 A Discrete-Event Network Simulator Home Tutorials  ▼ Docs    ▼ Develop ▼ API
ns3::LogNormalVariable Class Reference

Log-normal Distributed random varLogNormalVariable defines a random variable with log-normal distribution. More...

#include <random-variable.h> Inheritance diagram for ns3::LogNormalVariable: Collaboration diagram for ns3::LogNormalVariable:

## Public Member Functions

LogNormalVariable (double mu, double sigma) Public Member Functions inherited from ns3::RandomVariable
RandomVariable ()

RandomVariable (const RandomVariable &o)

~RandomVariable ()

uint32_t GetInteger (void) const
Returns a random integer integer from the underlying distribution. More...

double GetValue (void) const
Returns a random double from the underlying distribution. More...

RandomVariableoperator= (const RandomVariable &o)

## Additional Inherited Members Protected Member Functions inherited from ns3::RandomVariable
RandomVariable (const RandomVariableBase &variable)

RandomVariableBasePeek (void) const

## Detailed Description

Log-normal Distributed random var

LogNormalVariable defines a random variable with log-normal distribution.

If one takes the natural logarithm of random variable following the log-normal distribution, the obtained values follow a normal distribution. This class supports the creation of objects that return random numbers from a fixed lognormal distribution. It also supports the generation of single random numbers from various lognormal distributions.

The probability density function is defined over the interval [0,+inf) as: where and The and parameters can be calculated if instead the mean and variance are known with the following equations: , and, Definition at line 546 of file random-variable.h.

## Constructor & Destructor Documentation

 ns3::LogNormalVariable::LogNormalVariable ( double mu, double sigma )
Parameters
 mu mu parameter of the lognormal distribution sigma sigma parameter of the lognormal distribution

Definition at line 1510 of file random-variable.cc.

References NS_LOG_FUNCTION.

The documentation for this class was generated from the following files: