A Discrete-Event Network Simulator
API
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
tdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/tdmt-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <set>
32 #include <cfloat>
33 
34 NS_LOG_COMPONENT_DEFINE ("TdMtFfMacScheduler");
35 
36 namespace ns3 {
37 
39  10, // RGB size 1
40  26, // RGB size 2
41  63, // RGB size 3
42  110 // RGB size 4
43 }; // see table 7.1.6.1-1 of 36.213
44 
45 
46 NS_OBJECT_ENSURE_REGISTERED (TdMtFfMacScheduler);
47 
48 
49 
51 {
52 public:
54 
55  // inherited from FfMacCschedSapProvider
56  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
57  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
58  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
59  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
60  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
61 
62 private:
65 };
66 
68 {
69 }
70 
72 {
73 }
74 
75 
76 void
78 {
80 }
81 
82 void
84 {
86 }
87 
88 
89 void
91 {
93 }
94 
95 void
97 {
99 }
100 
101 void
103 {
105 }
106 
107 
108 
109 
111 {
112 public:
114 
115  // inherited from FfMacSchedSapProvider
116  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
117  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
118  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
119  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
120  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
121  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
122  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
123  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
124  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
125  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
126  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
127 
128 
129 private:
132 };
133 
134 
135 
137 {
138 }
139 
140 
142  : m_scheduler (scheduler)
143 {
144 }
145 
146 void
148 {
150 }
151 
152 void
154 {
156 }
157 
158 void
160 {
162 }
163 
164 void
166 {
168 }
169 
170 void
172 {
174 }
175 
176 void
178 {
180 }
181 
182 void
184 {
186 }
187 
188 void
190 {
192 }
193 
194 void
196 {
198 }
199 
200 void
202 {
204 }
205 
206 void
208 {
210 }
211 
212 
213 
214 
215 
217  : m_cschedSapUser (0),
218  m_schedSapUser (0),
219  m_nextRntiUl (0)
220 {
221  m_amc = CreateObject <LteAmc> ();
224 }
225 
227 {
228  NS_LOG_FUNCTION (this);
229 }
230 
231 void
233 {
234  NS_LOG_FUNCTION (this);
236  m_dlHarqProcessesTimer.clear ();
238  m_dlInfoListBuffered.clear ();
239  m_ulHarqCurrentProcessId.clear ();
240  m_ulHarqProcessesStatus.clear ();
242  delete m_cschedSapProvider;
243  delete m_schedSapProvider;
244 }
245 
246 TypeId
248 {
249  static TypeId tid = TypeId ("ns3::TdMtFfMacScheduler")
251  .AddConstructor<TdMtFfMacScheduler> ()
252  .AddAttribute ("CqiTimerThreshold",
253  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
254  UintegerValue (1000),
255  MakeUintegerAccessor (&TdMtFfMacScheduler::m_cqiTimersThreshold),
256  MakeUintegerChecker<uint32_t> ())
257  .AddAttribute ("HarqEnabled",
258  "Activate/Deactivate the HARQ [by default is active].",
259  BooleanValue (true),
260  MakeBooleanAccessor (&TdMtFfMacScheduler::m_harqOn),
261  MakeBooleanChecker ())
262  .AddAttribute ("UlGrantMcs",
263  "The MCS of the UL grant, must be [0..15] (default 0)",
264  UintegerValue (0),
265  MakeUintegerAccessor (&TdMtFfMacScheduler::m_ulGrantMcs),
266  MakeUintegerChecker<uint8_t> ())
267  ;
268  return tid;
269 }
270 
271 
272 
273 void
275 {
276  m_cschedSapUser = s;
277 }
278 
279 void
281 {
282  m_schedSapUser = s;
283 }
284 
287 {
288  return m_cschedSapProvider;
289 }
290 
293 {
294  return m_schedSapProvider;
295 }
296 
297 void
299 {
300  NS_LOG_FUNCTION (this);
301  // Read the subset of parameters used
302  m_cschedCellConfig = params;
305  cnf.m_result = SUCCESS;
307  return;
308 }
309 
310 void
312 {
313  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
314  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
315  if (it == m_uesTxMode.end ())
316  {
317  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
318  // generate HARQ buffers
319  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
320  DlHarqProcessesStatus_t dlHarqPrcStatus;
321  dlHarqPrcStatus.resize (8,0);
322  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
323  DlHarqProcessesTimer_t dlHarqProcessesTimer;
324  dlHarqProcessesTimer.resize (8,0);
325  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
326  DlHarqProcessesDciBuffer_t dlHarqdci;
327  dlHarqdci.resize (8);
328  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
329  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
330  dlHarqRlcPdu.resize (2);
331  dlHarqRlcPdu.at (0).resize (8);
332  dlHarqRlcPdu.at (1).resize (8);
333  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
334  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
335  UlHarqProcessesStatus_t ulHarqPrcStatus;
336  ulHarqPrcStatus.resize (8,0);
337  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
338  UlHarqProcessesDciBuffer_t ulHarqdci;
339  ulHarqdci.resize (8);
340  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
341  }
342  else
343  {
344  (*it).second = params.m_transmissionMode;
345  }
346  return;
347 }
348 
349 void
351 {
352  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
353 
354  std::set <uint16_t>::iterator it;
355  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
356  {
357  it = m_flowStatsDl.find (params.m_rnti);
358 
359  if (it == m_flowStatsDl.end ())
360  {
361  m_flowStatsDl.insert (params.m_rnti);
362  m_flowStatsUl.insert (params.m_rnti);
363  }
364  }
365 
366  return;
367 }
368 
369 void
371 {
372  NS_LOG_FUNCTION (this);
373  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
374  {
375  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
376  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
377  while (it!=m_rlcBufferReq.end ())
378  {
379  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
380  {
381  temp = it;
382  it++;
383  m_rlcBufferReq.erase (temp);
384  }
385  else
386  {
387  it++;
388  }
389  }
390  }
391  return;
392 }
393 
394 void
396 {
397  NS_LOG_FUNCTION (this);
398 
399  m_uesTxMode.erase (params.m_rnti);
400  m_dlHarqCurrentProcessId.erase (params.m_rnti);
401  m_dlHarqProcessesStatus.erase (params.m_rnti);
402  m_dlHarqProcessesTimer.erase (params.m_rnti);
403  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
405  m_ulHarqCurrentProcessId.erase (params.m_rnti);
406  m_ulHarqProcessesStatus.erase (params.m_rnti);
407  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
408  m_flowStatsDl.erase (params.m_rnti);
409  m_flowStatsUl.erase (params.m_rnti);
410  m_ceBsrRxed.erase (params.m_rnti);
411  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
412  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
413  while (it!=m_rlcBufferReq.end ())
414  {
415  if ((*it).first.m_rnti == params.m_rnti)
416  {
417  temp = it;
418  it++;
419  m_rlcBufferReq.erase (temp);
420  }
421  else
422  {
423  it++;
424  }
425  }
426  if (m_nextRntiUl == params.m_rnti)
427  {
428  m_nextRntiUl = 0;
429  }
430 
431  return;
432 }
433 
434 
435 void
437 {
438  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
439  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
440 
441  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
442 
443  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
444 
445  it = m_rlcBufferReq.find (flow);
446 
447  if (it == m_rlcBufferReq.end ())
448  {
449  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
450  }
451  else
452  {
453  (*it).second = params;
454  }
455 
456  return;
457 }
458 
459 void
461 {
462  NS_LOG_FUNCTION (this);
463  NS_FATAL_ERROR ("method not implemented");
464  return;
465 }
466 
467 void
469 {
470  NS_LOG_FUNCTION (this);
471  NS_FATAL_ERROR ("method not implemented");
472  return;
473 }
474 
475 int
477 {
478  for (int i = 0; i < 4; i++)
479  {
480  if (dlbandwidth < TdMtType0AllocationRbg[i])
481  {
482  return (i + 1);
483  }
484  }
485 
486  return (-1);
487 }
488 
489 
490 int
492 {
493  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
494  int lcActive = 0;
495  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
496  {
497  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
498  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
499  || ((*it).second.m_rlcStatusPduSize > 0) ))
500  {
501  lcActive++;
502  }
503  if ((*it).first.m_rnti > rnti)
504  {
505  break;
506  }
507  }
508  return (lcActive);
509 
510 }
511 
512 
513 uint8_t
515 {
516  NS_LOG_FUNCTION (this << rnti);
517 
518  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
519  if (it == m_dlHarqCurrentProcessId.end ())
520  {
521  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
522  }
523  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
524  if (itStat == m_dlHarqProcessesStatus.end ())
525  {
526  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
527  }
528  uint8_t i = (*it).second;
529  do
530  {
531  i = (i + 1) % HARQ_PROC_NUM;
532  }
533  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
534  if ((*itStat).second.at (i) == 0)
535  {
536  return (true);
537  }
538  else
539  {
540  return (false); // return a not valid harq proc id
541  }
542 }
543 
544 
545 
546 uint8_t
548 {
549  NS_LOG_FUNCTION (this << rnti);
550 
551  if (m_harqOn == false)
552  {
553  return (0);
554  }
555 
556 
557  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
558  if (it == m_dlHarqCurrentProcessId.end ())
559  {
560  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
561  }
562  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
563  if (itStat == m_dlHarqProcessesStatus.end ())
564  {
565  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
566  }
567  uint8_t i = (*it).second;
568  do
569  {
570  i = (i + 1) % HARQ_PROC_NUM;
571  }
572  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
573  if ((*itStat).second.at (i) == 0)
574  {
575  (*it).second = i;
576  (*itStat).second.at (i) = 1;
577  }
578  else
579  {
580  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
581  }
582 
583  return ((*it).second);
584 }
585 
586 
587 void
589 {
590  NS_LOG_FUNCTION (this);
591 
592  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
593  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
594  {
595  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
596  {
597  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
598  {
599  // reset HARQ process
600 
601  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
602  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
603  if (itStat == m_dlHarqProcessesStatus.end ())
604  {
605  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
606  }
607  (*itStat).second.at (i) = 0;
608  (*itTimers).second.at (i) = 0;
609  }
610  else
611  {
612  (*itTimers).second.at (i)++;
613  }
614  }
615  }
616 
617 }
618 
619 
620 void
622 {
623  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
624  // API generated by RLC for triggering the scheduling of a DL subframe
625 
626 
627  // evaluate the relative channel quality indicator for each UE per each RBG
628  // (since we are using allocation type 0 the small unit of allocation is RBG)
629  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
630 
631  RefreshDlCqiMaps ();
632 
634  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
635  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
636  std::vector <bool> rbgMap; // global RBGs map
637  uint16_t rbgAllocatedNum = 0;
638  std::set <uint16_t> rntiAllocated;
639  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
641 
642  // RACH Allocation
644  uint16_t rbStart = 0;
645  std::vector <struct RachListElement_s>::iterator itRach;
646  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
647  {
648  NS_ASSERT_MSG (m_amc->GetTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
649  BuildRarListElement_s newRar;
650  newRar.m_rnti = (*itRach).m_rnti;
651  // DL-RACH Allocation
652  // Ideal: no needs of configuring m_dci
653  // UL-RACH Allocation
654  newRar.m_grant.m_rnti = newRar.m_rnti;
655  newRar.m_grant.m_mcs = m_ulGrantMcs;
656  uint16_t rbLen = 1;
657  uint16_t tbSizeBits = 0;
658  // find lowest TB size that fits UL grant estimated size
659  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
660  {
661  rbLen++;
662  tbSizeBits = m_amc->GetTbSizeFromMcs (m_ulGrantMcs, rbLen);
663  }
664  if (tbSizeBits < (*itRach).m_estimatedSize)
665  {
666  // no more allocation space: finish allocation
667  break;
668  }
669  newRar.m_grant.m_rbStart = rbStart;
670  newRar.m_grant.m_rbLen = rbLen;
671  newRar.m_grant.m_tbSize = tbSizeBits / 8;
672  newRar.m_grant.m_hopping = false;
673  newRar.m_grant.m_tpc = 0;
674  newRar.m_grant.m_cqiRequest = false;
675  newRar.m_grant.m_ulDelay = false;
676  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
677  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
678  {
679  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
680  }
681  rbStart = rbStart + rbLen;
682 
683  ret.m_buildRarList.push_back (newRar);
684  }
685  m_rachList.clear ();
686 
687 
688  // Process DL HARQ feedback
690  // retrieve past HARQ retx buffered
691  if (m_dlInfoListBuffered.size () > 0)
692  {
693  if (params.m_dlInfoList.size () > 0)
694  {
695  NS_LOG_INFO (this << " Received DL-HARQ feedback");
696  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
697  }
698  }
699  else
700  {
701  if (params.m_dlInfoList.size () > 0)
702  {
704  }
705  }
706  if (m_harqOn == false)
707  {
708  // Ignore HARQ feedback
709  m_dlInfoListBuffered.clear ();
710  }
711  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
712  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
713  {
714  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
715  if (itRnti != rntiAllocated.end ())
716  {
717  // RNTI already allocated for retx
718  continue;
719  }
720  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
721  std::vector <bool> retx;
722  NS_LOG_INFO (this << " Processing DLHARQ feedback");
723  if (nLayers == 1)
724  {
725  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
726  retx.push_back (false);
727  }
728  else
729  {
730  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
731  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
732  }
733  if (retx.at (0) || retx.at (1))
734  {
735  // retrieve HARQ process information
736  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
737  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
738  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
739  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
740  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
741  {
742  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
743  }
744 
745  DlDciListElement_s dci = (*itHarq).second.at (harqId);
746  int rv = 0;
747  if (dci.m_rv.size () == 1)
748  {
749  rv = dci.m_rv.at (0);
750  }
751  else
752  {
753  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
754  }
755 
756  if (rv == 3)
757  {
758  // maximum number of retx reached -> drop process
759  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
760  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
761  if (it == m_dlHarqProcessesStatus.end ())
762  {
763  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
764  }
765  (*it).second.at (harqId) = 0;
766  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
767  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
768  {
769  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
770  }
771  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
772  {
773  (*itRlcPdu).second.at (k).at (harqId).clear ();
774  }
775  continue;
776  }
777  // check the feasibility of retransmitting on the same RBGs
778  // translate the DCI to Spectrum framework
779  std::vector <int> dciRbg;
780  uint32_t mask = 0x1;
781  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
782  for (int j = 0; j < 32; j++)
783  {
784  if (((dci.m_rbBitmap & mask) >> j) == 1)
785  {
786  dciRbg.push_back (j);
787  NS_LOG_INFO ("\t" << j);
788  }
789  mask = (mask << 1);
790  }
791  bool free = true;
792  for (uint8_t j = 0; j < dciRbg.size (); j++)
793  {
794  if (rbgMap.at (dciRbg.at (j)) == true)
795  {
796  free = false;
797  break;
798  }
799  }
800  if (free)
801  {
802  // use the same RBGs for the retx
803  // reserve RBGs
804  for (uint8_t j = 0; j < dciRbg.size (); j++)
805  {
806  rbgMap.at (dciRbg.at (j)) = true;
807  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
808  rbgAllocatedNum++;
809  }
810 
811  NS_LOG_INFO (this << " Send retx in the same RBGs");
812  }
813  else
814  {
815  // find RBGs for sending HARQ retx
816  uint8_t j = 0;
817  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
818  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
819  std::vector <bool> rbgMapCopy = rbgMap;
820  while ((j < dciRbg.size ())&&(startRbg != rbgId))
821  {
822  if (rbgMapCopy.at (rbgId) == false)
823  {
824  rbgMapCopy.at (rbgId) = true;
825  dciRbg.at (j) = rbgId;
826  j++;
827  }
828  rbgId++;
829  }
830  if (j == dciRbg.size ())
831  {
832  // find new RBGs -> update DCI map
833  uint32_t rbgMask = 0;
834  for (uint16_t k = 0; k < dciRbg.size (); k++)
835  {
836  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
837  rbgAllocatedNum++;
838  }
839  dci.m_rbBitmap = rbgMask;
840  rbgMap = rbgMapCopy;
841  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
842  }
843  else
844  {
845  // HARQ retx cannot be performed on this TTI -> store it
846  dlInfoListUntxed.push_back (params.m_dlInfoList.at (i));
847  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
848  }
849  }
850  // retrieve RLC PDU list for retx TBsize and update DCI
852  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
853  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
854  {
855  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
856  }
857  for (uint8_t j = 0; j < nLayers; j++)
858  {
859  if (retx.at (j))
860  {
861  if (j >= dci.m_ndi.size ())
862  {
863  // for avoiding errors in MIMO transient phases
864  dci.m_ndi.push_back (0);
865  dci.m_rv.push_back (0);
866  dci.m_mcs.push_back (0);
867  dci.m_tbsSize.push_back (0);
868  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
869  }
870  else
871  {
872  dci.m_ndi.at (j) = 0;
873  dci.m_rv.at (j)++;
874  (*itHarq).second.at (harqId).m_rv.at (j)++;
875  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
876  }
877  }
878  else
879  {
880  // empty TB of layer j
881  dci.m_ndi.at (j) = 0;
882  dci.m_rv.at (j) = 0;
883  dci.m_mcs.at (j) = 0;
884  dci.m_tbsSize.at (j) = 0;
885  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
886  }
887  }
888  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
889  {
890  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
891  for (uint8_t j = 0; j < nLayers; j++)
892  {
893  if (retx.at (j))
894  {
895  if (j < dci.m_ndi.size ())
896  {
897  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
898  }
899  }
900  }
901 
902  if (rlcPduListPerLc.size () > 0)
903  {
904  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
905  }
906  }
907  newEl.m_rnti = rnti;
908  newEl.m_dci = dci;
909  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
910  // refresh timer
911  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
912  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
913  {
914  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
915  }
916  (*itHarqTimer).second.at (harqId) = 0;
917  ret.m_buildDataList.push_back (newEl);
918  rntiAllocated.insert (rnti);
919  }
920  else
921  {
922  // update HARQ process status
923  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
924  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
925  if (it == m_dlHarqProcessesStatus.end ())
926  {
927  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
928  }
929  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
930  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
931  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
932  {
933  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
934  }
935  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
936  {
937  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
938  }
939  }
940  }
941  m_dlInfoListBuffered.clear ();
942  m_dlInfoListBuffered = dlInfoListUntxed;
943 
944 
945  std::set <uint16_t>::iterator it;
946  std::set <uint16_t>::iterator itMax = m_flowStatsDl.end ();
947  double metricMax = 0.0;
948  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
949  {
950  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it));
951  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it))))
952  {
953  // UE already allocated for HARQ or without HARQ process available -> drop it
954  if (itRnti != rntiAllocated.end ())
955  {
956  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it));
957  }
958  if (!HarqProcessAvailability ((*it)))
959  {
960  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it));
961  }
962 
963  continue;
964  }
965 
966  std::map <uint16_t,uint8_t>::iterator itTxMode;
967  itTxMode = m_uesTxMode.find ((*it));
968  if (itTxMode == m_uesTxMode.end ())
969  {
970  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it));
971  }
972  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
973  std::map <uint16_t,uint8_t>::iterator itCqi = m_p10CqiRxed.find ((*it));
974  uint8_t wbCqi = 0;
975  if (itCqi != m_p10CqiRxed.end ())
976  {
977  wbCqi = (*itCqi).second;
978  }
979  else
980  {
981  wbCqi = 1; // lowest value fro trying a transmission
982  }
983 
984  if (wbCqi != 0)
985  {
986  // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
987  if (LcActivePerFlow (*it) > 0)
988  {
989  // this UE has data to transmit
990  double achievableRate = 0.0;
991  for (uint8_t k = 0; k < nLayer; k++)
992  {
993  uint8_t mcs = 0;
994  mcs = m_amc->GetMcsFromCqi (wbCqi);
995  achievableRate += ((m_amc->GetTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
996 
997  NS_LOG_DEBUG (this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate );
998  }
999 
1000  double metric = achievableRate;
1001 
1002  if (metric > metricMax)
1003  {
1004  metricMax = metric;
1005  itMax = it;
1006  }
1007  } // LcActivePerFlow
1008 
1009  } // cqi
1010 
1011  } // end for m_flowStatsDl
1012 
1013  if (itMax == m_flowStatsDl.end ())
1014  {
1015  // no UE available for downlink
1016  NS_LOG_INFO (this << " any UE found");
1017  }
1018  else
1019  {
1020  // assign all free RBGs to this UE
1021  std::vector <uint16_t> tempMap;
1022  for (int i = 0; i < rbgNum; i++)
1023  {
1024  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1025  NS_LOG_DEBUG (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1026  if (rbgMap.at (i) == false)
1027  {
1028  rbgMap.at (i) = true;
1029  tempMap.push_back (i);
1030  } // end for RBG free
1031 
1032  } // end for RBGs
1033 
1034  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax), tempMap));
1035  }
1036 
1037  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1038  // creating the correspondent DCIs
1039  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1040  while (itMap != allocationMap.end ())
1041  {
1042  // create new BuildDataListElement_s for this LC
1043  BuildDataListElement_s newEl;
1044  newEl.m_rnti = (*itMap).first;
1045  // create the DlDciListElement_s
1046  DlDciListElement_s newDci;
1047  newDci.m_rnti = (*itMap).first;
1048  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1049 
1050  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1051  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1052  if (lcActives == 0)
1053  {
1054  // Set to max value, to avoid divide by 0 below
1055  lcActives = (uint16_t)65535; // UINT16_MAX;
1056  }
1057  uint16_t RgbPerRnti = (*itMap).second.size ();
1058  std::map <uint16_t,uint8_t>::iterator itCqi;
1059  itCqi = m_p10CqiRxed.find ((*itMap).first);
1060  std::map <uint16_t,uint8_t>::iterator itTxMode;
1061  itTxMode = m_uesTxMode.find ((*itMap).first);
1062  if (itTxMode == m_uesTxMode.end ())
1063  {
1064  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1065  }
1066  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1067  for (uint8_t j = 0; j < nLayer; j++)
1068  {
1069  if (itCqi == m_p10CqiRxed.end ())
1070  {
1071  newDci.m_mcs.push_back (0); // no info on this user -> lowest MCS
1072  }
1073  else
1074  {
1075  newDci.m_mcs.push_back ( m_amc->GetMcsFromCqi ((*itCqi).second) );
1076  }
1077 
1078  int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1079  newDci.m_tbsSize.push_back (tbSize);
1080  }
1081 
1082  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1083  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1084  uint32_t rbgMask = 0;
1085  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1086  {
1087  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1088  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1089  }
1090  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1091 
1092  // create the rlc PDUs -> equally divide resources among actives LCs
1093  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1094  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1095  {
1096  if (((*itBufReq).first.m_rnti == (*itMap).first)
1097  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1098  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1099  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1100  {
1101  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1102  for (uint8_t j = 0; j < nLayer; j++)
1103  {
1104  RlcPduListElement_s newRlcEl;
1105  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1106  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1107  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1108  newRlcPduLe.push_back (newRlcEl);
1109  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1110  if (m_harqOn == true)
1111  {
1112  // store RLC PDU list for HARQ
1113  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1114  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1115  {
1116  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1117  }
1118  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1119  }
1120  }
1121  newEl.m_rlcPduList.push_back (newRlcPduLe);
1122  }
1123  if ((*itBufReq).first.m_rnti > (*itMap).first)
1124  {
1125  break;
1126  }
1127  }
1128  for (uint8_t j = 0; j < nLayer; j++)
1129  {
1130  newDci.m_ndi.push_back (1);
1131  newDci.m_rv.push_back (0);
1132  }
1133 
1134  newEl.m_dci = newDci;
1135 
1136  if (m_harqOn == true)
1137  {
1138  // store DCI for HARQ
1139  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1140  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1141  {
1142  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1143  }
1144  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1145  // refresh timer
1146  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1147  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1148  {
1149  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1150  }
1151  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1152  }
1153 
1154  // ...more parameters -> ingored in this version
1155 
1156  ret.m_buildDataList.push_back (newEl);
1157 
1158  itMap++;
1159  } // end while allocation
1160  ret.m_nrOfPdcchOfdmSymbols = 1;
1161 
1163 
1164 
1165  return;
1166 }
1167 
1168 void
1170 {
1171  NS_LOG_FUNCTION (this);
1172 
1173  m_rachList = params.m_rachList;
1174 
1175  return;
1176 }
1177 
1178 void
1180 {
1181  NS_LOG_FUNCTION (this);
1182 
1183  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1184  {
1185  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1186  {
1187  // wideband CQI reporting
1188  std::map <uint16_t,uint8_t>::iterator it;
1189  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1190  it = m_p10CqiRxed.find (rnti);
1191  if (it == m_p10CqiRxed.end ())
1192  {
1193  // create the new entry
1194  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1195  // generate correspondent timer
1196  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1197  }
1198  else
1199  {
1200  // update the CQI value and refresh correspondent timer
1201  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1202  // update correspondent timer
1203  std::map <uint16_t,uint32_t>::iterator itTimers;
1204  itTimers = m_p10CqiTimers.find (rnti);
1205  (*itTimers).second = m_cqiTimersThreshold;
1206  }
1207  }
1208  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1209  {
1210  // subband CQI reporting high layer configured
1211  std::map <uint16_t,SbMeasResult_s>::iterator it;
1212  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1213  it = m_a30CqiRxed.find (rnti);
1214  if (it == m_a30CqiRxed.end ())
1215  {
1216  // create the new entry
1217  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1218  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1219  }
1220  else
1221  {
1222  // update the CQI value and refresh correspondent timer
1223  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1224  std::map <uint16_t,uint32_t>::iterator itTimers;
1225  itTimers = m_a30CqiTimers.find (rnti);
1226  (*itTimers).second = m_cqiTimersThreshold;
1227  }
1228  }
1229  else
1230  {
1231  NS_LOG_ERROR (this << " CQI type unknown");
1232  }
1233  }
1234 
1235  return;
1236 }
1237 
1238 
1239 double
1240 TdMtFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1241 {
1242  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1243  if (itCqi == m_ueCqi.end ())
1244  {
1245  // no cqi info about this UE
1246  return (NO_SINR);
1247 
1248  }
1249  else
1250  {
1251  // take the average SINR value among the available
1252  double sinrSum = 0;
1253  int sinrNum = 0;
1254  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1255  {
1256  double sinr = (*itCqi).second.at (i);
1257  if (sinr != NO_SINR)
1258  {
1259  sinrSum += sinr;
1260  sinrNum++;
1261  }
1262  }
1263  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1264  // store the value
1265  (*itCqi).second.at (rb) = estimatedSinr;
1266  return (estimatedSinr);
1267  }
1268 }
1269 
1270 void
1272 {
1273  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1274 
1275  RefreshUlCqiMaps ();
1276 
1277  // Generate RBs map
1279  std::vector <bool> rbMap;
1280  uint16_t rbAllocatedNum = 0;
1281  std::set <uint16_t> rntiAllocated;
1282  std::vector <uint16_t> rbgAllocationMap;
1283  // update with RACH allocation map
1284  rbgAllocationMap = m_rachAllocationMap;
1285  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1286  m_rachAllocationMap.clear ();
1288 
1289  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1290  // remove RACH allocation
1291  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1292  {
1293  if (rbgAllocationMap.at (i) != 0)
1294  {
1295  rbMap.at (i) = true;
1296  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1297  }
1298  }
1299 
1300 
1301  if (m_harqOn == true)
1302  {
1303  // Process UL HARQ feedback
1304  // update UL HARQ proc id
1305  std::map <uint16_t, uint8_t>::iterator itProcId;
1306  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
1307  {
1308  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
1309  }
1310 
1311  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1312  {
1313  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1314  {
1315  // retx correspondent block: retrieve the UL-DCI
1316  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1317  itProcId = m_ulHarqCurrentProcessId.find (rnti);
1318  if (itProcId == m_ulHarqCurrentProcessId.end ())
1319  {
1320  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1321  }
1322  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1323  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1324  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1325  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1326  {
1327  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1328  continue;
1329  }
1330  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1331  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1332  if (itStat == m_ulHarqProcessesStatus.end ())
1333  {
1334  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1335  }
1336  if ((*itStat).second.at (harqId) >= 3)
1337  {
1338  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1339  continue;
1340  }
1341  bool free = true;
1342  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1343  {
1344  if (rbMap.at (j) == true)
1345  {
1346  free = false;
1347  NS_LOG_INFO (this << " BUSY " << j);
1348  }
1349  }
1350  if (free)
1351  {
1352  // retx on the same RBs
1353  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1354  {
1355  rbMap.at (j) = true;
1356  rbgAllocationMap.at (j) = dci.m_rnti;
1357  NS_LOG_INFO ("\tRB " << j);
1358  rbAllocatedNum++;
1359  }
1360  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1361  }
1362  else
1363  {
1364  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1365  continue;
1366  }
1367  dci.m_ndi = 0;
1368  // Update HARQ buffers with new HarqId
1369  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1370  (*itStat).second.at (harqId) = 0;
1371  (*itHarq).second.at ((*itProcId).second) = dci;
1372  ret.m_dciList.push_back (dci);
1373  rntiAllocated.insert (dci.m_rnti);
1374  }
1375  else
1376  {
1377  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1378  }
1379  }
1380  }
1381 
1382  std::map <uint16_t,uint32_t>::iterator it;
1383  int nflows = 0;
1384 
1385  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1386  {
1387  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1388  // select UEs with queues not empty and not yet allocated for HARQ
1389  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1390  {
1391  nflows++;
1392  }
1393  }
1394 
1395  if (nflows == 0)
1396  {
1397  if (ret.m_dciList.size () > 0)
1398  {
1400  }
1401 
1402  return; // no flows to be scheduled
1403  }
1404 
1405 
1406  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1407  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1408  if (rbPerFlow < 3)
1409  {
1410  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1411  }
1412  int rbAllocated = 0;
1413 
1414  if (m_nextRntiUl != 0)
1415  {
1416  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1417  {
1418  if ((*it).first == m_nextRntiUl)
1419  {
1420  break;
1421  }
1422  }
1423  if (it == m_ceBsrRxed.end ())
1424  {
1425  NS_LOG_ERROR (this << " no user found");
1426  }
1427  }
1428  else
1429  {
1430  it = m_ceBsrRxed.begin ();
1431  m_nextRntiUl = (*it).first;
1432  }
1433  do
1434  {
1435  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1436  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1437  {
1438  // UE already allocated for UL-HARQ -> skip it
1439  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1440  it++;
1441  if (it == m_ceBsrRxed.end ())
1442  {
1443  // restart from the first
1444  it = m_ceBsrRxed.begin ();
1445  }
1446  continue;
1447  }
1448  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1449  {
1450  // limit to physical resources last resource assignment
1451  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1452  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1453  if (rbPerFlow < 3)
1454  {
1455  // terminate allocation
1456  rbPerFlow = 0;
1457  }
1458  }
1459 
1460  UlDciListElement_s uldci;
1461  uldci.m_rnti = (*it).first;
1462  uldci.m_rbLen = rbPerFlow;
1463  bool allocated = false;
1464  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1465  while ((!allocated)&&((rbAllocated + rbPerFlow - 1) < m_cschedCellConfig.m_ulBandwidth) && (rbPerFlow != 0))
1466  {
1467  // check availability
1468  bool free = true;
1469  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1470  {
1471  if (rbMap.at (j) == true)
1472  {
1473  free = false;
1474  break;
1475  }
1476  }
1477  if (free)
1478  {
1479  uldci.m_rbStart = rbAllocated;
1480 
1481  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1482  {
1483  rbMap.at (j) = true;
1484  // store info on allocation for managing ul-cqi interpretation
1485  rbgAllocationMap.at (j) = (*it).first;
1486  }
1487  rbAllocated += rbPerFlow;
1488  allocated = true;
1489  break;
1490  }
1491  rbAllocated++;
1492  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1493  {
1494  // limit to physical resources last resource assignment
1495  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1496  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1497  if (rbPerFlow < 3)
1498  {
1499  // terminate allocation
1500  rbPerFlow = 0;
1501  }
1502  }
1503  }
1504  if (!allocated)
1505  {
1506  // unable to allocate new resource: finish scheduling
1507  m_nextRntiUl = (*it).first;
1508  if (ret.m_dciList.size () > 0)
1509  {
1511  }
1512  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1513  return;
1514  }
1515 
1516 
1517 
1518  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1519  int cqi = 0;
1520  if (itCqi == m_ueCqi.end ())
1521  {
1522  // no cqi info about this UE
1523  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1524  }
1525  else
1526  {
1527  // take the lowest CQI value (worst RB)
1528  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1529  if (minSinr == NO_SINR)
1530  {
1531  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1532  }
1533  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1534  {
1535  double sinr = (*itCqi).second.at (i);
1536  if (sinr == NO_SINR)
1537  {
1538  sinr = EstimateUlSinr ((*it).first, i);
1539  }
1540  if ((*itCqi).second.at (i) < minSinr)
1541  {
1542  minSinr = (*itCqi).second.at (i);
1543  }
1544  }
1545 
1546  // translate SINR -> cqi: WILD ACK: same as DL
1547  double s = log2 ( 1 + (
1548  std::pow (10, minSinr / 10 ) /
1549  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1550  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1551  if (cqi == 0)
1552  {
1553  it++;
1554  if (it == m_ceBsrRxed.end ())
1555  {
1556  // restart from the first
1557  it = m_ceBsrRxed.begin ();
1558  }
1559  NS_LOG_DEBUG (this << " UE discared for CQI=0, RNTI " << uldci.m_rnti);
1560  // remove UE from allocation map
1561  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1562  {
1563  rbgAllocationMap.at (i) = 0;
1564  }
1565  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1566  }
1567  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1568  }
1569 
1570  uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1571  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1572  uldci.m_ndi = 1;
1573  uldci.m_cceIndex = 0;
1574  uldci.m_aggrLevel = 1;
1575  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1576  uldci.m_hopping = false;
1577  uldci.m_n2Dmrs = 0;
1578  uldci.m_tpc = 0; // no power control
1579  uldci.m_cqiRequest = false; // only period CQI at this stage
1580  uldci.m_ulIndex = 0; // TDD parameter
1581  uldci.m_dai = 1; // TDD parameter
1582  uldci.m_freqHopping = 0;
1583  uldci.m_pdcchPowerOffset = 0; // not used
1584  ret.m_dciList.push_back (uldci);
1585  // store DCI for HARQ_PERIOD
1586  uint8_t harqId = 0;
1587  if (m_harqOn == true)
1588  {
1589  std::map <uint16_t, uint8_t>::iterator itProcId;
1590  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1591  if (itProcId == m_ulHarqCurrentProcessId.end ())
1592  {
1593  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1594  }
1595  harqId = (*itProcId).second;
1596  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1597  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1598  {
1599  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1600  }
1601  (*itDci).second.at (harqId) = uldci;
1602  }
1603 
1604  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1605 
1606 
1607  it++;
1608  if (it == m_ceBsrRxed.end ())
1609  {
1610  // restart from the first
1611  it = m_ceBsrRxed.begin ();
1612  }
1613  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1614  {
1615  // Stop allocation: no more PRBs
1616  m_nextRntiUl = (*it).first;
1617  break;
1618  }
1619  }
1620  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1621 
1622 
1623  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1625 
1626  return;
1627 }
1628 
1629 void
1631 {
1632  NS_LOG_FUNCTION (this);
1633  return;
1634 }
1635 
1636 void
1638 {
1639  NS_LOG_FUNCTION (this);
1640  return;
1641 }
1642 
1643 void
1645 {
1646  NS_LOG_FUNCTION (this);
1647 
1648  std::map <uint16_t,uint32_t>::iterator it;
1649 
1650  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1651  {
1652  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1653  {
1654  // buffer status report
1655  // note that this scheduler does not differentiate the
1656  // allocation according to which LCGs have more/less bytes
1657  // to send.
1658  // Hence the BSR of different LCGs are just summed up to get
1659  // a total queue size that is used for allocation purposes.
1660 
1661  uint32_t buffer = 0;
1662  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1663  {
1664  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1665  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1666  }
1667 
1668  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1669  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1670  it = m_ceBsrRxed.find (rnti);
1671  if (it == m_ceBsrRxed.end ())
1672  {
1673  // create the new entry
1674  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1675  }
1676  else
1677  {
1678  // update the buffer size value
1679  (*it).second = buffer;
1680  }
1681  }
1682  }
1683 
1684  return;
1685 }
1686 
1687 void
1689 {
1690  NS_LOG_FUNCTION (this);
1691 // retrieve the allocation for this subframe
1692  switch (m_ulCqiFilter)
1693  {
1695  {
1696  // filter all the CQIs that are not SRS based
1697  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1698  {
1699  return;
1700  }
1701  }
1702  break;
1704  {
1705  // filter all the CQIs that are not SRS based
1706  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1707  {
1708  return;
1709  }
1710  }
1712  break;
1713 
1714  default:
1715  NS_FATAL_ERROR ("Unknown UL CQI type");
1716  }
1717 
1718  switch (params.m_ulCqi.m_type)
1719  {
1720  case UlCqi_s::PUSCH:
1721  {
1722  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1723  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1724  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1725  itMap = m_allocationMaps.find (params.m_sfnSf);
1726  if (itMap == m_allocationMaps.end ())
1727  {
1728  return;
1729  }
1730  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1731  {
1732  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1733  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1734  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1735  if (itCqi == m_ueCqi.end ())
1736  {
1737  // create a new entry
1738  std::vector <double> newCqi;
1739  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1740  {
1741  if (i == j)
1742  {
1743  newCqi.push_back (sinr);
1744  }
1745  else
1746  {
1747  // initialize with NO_SINR value.
1748  newCqi.push_back (NO_SINR);
1749  }
1750 
1751  }
1752  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1753  // generate correspondent timer
1754  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1755  }
1756  else
1757  {
1758  // update the value
1759  (*itCqi).second.at (i) = sinr;
1760  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1761  // update correspondent timer
1762  std::map <uint16_t, uint32_t>::iterator itTimers;
1763  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1764  (*itTimers).second = m_cqiTimersThreshold;
1765 
1766  }
1767 
1768  }
1769  // remove obsolete info on allocation
1770  m_allocationMaps.erase (itMap);
1771  }
1772  break;
1773  case UlCqi_s::SRS:
1774  {
1775  // get the RNTI from vendor specific parameters
1776  uint16_t rnti = 0;
1777  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1778  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1779  {
1780  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1781  {
1782  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1783  rnti = vsp->GetRnti ();
1784  }
1785  }
1786  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1787  itCqi = m_ueCqi.find (rnti);
1788  if (itCqi == m_ueCqi.end ())
1789  {
1790  // create a new entry
1791  std::vector <double> newCqi;
1792  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1793  {
1794  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1795  newCqi.push_back (sinr);
1796  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1797 
1798  }
1799  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1800  // generate correspondent timer
1801  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1802  }
1803  else
1804  {
1805  // update the values
1806  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1807  {
1808  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1809  (*itCqi).second.at (j) = sinr;
1810  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1811  }
1812  // update correspondent timer
1813  std::map <uint16_t, uint32_t>::iterator itTimers;
1814  itTimers = m_ueCqiTimers.find (rnti);
1815  (*itTimers).second = m_cqiTimersThreshold;
1816 
1817  }
1818 
1819 
1820  }
1821  break;
1822  case UlCqi_s::PUCCH_1:
1823  case UlCqi_s::PUCCH_2:
1824  case UlCqi_s::PRACH:
1825  {
1826  NS_FATAL_ERROR ("TdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1827  }
1828  break;
1829  default:
1830  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1831  }
1832  return;
1833 }
1834 
1835 void
1837 {
1838  // refresh DL CQI P01 Map
1839  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1840  while (itP10 != m_p10CqiTimers.end ())
1841  {
1842  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1843  if ((*itP10).second == 0)
1844  {
1845  // delete correspondent entries
1846  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1847  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1848  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1849  m_p10CqiRxed.erase (itMap);
1850  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1851  itP10++;
1852  m_p10CqiTimers.erase (temp);
1853  }
1854  else
1855  {
1856  (*itP10).second--;
1857  itP10++;
1858  }
1859  }
1860 
1861  // refresh DL CQI A30 Map
1862  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1863  while (itA30 != m_a30CqiTimers.end ())
1864  {
1865  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1866  if ((*itA30).second == 0)
1867  {
1868  // delete correspondent entries
1869  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1870  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1871  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
1872  m_a30CqiRxed.erase (itMap);
1873  std::map <uint16_t,uint32_t>::iterator temp = itA30;
1874  itA30++;
1875  m_a30CqiTimers.erase (temp);
1876  }
1877  else
1878  {
1879  (*itA30).second--;
1880  itA30++;
1881  }
1882  }
1883 
1884  return;
1885 }
1886 
1887 
1888 void
1890 {
1891  // refresh UL CQI Map
1892  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
1893  while (itUl != m_ueCqiTimers.end ())
1894  {
1895  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1896  if ((*itUl).second == 0)
1897  {
1898  // delete correspondent entries
1899  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
1900  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
1901  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
1902  (*itMap).second.clear ();
1903  m_ueCqi.erase (itMap);
1904  std::map <uint16_t,uint32_t>::iterator temp = itUl;
1905  itUl++;
1906  m_ueCqiTimers.erase (temp);
1907  }
1908  else
1909  {
1910  (*itUl).second--;
1911  itUl++;
1912  }
1913  }
1914 
1915  return;
1916 }
1917 
1918 void
1919 TdMtFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
1920 {
1921  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1922  LteFlowId_t flow (rnti, lcid);
1923  it = m_rlcBufferReq.find (flow);
1924  if (it != m_rlcBufferReq.end ())
1925  {
1926  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1927  // Update queues: RLC tx order Status, ReTx, Tx
1928  // Update status queue
1929  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1930  {
1931  (*it).second.m_rlcStatusPduSize = 0;
1932  }
1933  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
1934  {
1935  (*it).second.m_rlcRetransmissionQueueSize = 0;
1936  }
1937  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1938  {
1939  uint32_t rlcOverhead;
1940  if (lcid == 1)
1941  {
1942  // for SRB1 (using RLC AM) it's better to
1943  // overestimate RLC overhead rather than
1944  // underestimate it and risk unneeded
1945  // segmentation which increases delay
1946  rlcOverhead = 4;
1947  }
1948  else
1949  {
1950  // minimum RLC overhead due to header
1951  rlcOverhead = 2;
1952  }
1953  // update transmission queue
1954  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1955  {
1956  (*it).second.m_rlcTransmissionQueueSize = 0;
1957  }
1958  else
1959  {
1960  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1961  }
1962  }
1963  }
1964  else
1965  {
1966  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
1967  }
1968 }
1969 
1970 void
1971 TdMtFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
1972 {
1973 
1974  size = size - 2; // remove the minimum RLC overhead
1975  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
1976  if (it != m_ceBsrRxed.end ())
1977  {
1978  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1979  if ((*it).second >= size)
1980  {
1981  (*it).second -= size;
1982  }
1983  else
1984  {
1985  (*it).second = 0;
1986  }
1987  }
1988  else
1989  {
1990  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
1991  }
1992 
1993 }
1994 
1995 void
1997 {
1998  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2000  params.m_rnti = rnti;
2001  params.m_transmissionMode = txMode;
2003 }
2004 
2005 
2006 }
virtual void SchedDlTriggerReq(const struct SchedDlTriggerReqParameters &params)
std::vector< struct UlInfoListElement_s > m_ulInfoList
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:88
std::set< uint16_t > m_flowStatsDl
virtual void CschedLcConfigReq(const struct CschedLcConfigReqParameters &params)
std::map< uint16_t, uint8_t > m_uesTxMode
smart pointer class similar to boost::intrusive_ptr
Definition: ptr.h:59
#define NS_LOG_FUNCTION(parameters)
Definition: log.h:311
#define HARQ_PERIOD
Definition: lte-common.h:30
Hold a bool native type.
Definition: boolean.h:38
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
std::map< uint16_t, uint32_t > m_ceBsrRxed
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
virtual void SchedUlCqiInfoReq(const struct SchedUlCqiInfoReqParameters &params)
std::map< uint16_t, std::vector< double > > m_ueCqi
enum ns3::UlCqi_s::Type_e m_type
NS_LOG_COMPONENT_DEFINE("TdMtFfMacScheduler")
virtual void CschedCellConfigReq(const struct CschedCellConfigReqParameters &params)
CSCHED_CELL_CONFIG_REQ.
friend class TdMtSchedulerMemberSchedSapProvider
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
std::vector< uint16_t > m_sinr
std::vector< uint8_t > DlHarqProcessesTimer_t
#define NO_SINR
#define NS_ASSERT(condition)
Definition: assert.h:64
std::vector< uint8_t > m_mcs
Definition: ff-mac-common.h:95
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
std::vector< struct UlDciListElement_s > m_dciList
std::set< uint16_t > m_flowStatsUl
#define NS_LOG_INFO(msg)
Definition: log.h:264
See section 4.3.10 buildRARListElement.
FfMacCschedSapProvider * m_cschedSapProvider
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
virtual void SchedUlMacCtrlInfoReq(const struct SchedUlMacCtrlInfoReqParameters &params)
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
#define NS_FATAL_ERROR(msg)
fatal error handling
Definition: fatal-error.h:72
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
std::map< uint16_t, uint32_t > m_p10CqiTimers
std::vector< struct RachListElement_s > m_rachList
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
virtual void SchedUlTriggerReq(const struct SchedUlTriggerReqParameters &params)
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
int TdMtType0AllocationRbg[4]
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
friend class TdMtSchedulerMemberCschedSapProvider
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
virtual void SchedDlRachInfoReq(const struct SchedDlRachInfoReqParameters &params)
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Hold an unsigned integer type.
Definition: uinteger.h:46
static uint8_t TxMode2LayerNum(uint8_t txMode)
Definition: lte-common.cc:170
Ptr< SampleEmitter > s
NS_OBJECT_ENSURE_REGISTERED(AntennaModel)
std::vector< uint8_t > m_ndi
Definition: ff-mac-common.h:96
Provides the SCHED SAP.
int LcActivePerFlow(uint16_t rnti)
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
virtual void SchedUlNoiseInterferenceReq(const struct SchedUlNoiseInterferenceReqParameters &params)
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
#define NS_LOG_LOGIC(msg)
Definition: log.h:334
std::vector< struct CqiListElement_s > m_cqiList
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
std::vector< struct DlInfoListElement_s > m_dlInfoList
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
virtual void CschedLcReleaseReq(const struct CschedLcReleaseReqParameters &params)
virtual void SchedUlSrInfoReq(const struct SchedUlSrInfoReqParameters &params)
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
std::vector< uint16_t > m_tbsSize
Definition: ff-mac-common.h:94
See section 4.3.9 rlcPDU_ListElement.
virtual void SchedDlMacBufferReq(const struct SchedDlMacBufferReqParameters &params)
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
virtual void SchedDlRlcBufferReq(const struct SchedDlRlcBufferReqParameters &params)
std::map< uint16_t, uint32_t > m_a30CqiTimers
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
std::vector< uint8_t > m_rv
Definition: ff-mac-common.h:97
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
UlCqiFilter_t m_ulCqiFilter
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
#define SRS_CQI_RNTI_VSP
std::vector< uint16_t > m_rachAllocationMap
#define NS_ASSERT_MSG(condition, message)
Definition: assert.h:86
std::vector< struct MacCeListElement_s > m_macCeList
std::vector< struct RachListElement_s > m_rachList
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
static double fpS11dot3toDouble(uint16_t val)
Definition: lte-common.cc:114
#define HARQ_PROC_NUM
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
FfMacCschedSapUser * m_cschedSapUser
std::vector< uint8_t > UlHarqProcessesStatus_t
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
std::vector< uint8_t > DlHarqProcessesStatus_t
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
static uint32_t BsrId2BufferSize(uint8_t val)
Definition: lte-common.cc:142
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
virtual void CschedUeConfigReq(const struct CschedUeConfigReqParameters &params)
#define NS_LOG_DEBUG(msg)
Definition: log.h:255
virtual void SchedDlPagingBufferReq(const struct SchedDlPagingBufferReqParameters &params)
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
virtual void CschedUeReleaseReq(const struct CschedUeReleaseReqParameters &params)
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
std::map< uint16_t, uint8_t > m_p10CqiRxed
#define NS_LOG_ERROR(msg)
Definition: log.h:237
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
FfMacSchedSapProvider * m_schedSapProvider
Implements the SCHED SAP and CSCHED SAP for a Time Domain Maximize Throughput scheduler.
struct DlDciListElement_s m_dci
#define HARQ_DL_TIMEOUT
std::vector< struct BuildRarListElement_s > m_buildRarList
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
a unique identifier for an interface.
Definition: type-id.h:49
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
TypeId SetParent(TypeId tid)
Definition: type-id.cc:610
virtual void SchedDlCqiInfoReq(const struct SchedDlCqiInfoReqParameters &params)
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
int GetRbgSize(int dlbandwidth)
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
FfMacSchedSapUser * m_schedSapUser
std::vector< struct BuildDataListElement_s > m_buildDataList
See section 4.3.8 builDataListElement.
std::map< uint16_t, uint32_t > m_ueCqiTimers