075  }
1076  while ( i < rbgNum ); // end for RBGs
1077 
1078  } // end if estAveThr
1079 
1080  // reset TTI stats of users
1081  std::map <uint16_t, fdbetsFlowPerf_t>::iterator itStats;
1082  for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
1083  {
1084  (*itStats).second.lastTtiBytesTrasmitted = 0;
1085  }
1086 
1087  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1088  // creating the correspondent DCIs
1089  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1090  while (itMap != allocationMap.end ())
1091  {
1092  // create new BuildDataListElement_s for this LC
1093  BuildDataListElement_s newEl;
1094  newEl.m_rnti = (*itMap).first;
1095  // create the DlDciListElement_s
1096  DlDciListElement_s newDci;
1097  newDci.m_rnti = (*itMap).first;
1098  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1099 
1100  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1101  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1102  if (lcActives == 0)
1103  {
1104  // Set to max value, to avoid divide by 0 below
1105  lcActives = (uint16_t)65535; // UINT16_MAX;
1106  }
1107  uint16_t RgbPerRnti = (*itMap).second.size ();
1108  std::map <uint16_t,uint8_t>::iterator itCqi;
1109  itCqi = m_p10CqiRxed.find ((*itMap).first);
1110  std::map <uint16_t,uint8_t>::iterator itTxMode;
1111  itTxMode = m_uesTxMode.find ((*itMap).first);
1112  if (itTxMode == m_uesTxMode.end ())
1113  {
1114  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1115  }
1116  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1117 
1118  uint32_t bytesTxed = 0;
1119  for (uint8_t j = 0; j < nLayer; j++)
1120  {
1121  if (itCqi == m_p10CqiRxed.end ())
1122  {
1123  newDci.m_mcs.push_back (0); // no info on this user -> lowest MCS
1124  }
1125  else
1126  {
1127  newDci.m_mcs.push_back ( m_amc->GetMcsFromCqi ((*itCqi).second) );
1128  }
1129 
1130  int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1131  newDci.m_tbsSize.push_back (tbSize);
1132  bytesTxed += tbSize;
1133  }
1134 
1135  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1136  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1137  uint32_t rbgMask = 0;
1138  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1139  {
1140  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1141  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1142  }
1143  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1144 
1145  // create the rlc PDUs -> equally divide resources among actives LCs
1146  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1147  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1148  {
1149  if (((*itBufReq).first.m_rnti == (*itMap).first)
1150  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1151  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1152  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1153  {
1154  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1155  for (uint8_t j = 0; j < nLayer; j++)
1156  {
1157  RlcPduListElement_s newRlcEl;
1158  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1159  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1160  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1161  newRlcPduLe.push_back (newRlcEl);
1162  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1163  if (m_harqOn == true)
1164  {
1165  // store RLC PDU list for HARQ
1166  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1167  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1168  {
1169  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1170  }
1171  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1172  }
1173  }
1174  newEl.m_rlcPduList.push_back (newRlcPduLe);
1175  }
1176  if ((*itBufReq).first.m_rnti > (*itMap).first)
1177  {
1178  break;
1179  }
1180  }
1181  for (uint8_t j = 0; j < nLayer; j++)
1182  {
1183  newDci.m_ndi.push_back (1);
1184  newDci.m_rv.push_back (0);
1185  }
1186 
1187  newEl.m_dci = newDci;
1188 
1189  if (m_harqOn == true)
1190  {
1191  // store DCI for HARQ
1192  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1193  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1194  {
1195  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1196  }
1197  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1198  // refresh timer
1199  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1200  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1201  {
1202  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1203  }
1204  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1205  }
1206 
1207  // ...more parameters -> ingored in this version
1208 
1209  ret.m_buildDataList.push_back (newEl);
1210  // update UE stats
1211  std::map <uint16_t, fdbetsFlowPerf_t>::iterator it;
1212  it = m_flowStatsDl.find ((*itMap).first);
1213  if (it != m_flowStatsDl.end ())
1214  {
1215  (*it).second.lastTtiBytesTrasmitted = bytesTxed;
1216  NS_LOG_INFO (this << " UE total bytes txed " << (*it).second.lastTtiBytesTrasmitted);
1217 
1218 
1219  }
1220  else
1221  {
1222  NS_FATAL_ERROR (this << " No Stats for this allocated UE");
1223  }
1224 
1225  itMap++;
1226  } // end while allocation
1227  ret.m_nrOfPdcchOfdmSymbols = 1;
1228 
1229 
1230  // update UEs stats
1231  NS_LOG_INFO (this << " Update UEs statistics");
1232  for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
1233  {
1234  (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1235  // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
1236  (*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1237  NS_LOG_INFO (this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1238  NS_LOG_INFO (this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1239  (*itStats).second.lastTtiBytesTrasmitted = 0;
1240  }
1241 
1243 
1244 
1245  return;
1246 }
1247 
1248 void
1250 {
1251  NS_LOG_FUNCTION (this);
1252 
1253  m_rachList = params.m_rachList;
1254 
1255  return;
1256 }
1257 
1258 void
1260 {
1261  NS_LOG_FUNCTION (this);
1262 
1263  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1264  {
1265  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1266  {
1267  // wideband CQI reporting
1268  std::map <uint16_t,uint8_t>::iterator it;
1269  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1270  it = m_p10CqiRxed.find (rnti);
1271  if (it == m_p10CqiRxed.end ())
1272  {
1273  // create the new entry
1274  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1275  // generate correspondent timer
1276  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1277  }
1278  else
1279  {
1280  // update the CQI value and refresh correspondent timer
1281  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1282  // update correspondent timer
1283  std::map <uint16_t,uint32_t>::iterator itTimers;
1284  itTimers = m_p10CqiTimers.find (rnti);
1285  (*itTimers).second = m_cqiTimersThreshold;
1286  }
1287  }
1288  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1289  {
1290  // subband CQI reporting high layer configured
1291  std::map <uint16_t,SbMeasResult_s>::iterator it;
1292  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1293  it = m_a30CqiRxed.find (rnti);
1294  if (it == m_a30CqiRxed.end ())
1295  {
1296  // create the new entry
1297  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1298  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1299  }
1300  else
1301  {
1302  // update the CQI value and refresh correspondent timer
1303  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1304  std::map <uint16_t,uint32_t>::iterator itTimers;
1305  itTimers = m_a30CqiTimers.find (rnti);
1306  (*itTimers).second = m_cqiTimersThreshold;
1307  }
1308  }
1309  else
1310  {
1311  NS_LOG_ERROR (this << " CQI type unknown");
1312  }
1313  }
1314 
1315  return;
1316 }
1317 
1318 
1319 double
1320 FdBetFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1321 {
1322  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1323  if (itCqi == m_ueCqi.end ())
1324  {
1325  // no cqi info about this UE
1326  return (NO_SINR);
1327 
1328  }
1329  else
1330  {
1331  // take the average SINR value among the available
1332  double sinrSum = 0;
1333  int sinrNum = 0;
1334  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1335  {
1336  double sinr = (*itCqi).second.at (i);
1337  if (sinr != NO_SINR)
1338  {
1339  sinrSum += sinr;
1340  sinrNum++;
1341  }
1342  }
1343  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1344  // store the value
1345  (*itCqi).second.at (rb) = estimatedSinr;
1346  return (estimatedSinr);
1347  }
1348 }
1349 
1350 void
1352 {
1353  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1354 
1355  RefreshUlCqiMaps ();
1356 
1357  // Generate RBs map
1359  std::vector <bool> rbMap;
1360  uint16_t rbAllocatedNum = 0;
1361  std::set <uint16_t> rntiAllocated;
1362  std::vector <uint16_t> rbgAllocationMap;
1363  // update with RACH allocation map
1364  rbgAllocationMap = m_rachAllocationMap;
1365  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1366  m_rachAllocationMap.clear ();
1368 
1369  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1370  // remove RACH allocation
1371  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1372  {
1373  if (rbgAllocationMap.at (i) != 0)
1374  {
1375  rbMap.at (i) = true;
1376  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1377  }
1378  }
1379 
1380 
1381  if (m_harqOn == true)
1382  {
1383  // Process UL HARQ feedback
1384  // update UL HARQ proc id
1385  std::map <uint16_t, uint8_t>::iterator itProcId;
1386  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
1387  {
1388  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
1389  }
1390 
1391  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1392  {
1393  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1394  {
1395  // retx correspondent block: retrieve the UL-DCI
1396  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1397  itProcId = m_ulHarqCurrentProcessId.find (rnti);
1398  if (itProcId == m_ulHarqCurrentProcessId.end ())
1399  {
1400  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1401  }
1402  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1403  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1404  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1405  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1406  {
1407  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1408  continue;
1409  }
1410  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1411  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1412  if (itStat == m_ulHarqProcessesStatus.end ())
1413  {
1414  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1415  }
1416  if ((*itStat).second.at (harqId) >= 3)
1417  {
1418  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1419  continue;
1420  }
1421  bool free = true;
1422  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1423  {
1424  if (rbMap.at (j) == true)
1425  {
1426  free = false;
1427  NS_LOG_INFO (this << " BUSY " << j);
1428  }
1429  }
1430  if (free)
1431  {
1432  // retx on the same RBs
1433  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1434  {
1435  rbMap.at (j) = true;
1436  rbgAllocationMap.at (j) = dci.m_rnti;
1437  NS_LOG_INFO ("\tRB " << j);
1438  rbAllocatedNum++;
1439  }
1440  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1441  }
1442  else
1443  {
1444  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1445  continue;
1446  }
1447  dci.m_ndi = 0;
1448  // Update HARQ buffers with new HarqId
1449  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1450  (*itStat).second.at (harqId) = 0;
1451  (*itHarq).second.at ((*itProcId).second) = dci;
1452  ret.m_dciList.push_back (dci);
1453  rntiAllocated.insert (dci.m_rnti);
1454  }
1455  else
1456  {
1457  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1458  }
1459  }
1460  }
1461 
1462  std::map <uint16_t,uint32_t>::iterator it;
1463  int nflows = 0;
1464 
1465  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1466  {
1467  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1468  // select UEs with queues not empty and not yet allocated for HARQ
1469  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1470  {
1471  nflows++;
1472  }
1473  }
1474 
1475  if (nflows == 0)
1476  {
1477  if (ret.m_dciList.size () > 0)
1478  {
1480  }
1481 
1482  return; // no flows to be scheduled
1483  }
1484 
1485 
1486  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1487  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1488  if (rbPerFlow < 3)
1489  {
1490  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1491  }
1492  int rbAllocated = 0;
1493 
1494  std::map <uint16_t, fdbetsFlowPerf_t>::iterator itStats;
1495  if (m_nextRntiUl != 0)
1496  {
1497  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1498  {
1499  if ((*it).first == m_nextRntiUl)
1500  {
1501  break;
1502  }
1503  }
1504  if (it == m_ceBsrRxed.end ())
1505  {
1506  NS_LOG_ERROR (this << " no user found");
1507  }
1508  }
1509  else
1510  {
1511  it = m_ceBsrRxed.begin ();
1512  m_nextRntiUl = (*it).first;
1513  }
1514  do
1515  {
1516  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1517  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1518  {
1519  // UE already allocated for UL-HARQ -> skip it
1520  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1521  it++;
1522  if (it == m_ceBsrRxed.end ())
1523  {
1524  // restart from the first
1525  it = m_ceBsrRxed.begin ();
1526  }
1527  continue;
1528  }
1529  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1530  {
1531  // limit to physical resources last resource assignment
1532  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1533  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1534  if (rbPerFlow < 3)
1535  {
1536  // terminate allocation
1537  rbPerFlow = 0;
1538  }
1539  }
1540 
1541  UlDciListElement_s uldci;
1542  uldci.m_rnti = (*it).first;
1543  uldci.m_rbLen = rbPerFlow;
1544  bool allocated = false;
1545  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1546  while ((!allocated)&&((rbAllocated + rbPerFlow - 1) < m_cschedCellConfig.m_ulBandwidth) && (rbPerFlow != 0))
1547  {
1548  // check availability
1549  bool free = true;
1550  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1551  {
1552  if (rbMap.at (j) == true)
1553  {
1554  free = false;
1555  break;
1556  }
1557  }
1558  if (free)
1559  {
1560  uldci.m_rbStart = rbAllocated;
1561 
1562  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1563  {
1564  rbMap.at (j) = true;
1565  // store info on allocation for managing ul-cqi interpretation
1566  rbgAllocationMap.at (j) = (*it).first;
1567  }
1568  rbAllocated += rbPerFlow;
1569  allocated = true;
1570  break;
1571  }
1572  rbAllocated++;
1573  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1574  {
1575  // limit to physical resources last resource assignment
1576  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1577  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1578  if (rbPerFlow < 3)
1579  {
1580  // terminate allocation
1581  rbPerFlow = 0;
1582  }
1583  }
1584  }
1585  if (!allocated)
1586  {
1587  // unable to allocate new resource: finish scheduling
1588  m_nextRntiUl = (*it).first;
1589  if (ret.m_dciList.size () > 0)
1590  {
1592  }
1593  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1594  return;
1595  }
1596 
1597 
1598 
1599  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1600  int cqi = 0;
1601  if (itCqi == m_ueCqi.end ())
1602  {
1603  // no cqi info about this UE
1604  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1605  }
1606  else
1607  {
1608  // take the lowest CQI value (worst RB)
1609  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1610  if (minSinr == NO_SINR)
1611  {
1612  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1613  }
1614  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1615  {
1616  double sinr = (*itCqi).second.at (i);
1617  if (sinr == NO_SINR)
1618  {
1619  sinr = EstimateUlSinr ((*it).first, i);
1620  }
1621  if ((*itCqi).second.at (i) < minSinr)
1622  {
1623  minSinr = (*itCqi).second.at (i);
1624  }
1625  }
1626 
1627  // translate SINR -> cqi: WILD ACK: same as DL
1628  double s = log2 ( 1 + (
1629  std::pow (10, minSinr / 10 ) /
1630  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1631  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1632  if (cqi == 0)
1633  {
1634  it++;
1635  if (it == m_ceBsrRxed.end ())
1636  {
1637  // restart from the first
1638  it = m_ceBsrRxed.begin ();
1639  }
1640  NS_LOG_DEBUG (this << " UE discared for CQI=0, RNTI " << uldci.m_rnti);
1641  // remove UE from allocation map
1642  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1643  {
1644  rbgAllocationMap.at (i) = 0;
1645  }
1646  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1647  }
1648  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1649  }
1650 
1651  uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1652  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1653  uldci.m_ndi = 1;
1654  uldci.m_cceIndex = 0;
1655  uldci.m_aggrLevel = 1;
1656  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1657  uldci.m_hopping = false;
1658  uldci.m_n2Dmrs = 0;
1659  uldci.m_tpc = 0; // no power control
1660  uldci.m_cqiRequest = false; // only period CQI at this stage
1661  uldci.m_ulIndex = 0; // TDD parameter
1662  uldci.m_dai = 1; // TDD parameter
1663  uldci.m_freqHopping = 0;
1664  uldci.m_pdcchPowerOffset = 0; // not used
1665  ret.m_dciList.push_back (uldci);
1666  // store DCI for HARQ_PERIOD
1667  uint8_t harqId = 0;
1668  if (m_harqOn == true)
1669  {
1670  std::map <uint16_t, uint8_t>::iterator itProcId;
1671  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1672  if (itProcId == m_ulHarqCurrentProcessId.end ())
1673  {
1674  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1675  }
1676  harqId = (*itProcId).second;
1677  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1678  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1679  {
1680  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1681  }
1682  (*itDci).second.at (harqId) = uldci;
1683  }
1684 
1685  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1686 
1687  // update TTI UE stats
1688  itStats = m_flowStatsUl.find ((*it).first);
1689  if (itStats != m_flowStatsUl.end ())
1690  {
1691  (*itStats).second.lastTtiBytesTrasmitted = uldci.m_tbSize;
1692  }
1693  else
1694  {
1695  NS_LOG_DEBUG (this << " No Stats for this allocated UE");
1696  }
1697 
1698 
1699  it++;
1700  if (it == m_ceBsrRxed.end ())
1701  {
1702  // restart from the first
1703  it = m_ceBsrRxed.begin ();
1704  }
1705  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1706  {
1707  // Stop allocation: no more PRBs
1708  m_nextRntiUl = (*it).first;
1709  break;
1710  }
1711  }
1712  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1713 
1714 
1715  // Update global UE stats
1716  // update UEs stats
1717  for (itStats = m_flowStatsUl.begin (); itStats != m_flowStatsUl.end (); itStats++)
1718  {
1719  (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1720  // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
1721  (*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1722  NS_LOG_INFO (this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1723  NS_LOG_INFO (this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1724  (*itStats).second.lastTtiBytesTrasmitted = 0;
1725  }
1726  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1728 
1729  return;
1730 }
1731 
1732 void
1734 {
1735  NS_LOG_FUNCTION (this);
1736  return;
1737 }
1738 
1739 void
1741 {
1742  NS_LOG_FUNCTION (this);
1743  return;
1744 }
1745 
1746 void
1748 {
1749  NS_LOG_FUNCTION (this);
1750 
1751  std::map <uint16_t,uint32_t>::iterator it;
1752 
1753  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1754  {
1755  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1756  {
1757  // buffer status report
1758  // note that this scheduler does not differentiate the
1759  // allocation according to which LCGs have more/less bytes
1760  // to send.
1761  // Hence the BSR of different LCGs are just summed up to get
1762  // a total queue size that is used for allocation purposes.
1763 
1764  uint32_t buffer = 0;
1765  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1766  {
1767  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1768  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1769  }
1770 
1771  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1772  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1773  it = m_ceBsrRxed.find (rnti);
1774  if (it == m_ceBsrRxed.end ())
1775  {
1776  // create the new entry
1777  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1778  }
1779  else
1780  {
1781  // update the buffer size value
1782  (*it).second = buffer;
1783  }
1784  }
1785  }
1786 
1787  return;
1788 }
1789 
1790 void
1792 {
1793  NS_LOG_FUNCTION (this);
1794 // retrieve the allocation for this subframe
1795  switch (m_ulCqiFilter)
1796  {
1798  {
1799  // filter all the CQIs that are not SRS based
1800  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1801  {
1802  return;
1803  }
1804  }
1805  break;
1807  {
1808  // filter all the CQIs that are not SRS based
1809  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1810  {
1811  return;
1812  }
1813  }
1815  break;
1816 
1817  default:
1818  NS_FATAL_ERROR ("Unknown UL CQI type");
1819  }
1820 
1821  switch (params.m_ulCqi.m_type)
1822  {
1823  case UlCqi_s::PUSCH:
1824  {
1825  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1826  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1827  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1828  itMap = m_allocationMaps.find (params.m_sfnSf);
1829  if (itMap == m_allocationMaps.end ())
1830  {
1831  return;
1832  }
1833  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1834  {
1835  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1836  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1837  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1838  if (itCqi == m_ueCqi.end ())
1839  {
1840  // create a new entry
1841  std::vector <double> newCqi;
1842  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1843  {
1844  if (i == j)
1845  {
1846  newCqi.push_back (sinr);
1847  }
1848  else
1849  {
1850  // initialize with NO_SINR value.
1851  newCqi.push_back (NO_SINR);
1852  }
1853 
1854  }
1855  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1856  // generate correspondent timer
1857  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1858  }
1859  else
1860  {
1861  // update the value
1862  (*itCqi).second.at (i) = sinr;
1863  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1864  // update correspondent timer
1865  std::map <uint16_t, uint32_t>::iterator itTimers;
1866  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1867  (*itTimers).second = m_cqiTimersThreshold;
1868 
1869  }
1870 
1871  }
1872  // remove obsolete info on allocation
1873  m_allocationMaps.erase (itMap);
1874  }
1875  break;
1876  case UlCqi_s::SRS:
1877  {
1878  // get the RNTI from vendor specific parameters
1879  uint16_t rnti = 0;
1880  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1881  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1882  {
1883  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1884  {
1885  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1886  rnti = vsp->GetRnti ();
1887  }
1888  }
1889  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1890  itCqi = m_ueCqi.find (rnti);
1891  if (itCqi == m_ueCqi.end ())
1892  {
1893  // create a new entry
1894  std::vector <double> newCqi;
1895  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1896  {
1897  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1898  newCqi.push_back (sinr);
1899  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1900 
1901  }
1902  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1903  // generate correspondent timer
1904  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1905  }
1906  else
1907  {
1908  // update the values
1909  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1910  {
1911  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1912  (*itCqi).second.at (j) = sinr;
1913  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1914  }
1915  // update correspondent timer
1916  std::map <uint16_t, uint32_t>::iterator itTimers;
1917  itTimers = m_ueCqiTimers.find (rnti);
1918  (*itTimers).second = m_cqiTimersThreshold;
1919 
1920  }
1921 
1922 
1923  }
1924  break;
1925  case UlCqi_s::PUCCH_1:
1926  case UlCqi_s::PUCCH_2:
1927  case UlCqi_s::PRACH:
1928  {
1929  NS_FATAL_ERROR ("FdBetFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1930  }
1931  break;
1932  default:
1933  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1934  }
1935  return;
1936 }
1937 
1938 void
1940 {
1941  // refresh DL CQI P01 Map
1942  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1943  while (itP10 != m_p10CqiTimers.end ())
1944  {
1945  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1946  if ((*itP10).second == 0)
1947  {
1948  // delete correspondent entries
1949  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1950  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1951  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1952  m_p10CqiRxed.erase (itMap);
1953  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1954  itP10++;
1955  m_p10CqiTimers.erase (temp);
1956  }
1957  else
1958  {
1959  (*itP10).second--;
1960  itP10++;
1961  }
1962  }
1963 
1964  // refresh DL CQI A30 Map
1965  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1966  while (itA30 != m_a30CqiTimers.end ())
1967  {
1968  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1969  if ((*itA30).second == 0)
1970  {
1971  // delete correspondent entries
1972  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1973  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1974  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
1975  m_a30CqiRxed.erase (itMap);
1976  std::map <uint16_t,uint32_t>::iterator temp = itA30;
1977  itA30++;
1978  m_a30CqiTimers.erase (temp);
1979  }
1980  else
1981  {
1982  (*itA30).second--;
1983  itA30++;
1984  }
1985  }
1986 
1987  return;
1988 }
1989 
1990 
1991 void
1993 {
1994  // refresh UL CQI Map
1995  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
1996  while (itUl != m_ueCqiTimers.end ())
1997  {
1998  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1999  if ((*itUl).second == 0)
2000  {
2001  // delete correspondent entries
2002  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
2003  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
2004  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
2005  (*itMap).second.clear ();
2006  m_ueCqi.erase (itMap);
2007  std::map <uint16_t,uint32_t>::iterator temp = itUl;
2008  itUl++;
2009  m_ueCqiTimers.erase (temp);
2010  }
2011  else
2012  {
2013  (*itUl).second--;
2014  itUl++;
2015  }
2016  }
2017 
2018  return;
2019 }
2020 
2021 void
2022 FdBetFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
2023 {
2024  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
2025  LteFlowId_t flow (rnti, lcid);
2026  it = m_rlcBufferReq.find (flow);
2027  if (it != m_rlcBufferReq.end ())
2028  {
2029  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2030  // Update queues: RLC tx order Status, ReTx, Tx
2031  // Update status queue
2032  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2033  {
2034  (*it).second.m_rlcStatusPduSize = 0;
2035  }
2036  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
2037  {
2038  (*it).second.m_rlcRetransmissionQueueSize = 0;
2039  }
2040  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2041  {
2042  uint32_t rlcOverhead;
2043  if (lcid == 1)
2044  {
2045  // for SRB1 (using RLC AM) it's better to
2046  // overestimate RLC overhead rather than
2047  // underestimate it and risk unneeded
2048  // segmentation which increases delay
2049  rlcOverhead = 4;
2050  }
2051  else
2052  {
2053  // minimum RLC overhead due to header
2054  rlcOverhead = 2;
2055  }
2056  // update transmission queue
2057  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2058  {
2059  (*it).second.m_rlcTransmissionQueueSize = 0;
2060  }
2061  else
2062  {
2063  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2064  }
2065  }
2066  }
2067  else
2068  {
2069  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2070  }
2071 }
2072 
2073 void
2074 FdBetFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2075 {
2076 
2077  size = size - 2; // remove the minimum RLC overhead
2078  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2079  if (it != m_ceBsrRxed.end ())
2080  {
2081  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2082  if ((*it).second >= size)
2083  {
2084  (*it).second -= size;
2085  }
2086  else
2087  {
2088  (*it).second = 0;
2089  }
2090  }
2091  else
2092  {
2093  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2094  }
2095 
2096 }
2097 
2098 void
2100 {
2101  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2103  params.m_rnti = rnti;
2104  params.m_transmissionMode = txMode;
2106 }
2107 
2108 
2109 }
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
std::vector< struct UlInfoListElement_s > m_ulInfoList
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:88
virtual void SchedDlMacBufferReq(const struct SchedDlMacBufferReqParameters &params)
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
int FdBetType0AllocationRbg[4]
smart pointer class similar to boost::intrusive_ptr
Definition: ptr.h:59
#define NS_LOG_FUNCTION(parameters)
Definition: log.h:311
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
#define HARQ_PERIOD
Definition: lte-common.h:30
Hold a bool native type.
Definition: boolean.h:38
virtual void CschedLcReleaseReq(const struct CschedLcReleaseReqParameters &params)
virtual void CschedUeConfigReq(const struct CschedUeConfigReqParameters &params)
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
enum ns3::UlCqi_s::Type_e m_type
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
virtual void SchedDlPagingBufferReq(const struct SchedDlPagingBufferReqParameters &params)
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
std::vector< uint16_t > m_sinr
std::vector< uint8_t > DlHarqProcessesTimer_t
#define NO_SINR
#define NS_ASSERT(condition)
Definition: assert.h:64
std::vector< uint8_t > m_mcs
Definition: ff-mac-common.h:95
virtual void SchedUlTriggerReq(const struct SchedUlTriggerReqParameters &params)
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
std::vector< struct UlDciListElement_s > m_dciList
#define NS_LOG_INFO(msg)
Definition: log.h:264
See section 4.3.10 buildRARListElement.
std::map< uint16_t, fdbetsFlowPerf_t > m_flowStatsDl
virtual void SchedDlTriggerReq(const struct SchedDlTriggerReqParameters &params)
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
std::map< uint16_t, uint8_t > m_p10CqiRxed
std::vector< uint16_t > m_rachAllocationMap
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
#define NS_FATAL_ERROR(msg)
fatal error handling
Definition: fatal-error.h:72
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
FfMacSchedSapUser * m_schedSapUser
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Blind Equal Throughput scheduler...
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
std::map< uint16_t, uint32_t > m_ueCqiTimers
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
Hold an unsigned integer type.
Definition: uinteger.h:46
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
static uint8_t TxMode2LayerNum(uint8_t txMode)
Definition: lte-common.cc:170
Ptr< SampleEmitter > s
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
NS_OBJECT_ENSURE_REGISTERED(AntennaModel)
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
std::vector< uint8_t > m_ndi
Definition: ff-mac-common.h:96
FfMacCschedSapProvider * m_cschedSapProvider
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
Provides the SCHED SAP.
virtual void CschedUeReleaseReq(const struct CschedUeReleaseReqParameters &params)
std::map< uint16_t, uint32_t > m_p10CqiTimers
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
virtual void SchedDlRlcBufferReq(const struct SchedDlRlcBufferReqParameters &params)
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
#define NS_LOG_LOGIC(msg)
Definition: log.h:334
std::vector< struct CqiListElement_s > m_cqiList
std::vector< struct DlInfoListElement_s > m_dlInfoList
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
FfMacSchedSapProvider * m_schedSapProvider
friend class FdBetSchedulerMemberCschedSapProvider
virtual void SchedUlCqiInfoReq(const struct SchedUlCqiInfoReqParameters &params)
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
std::vector< uint16_t > m_tbsSize
Definition: ff-mac-common.h:94
See section 4.3.9 rlcPDU_ListElement.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
FfMacCschedSapUser * m_cschedSapUser
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
virtual void SchedUlNoiseInterferenceReq(const struct SchedUlNoiseInterferenceReqParameters &params)
std::map< uint16_t, std::vector< double > > m_ueCqi
std::map< uint16_t, uint8_t > m_uesTxMode
std::vector< uint8_t > m_rv
Definition: ff-mac-common.h:97
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
std::map< uint16_t, uint32_t > m_a30CqiTimers
static Time Now(void)
Definition: simulator.cc:180
NS_LOG_COMPONENT_DEFINE("FdBetFfMacScheduler")
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
UlCqiFilter_t m_ulCqiFilter
std::vector< struct RachListElement_s > m_rachList
#define SRS_CQI_RNTI_VSP
virtual void CschedCellConfigReq(const struct CschedCellConfigReqParameters &params)
CSCHED_CELL_CONFIG_REQ.
#define NS_ASSERT_MSG(condition, message)
Definition: assert.h:86
std::vector< struct MacCeListElement_s > m_macCeList
std::vector< struct RachListElement_s > m_rachList
virtual void CschedLcConfigReq(const struct CschedLcConfigReqParameters &params)
static double fpS11dot3toDouble(uint16_t val)
Definition: lte-common.cc:114
#define HARQ_PROC_NUM
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
std::vector< uint8_t > UlHarqProcessesStatus_t
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
std::vector< uint8_t > DlHarqProcessesStatus_t
static uint32_t BsrId2BufferSize(uint8_t val)
Definition: lte-common.cc:142
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
#define NS_LOG_DEBUG(msg)
Definition: log.h:255
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
virtual void SchedDlCqiInfoReq(const struct SchedDlCqiInfoReqParameters &params)
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
std::map< uint16_t, fdbetsFlowPerf_t > m_flowStatsUl
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
#define NS_LOG_ERROR(msg)
Definition: log.h:237
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
virtual void SchedDlRachInfoReq(const struct SchedDlRachInfoReqParameters &params)
struct DlDciListElement_s m_dci
#define HARQ_DL_TIMEOUT
std::vector< struct BuildRarListElement_s > m_buildRarList
virtual void SchedUlMacCtrlInfoReq(const struct SchedUlMacCtrlInfoReqParameters &params)
a unique identifier for an interface.
Definition: type-id.h:49
TypeId SetParent(TypeId tid)
Definition: type-id.cc:610
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
virtual void SchedUlSrInfoReq(const struct SchedUlSrInfoReqParameters &params)
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
friend class FdBetSchedulerMemberSchedSapProvider
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
std::vector< struct BuildDataListElement_s > m_buildDataList
std::map< uint16_t, uint32_t > m_ceBsrRxed
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
See section 4.3.8 builDataListElement.