A Discrete-Event Network Simulator
API
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
lte-spectrum-value-helper.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2010 TELEMATICS LAB, DEE - Politecnico di Bari
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Giuseppe Piro <g.piro@poliba.it>
19  * Nicola Baldo <nbaldo@cttc.es>
20  */
21 
22 #include <map>
23 #include <cmath>
24 
25 #include <ns3/log.h>
26 #include <ns3/fatal-error.h>
27 
29 
30 // just needed to log a std::vector<int> properly...
31 namespace std {
32 
33 ostream&
34 operator << (ostream& os, const vector<int>& v)
35 {
36  vector<int>::const_iterator it = v.begin ();
37  while (it != v.end ())
38  {
39  os << *it << " " ;
40  ++it;
41  }
42  os << endl;
43  return os;
44 }
45 
46 }
47 
48 NS_LOG_COMPONENT_DEFINE ("LteSpectrumValueHelper");
49 
50 namespace ns3 {
51 
58 {
59  uint8_t band;
60  double fDlLow;
61  uint16_t nOffsDl;
62  uint16_t rangeNdl1;
63  uint16_t rangeNdl2;
64  double fUlLow;
65  uint16_t nOffsUl;
66  uint16_t rangeNul1;
67  uint16_t rangeNul2;
69  { 1, 2110, 0, 0, 599, 1920, 18000, 18000, 18599},
70  { 2, 1930, 600, 600, 1199, 1850, 18600, 18600, 19199},
71  { 3, 1805, 1200, 1200, 1949, 1710, 19200, 19200, 19949},
72  { 4, 2110, 1950, 1950, 2399, 1710, 19950, 19950, 20399},
73  { 5, 869, 2400, 2400, 2649, 824, 20400, 20400, 20649},
74  { 6, 875, 2650, 2650, 2749, 830, 20650, 20650, 20749},
75  { 7, 2620, 2750, 2750, 3449, 2500, 20750, 20750, 21449},
76  { 8, 925, 3450, 3450, 3799, 880, 21450, 21450, 21799},
77  { 9, 1844.9, 3800, 3800, 4149, 1749.9, 21800, 21800, 22149},
78  { 10, 2110, 4150, 4150, 4749, 1710, 22150, 22150, 22749},
79  { 11, 1475.9, 4750, 4750, 4949, 1427.9, 22750, 22750, 22949},
80  { 12, 728, 5000, 5000, 5179, 698, 23000, 23000, 23179},
81  { 13, 746, 5180, 5180, 5279, 777, 23180, 23180, 23279},
82  { 14, 758, 5280, 5280, 5379, 788, 23280, 23280, 23379},
83  { 17, 734, 5730, 5730, 5849, 704, 23730, 23730, 23849},
84  { 18, 860, 5850, 5850, 5999, 815, 23850, 23850, 23999},
85  { 19, 875, 6000, 6000, 6149, 830, 24000, 24000, 24149},
86  { 20, 791, 6150, 6150, 6449, 832, 24150, 24150, 24449},
87  { 21, 1495.9, 6450, 6450, 6599, 1447.9, 24450, 24450, 24599},
88  { 33, 1900, 36000, 36000, 36199, 1900, 36000, 36000, 36199},
89  { 34, 2010, 36200, 36200, 36349, 2010, 36200, 36200, 36349},
90  { 35, 1850, 36350, 36350, 36949, 1850, 36350, 36350, 36949},
91  { 36, 1930, 36950, 36950, 37549, 1930, 36950, 36950, 37549},
92  { 37, 1910, 37550, 37550, 37749, 1910, 37550, 37550, 37749},
93  { 38, 2570, 37750, 37750, 38249, 2570, 37750, 37750, 38249},
94  { 39, 1880, 38250, 38250, 38649, 1880, 38250, 38250, 38649},
95  { 40, 2300, 38650, 38650, 39649, 2300, 38650, 38650, 39649}
96 };
97 
98 #define NUM_EUTRA_BANDS (sizeof (g_eutraChannelNumbers) / sizeof (EutraChannelNumbers))
99 
100 double
102 {
103  NS_LOG_FUNCTION (earfcn);
104  if (earfcn < 7000)
105  {
106  // FDD downlink
107  return GetDownlinkCarrierFrequency (earfcn);
108  }
109  else
110  {
111  // either FDD uplink or TDD (for which uplink & downlink have same frequency)
112  return GetUplinkCarrierFrequency (earfcn);
113  }
114 }
115 
116 double
118 {
119  NS_LOG_FUNCTION (nDl);
120  for (uint16_t i = 0; i < NUM_EUTRA_BANDS; ++i)
121  {
122  if ((g_eutraChannelNumbers[i].rangeNdl1 <= nDl)
123  && (g_eutraChannelNumbers[i].rangeNdl2 >= nDl))
124  {
125  NS_LOG_LOGIC ("entry " << i << " fDlLow=" << g_eutraChannelNumbers[i].fDlLow);
126  return 1.0e6 * (g_eutraChannelNumbers[i].fDlLow + 0.1 * (nDl - g_eutraChannelNumbers[i].nOffsDl));
127  }
128  }
129  NS_LOG_ERROR ("invalid EARFCN " << nDl);
130  return 0.0;
131 }
132 
133 double
135 {
136  NS_LOG_FUNCTION (nUl);
137  for (uint16_t i = 0; i < NUM_EUTRA_BANDS; ++i)
138  {
139  if ((g_eutraChannelNumbers[i].rangeNul1 <= nUl)
140  && (g_eutraChannelNumbers[i].rangeNul2 >= nUl))
141  {
142  NS_LOG_LOGIC ("entry " << i << " fUlLow=" << g_eutraChannelNumbers[i].fUlLow);
143  return 1.0e6 * (g_eutraChannelNumbers[i].fUlLow + 0.1 * (nUl - g_eutraChannelNumbers[i].nOffsUl));
144  }
145  }
146  NS_LOG_ERROR ("invalid EARFCN " << nUl);
147  return 0.0;
148 }
149 
150 double
151 LteSpectrumValueHelper::GetChannelBandwidth (uint8_t transmissionBandwidth)
152 {
153  NS_LOG_FUNCTION ((uint16_t) transmissionBandwidth);
154  switch (transmissionBandwidth)
155  {
156  case 6:
157  return 1.4e6;
158  case 15:
159  return 3.0e6;
160  case 25:
161  return 5.0e6;
162  case 50:
163  return 10.0e6;
164  case 75:
165  return 15.0e6;
166  case 100:
167  return 20.0e6;
168  default:
169  NS_FATAL_ERROR ("invalid bandwidth value " << (uint16_t) transmissionBandwidth);
170  }
171 }
172 
173 
174 
175 
177 {
178  LteSpectrumModelId (uint16_t f, uint8_t b);
179  uint16_t earfcn;
180  uint8_t bandwidth;
181 };
182 
184  : earfcn (f),
185  bandwidth (b)
186 {
187 }
188 
189 bool
191 {
192  return ( (a.earfcn < b.earfcn) || ( (a.earfcn == b.earfcn) && (a.bandwidth < b.bandwidth) ) );
193 }
194 
195 
196 static std::map<LteSpectrumModelId, Ptr<SpectrumModel> > g_lteSpectrumModelMap;
197 
198 
200 LteSpectrumValueHelper::GetSpectrumModel (uint16_t earfcn, uint8_t txBandwidthConfiguration)
201 {
202  NS_LOG_FUNCTION (earfcn << (uint16_t) txBandwidthConfiguration);
203  Ptr<SpectrumModel> ret;
204  LteSpectrumModelId key (earfcn, txBandwidthConfiguration);
205  std::map<LteSpectrumModelId, Ptr<SpectrumModel> >::iterator it = g_lteSpectrumModelMap.find (key);
206  if (it != g_lteSpectrumModelMap.end ())
207  {
208  ret = it->second;
209  }
210  else
211  {
212  double fc = GetCarrierFrequency (earfcn);
213  NS_ASSERT_MSG (fc != 0, "invalid EARFCN=" << earfcn);
214 
215  double f = fc - (txBandwidthConfiguration * 180e3 / 2.0);
216  Bands rbs;
217  for (uint8_t numrb = 0; numrb < txBandwidthConfiguration; ++numrb)
218  {
219  BandInfo rb;
220  rb.fl = f;
221  f += 90e3;
222  rb.fc = f;
223  f += 90e3;
224  rb.fh = f;
225  rbs.push_back (rb);
226  }
227  ret = Create<SpectrumModel> (rbs);
228  g_lteSpectrumModelMap.insert (std::pair<LteSpectrumModelId, Ptr<SpectrumModel> > (key, ret));
229  }
230  NS_LOG_LOGIC ("returning SpectrumModel::GetUid () == " << ret->GetUid ());
231  return ret;
232 }
233 
235 LteSpectrumValueHelper::CreateTxPowerSpectralDensity (uint16_t earfcn, uint8_t txBandwidthConfiguration, double powerTx, std::vector <int> activeRbs)
236 {
237  NS_LOG_FUNCTION (earfcn << (uint16_t) txBandwidthConfiguration << powerTx << activeRbs);
238 
239  Ptr<SpectrumModel> model = GetSpectrumModel (earfcn, txBandwidthConfiguration);
240  Ptr<SpectrumValue> txPsd = Create <SpectrumValue> (model);
241 
242  // powerTx is expressed in dBm. We must convert it into natural unit.
243  double powerTxW = std::pow (10., (powerTx - 30) / 10);
244 
245  double txPowerDensity = (powerTxW / (txBandwidthConfiguration * 180000));
246 
247  for (std::vector <int>::iterator it = activeRbs.begin (); it != activeRbs.end (); it++)
248  {
249  int rbId = (*it);
250  (*txPsd)[rbId] = txPowerDensity;
251  }
252 
253  NS_LOG_LOGIC (*txPsd);
254 
255  return txPsd;
256 }
257 
258 
260 LteSpectrumValueHelper::CreateNoisePowerSpectralDensity (uint16_t earfcn, uint8_t txBandwidthConfiguration, double noiseFigure)
261 {
262  NS_LOG_FUNCTION (earfcn << (uint16_t) txBandwidthConfiguration << noiseFigure);
263  Ptr<SpectrumModel> model = GetSpectrumModel (earfcn, txBandwidthConfiguration);
264  return CreateNoisePowerSpectralDensity (noiseFigure, model);
265 }
266 
269 {
270  NS_LOG_FUNCTION (noiseFigureDb << spectrumModel);
271 
272 
273  // see "LTE - From theory to practice"
274  // Section 22.4.4.2 Thermal Noise and Receiver Noise Figure
275  const double kT_dBm_Hz = -174.0; // dBm/Hz
276  double kT_W_Hz = std::pow (10.0, (kT_dBm_Hz - 30) / 10.0);
277  double noiseFigureLinear = std::pow (10.0, noiseFigureDb / 10.0);
278  double noisePowerSpectralDensity = kT_W_Hz * noiseFigureLinear;
279 
280  Ptr<SpectrumValue> noisePsd = Create <SpectrumValue> (spectrumModel);
281  (*noisePsd) = noisePowerSpectralDensity;
282  return noisePsd;
283 }
284 
285 } // namespace ns3
smart pointer class similar to boost::intrusive_ptr
Definition: ptr.h:59
#define NS_LOG_FUNCTION(parameters)
Definition: log.h:345
LteSpectrumModelId(uint16_t f, uint8_t b)
#define NUM_EUTRA_BANDS
bool operator<(const Room &a, const Room &b)
static Ptr< SpectrumModel > GetSpectrumModel(uint16_t earfcn, uint8_t bandwidth)
struct ns3::EutraChannelNumbers g_eutraChannelNumbers[]
std::vector< BandInfo > Bands
#define NS_FATAL_ERROR(msg)
fatal error handling
Definition: fatal-error.h:72
static std::map< LteSpectrumModelId, Ptr< SpectrumModel > > g_lteSpectrumModelMap
static double GetCarrierFrequency(uint16_t earfcn)
Calculates the carrier frequency from the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) acc...
static double GetDownlinkCarrierFrequency(uint16_t earfcn)
Calculates the dowlink carrier frequency from the E-UTRA Absolute Radio Frequency Channel Number (EAR...
static double GetUplinkCarrierFrequency(uint16_t earfcn)
Calculates the uplink carrier frequency from the E-UTRA Absolute Radio Frequency Channel Number (EARF...
double fc
center frequency
NS_LOG_COMPONENT_DEFINE("LteSpectrumValueHelper")
#define NS_LOG_LOGIC(msg)
Definition: log.h:368
double fl
lower limit of subband
static double GetChannelBandwidth(uint8_t txBandwidthConf)
#define NS_ASSERT_MSG(condition, message)
Definition: assert.h:86
static Ptr< SpectrumValue > CreateTxPowerSpectralDensity(uint16_t earfcn, uint8_t bandwidth, double powerTx, std::vector< int > activeRbs)
create a spectrum value representing the power spectral density of a signal to be transmitted...
Table 5.7.3-1 "E-UTRA channel numbers" from 3GPP TS 36.101 The table was converted to C syntax doing ...
#define NS_LOG_ERROR(msg)
Definition: log.h:271
double fh
upper limit of subband
The building block of a SpectrumModel.
static Ptr< SpectrumValue > CreateNoisePowerSpectralDensity(uint16_t earfcn, uint8_t bandwidth, double noiseFigure)
create a SpectrumValue that models the power spectral density of AWGN