A Discrete-Event Network Simulator
API
tdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/tdmt-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <set>
32 #include <cfloat>
33 
34 namespace ns3 {
35 
36 NS_LOG_COMPONENT_DEFINE ("TdMtFfMacScheduler");
37 
39 static const int TdMtType0AllocationRbg[4] = {
40  10, // RGB size 1
41  26, // RGB size 2
42  63, // RGB size 3
43  110 // RGB size 4
44 }; // see table 7.1.6.1-1 of 36.213
45 
46 
47 NS_OBJECT_ENSURE_REGISTERED (TdMtFfMacScheduler);
48 
49 
50 
52  : m_cschedSapUser (0),
53  m_schedSapUser (0),
54  m_nextRntiUl (0)
55 {
56  m_amc = CreateObject <LteAmc> ();
59 }
60 
62 {
63  NS_LOG_FUNCTION (this);
64 }
65 
66 void
68 {
69  NS_LOG_FUNCTION (this);
71  m_dlHarqProcessesTimer.clear ();
73  m_dlInfoListBuffered.clear ();
74  m_ulHarqCurrentProcessId.clear ();
75  m_ulHarqProcessesStatus.clear ();
77  delete m_cschedSapProvider;
78  delete m_schedSapProvider;
79 }
80 
81 TypeId
83 {
84  static TypeId tid = TypeId ("ns3::TdMtFfMacScheduler")
86  .SetGroupName("Lte")
87  .AddConstructor<TdMtFfMacScheduler> ()
88  .AddAttribute ("CqiTimerThreshold",
89  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
90  UintegerValue (1000),
92  MakeUintegerChecker<uint32_t> ())
93  .AddAttribute ("HarqEnabled",
94  "Activate/Deactivate the HARQ [by default is active].",
95  BooleanValue (true),
98  .AddAttribute ("UlGrantMcs",
99  "The MCS of the UL grant, must be [0..15] (default 0)",
100  UintegerValue (0),
102  MakeUintegerChecker<uint8_t> ())
103  ;
104  return tid;
105 }
106 
107 
108 
109 void
111 {
112  m_cschedSapUser = s;
113 }
114 
115 void
117 {
118  m_schedSapUser = s;
119 }
120 
123 {
124  return m_cschedSapProvider;
125 }
126 
129 {
130  return m_schedSapProvider;
131 }
132 
133 void
135 {
136  m_ffrSapProvider = s;
137 }
138 
141 {
142  return m_ffrSapUser;
143 }
144 
145 void
147 {
148  NS_LOG_FUNCTION (this);
149  // Read the subset of parameters used
150  m_cschedCellConfig = params;
153  cnf.m_result = SUCCESS;
155  return;
156 }
157 
158 void
160 {
161  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
162  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
163  if (it == m_uesTxMode.end ())
164  {
165  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
166  // generate HARQ buffers
167  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
168  DlHarqProcessesStatus_t dlHarqPrcStatus;
169  dlHarqPrcStatus.resize (8,0);
170  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
171  DlHarqProcessesTimer_t dlHarqProcessesTimer;
172  dlHarqProcessesTimer.resize (8,0);
173  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
174  DlHarqProcessesDciBuffer_t dlHarqdci;
175  dlHarqdci.resize (8);
176  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
177  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
178  dlHarqRlcPdu.resize (2);
179  dlHarqRlcPdu.at (0).resize (8);
180  dlHarqRlcPdu.at (1).resize (8);
181  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
182  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
183  UlHarqProcessesStatus_t ulHarqPrcStatus;
184  ulHarqPrcStatus.resize (8,0);
185  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
186  UlHarqProcessesDciBuffer_t ulHarqdci;
187  ulHarqdci.resize (8);
188  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
189  }
190  else
191  {
192  (*it).second = params.m_transmissionMode;
193  }
194  return;
195 }
196 
197 void
199 {
200  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
201 
202  std::set <uint16_t>::iterator it;
203  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
204  {
205  it = m_flowStatsDl.find (params.m_rnti);
206 
207  if (it == m_flowStatsDl.end ())
208  {
209  m_flowStatsDl.insert (params.m_rnti);
210  m_flowStatsUl.insert (params.m_rnti);
211  }
212  }
213 
214  return;
215 }
216 
217 void
219 {
220  NS_LOG_FUNCTION (this);
221  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
222  {
223  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
224  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
225  while (it!=m_rlcBufferReq.end ())
226  {
227  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
228  {
229  temp = it;
230  it++;
231  m_rlcBufferReq.erase (temp);
232  }
233  else
234  {
235  it++;
236  }
237  }
238  }
239  return;
240 }
241 
242 void
244 {
245  NS_LOG_FUNCTION (this);
246 
247  m_uesTxMode.erase (params.m_rnti);
248  m_dlHarqCurrentProcessId.erase (params.m_rnti);
249  m_dlHarqProcessesStatus.erase (params.m_rnti);
250  m_dlHarqProcessesTimer.erase (params.m_rnti);
251  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
253  m_ulHarqCurrentProcessId.erase (params.m_rnti);
254  m_ulHarqProcessesStatus.erase (params.m_rnti);
255  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
256  m_flowStatsDl.erase (params.m_rnti);
257  m_flowStatsUl.erase (params.m_rnti);
258  m_ceBsrRxed.erase (params.m_rnti);
259  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
260  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
261  while (it!=m_rlcBufferReq.end ())
262  {
263  if ((*it).first.m_rnti == params.m_rnti)
264  {
265  temp = it;
266  it++;
267  m_rlcBufferReq.erase (temp);
268  }
269  else
270  {
271  it++;
272  }
273  }
274  if (m_nextRntiUl == params.m_rnti)
275  {
276  m_nextRntiUl = 0;
277  }
278 
279  return;
280 }
281 
282 
283 void
285 {
286  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
287  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
288 
289  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
290 
291  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
292 
293  it = m_rlcBufferReq.find (flow);
294 
295  if (it == m_rlcBufferReq.end ())
296  {
297  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
298  }
299  else
300  {
301  (*it).second = params;
302  }
303 
304  return;
305 }
306 
307 void
309 {
310  NS_LOG_FUNCTION (this);
311  NS_FATAL_ERROR ("method not implemented");
312  return;
313 }
314 
315 void
317 {
318  NS_LOG_FUNCTION (this);
319  NS_FATAL_ERROR ("method not implemented");
320  return;
321 }
322 
323 int
325 {
326  for (int i = 0; i < 4; i++)
327  {
328  if (dlbandwidth < TdMtType0AllocationRbg[i])
329  {
330  return (i + 1);
331  }
332  }
333 
334  return (-1);
335 }
336 
337 
338 unsigned int
340 {
341  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
342  unsigned int lcActive = 0;
343  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
344  {
345  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
346  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
347  || ((*it).second.m_rlcStatusPduSize > 0) ))
348  {
349  lcActive++;
350  }
351  if ((*it).first.m_rnti > rnti)
352  {
353  break;
354  }
355  }
356  return (lcActive);
357 
358 }
359 
360 
361 uint8_t
363 {
364  NS_LOG_FUNCTION (this << rnti);
365 
366  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
367  if (it == m_dlHarqCurrentProcessId.end ())
368  {
369  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
370  }
371  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
372  if (itStat == m_dlHarqProcessesStatus.end ())
373  {
374  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
375  }
376  uint8_t i = (*it).second;
377  do
378  {
379  i = (i + 1) % HARQ_PROC_NUM;
380  }
381  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
382  if ((*itStat).second.at (i) == 0)
383  {
384  return (true);
385  }
386  else
387  {
388  return (false); // return a not valid harq proc id
389  }
390 }
391 
392 
393 
394 uint8_t
396 {
397  NS_LOG_FUNCTION (this << rnti);
398 
399  if (m_harqOn == false)
400  {
401  return (0);
402  }
403 
404 
405  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
406  if (it == m_dlHarqCurrentProcessId.end ())
407  {
408  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
409  }
410  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
411  if (itStat == m_dlHarqProcessesStatus.end ())
412  {
413  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
414  }
415  uint8_t i = (*it).second;
416  do
417  {
418  i = (i + 1) % HARQ_PROC_NUM;
419  }
420  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
421  if ((*itStat).second.at (i) == 0)
422  {
423  (*it).second = i;
424  (*itStat).second.at (i) = 1;
425  }
426  else
427  {
428  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
429  }
430 
431  return ((*it).second);
432 }
433 
434 
435 void
437 {
438  NS_LOG_FUNCTION (this);
439 
440  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
441  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
442  {
443  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
444  {
445  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
446  {
447  // reset HARQ process
448 
449  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
450  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
451  if (itStat == m_dlHarqProcessesStatus.end ())
452  {
453  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
454  }
455  (*itStat).second.at (i) = 0;
456  (*itTimers).second.at (i) = 0;
457  }
458  else
459  {
460  (*itTimers).second.at (i)++;
461  }
462  }
463  }
464 
465 }
466 
467 
468 void
470 {
471  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
472  // API generated by RLC for triggering the scheduling of a DL subframe
473 
474 
475  // evaluate the relative channel quality indicator for each UE per each RBG
476  // (since we are using allocation type 0 the small unit of allocation is RBG)
477  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
478 
479  RefreshDlCqiMaps ();
480 
482  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
483  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
484  std::vector <bool> rbgMap; // global RBGs map
485  uint16_t rbgAllocatedNum = 0;
486  std::set <uint16_t> rntiAllocated;
487  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
489 
490  // update UL HARQ proc id
491  std::map <uint16_t, uint8_t>::iterator itProcId;
492  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
493  {
494  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
495  }
496 
497  // RACH Allocation
499  uint16_t rbStart = 0;
500  std::vector <struct RachListElement_s>::iterator itRach;
501  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
502  {
503  NS_ASSERT_MSG (m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
504  BuildRarListElement_s newRar;
505  newRar.m_rnti = (*itRach).m_rnti;
506  // DL-RACH Allocation
507  // Ideal: no needs of configuring m_dci
508  // UL-RACH Allocation
509  newRar.m_grant.m_rnti = newRar.m_rnti;
510  newRar.m_grant.m_mcs = m_ulGrantMcs;
511  uint16_t rbLen = 1;
512  uint16_t tbSizeBits = 0;
513  // find lowest TB size that fits UL grant estimated size
514  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
515  {
516  rbLen++;
517  tbSizeBits = m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, rbLen);
518  }
519  if (tbSizeBits < (*itRach).m_estimatedSize)
520  {
521  // no more allocation space: finish allocation
522  break;
523  }
524  newRar.m_grant.m_rbStart = rbStart;
525  newRar.m_grant.m_rbLen = rbLen;
526  newRar.m_grant.m_tbSize = tbSizeBits / 8;
527  newRar.m_grant.m_hopping = false;
528  newRar.m_grant.m_tpc = 0;
529  newRar.m_grant.m_cqiRequest = false;
530  newRar.m_grant.m_ulDelay = false;
531  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
532  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
533  {
534  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
535  }
536 
537  if (m_harqOn == true)
538  {
539  // generate UL-DCI for HARQ retransmissions
540  UlDciListElement_s uldci;
541  uldci.m_rnti = newRar.m_rnti;
542  uldci.m_rbLen = rbLen;
543  uldci.m_rbStart = rbStart;
544  uldci.m_mcs = m_ulGrantMcs;
545  uldci.m_tbSize = tbSizeBits / 8;
546  uldci.m_ndi = 1;
547  uldci.m_cceIndex = 0;
548  uldci.m_aggrLevel = 1;
549  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
550  uldci.m_hopping = false;
551  uldci.m_n2Dmrs = 0;
552  uldci.m_tpc = 0; // no power control
553  uldci.m_cqiRequest = false; // only period CQI at this stage
554  uldci.m_ulIndex = 0; // TDD parameter
555  uldci.m_dai = 1; // TDD parameter
556  uldci.m_freqHopping = 0;
557  uldci.m_pdcchPowerOffset = 0; // not used
558 
559  uint8_t harqId = 0;
560  std::map <uint16_t, uint8_t>::iterator itProcId;
561  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
562  if (itProcId == m_ulHarqCurrentProcessId.end ())
563  {
564  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
565  }
566  harqId = (*itProcId).second;
567  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
568  if (itDci == m_ulHarqProcessesDciBuffer.end ())
569  {
570  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
571  }
572  (*itDci).second.at (harqId) = uldci;
573  }
574 
575  rbStart = rbStart + rbLen;
576  ret.m_buildRarList.push_back (newRar);
577  }
578  m_rachList.clear ();
579 
580 
581  // Process DL HARQ feedback
583  // retrieve past HARQ retx buffered
584  if (m_dlInfoListBuffered.size () > 0)
585  {
586  if (params.m_dlInfoList.size () > 0)
587  {
588  NS_LOG_INFO (this << " Received DL-HARQ feedback");
589  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
590  }
591  }
592  else
593  {
594  if (params.m_dlInfoList.size () > 0)
595  {
597  }
598  }
599  if (m_harqOn == false)
600  {
601  // Ignore HARQ feedback
602  m_dlInfoListBuffered.clear ();
603  }
604  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
605  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
606  {
607  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
608  if (itRnti != rntiAllocated.end ())
609  {
610  // RNTI already allocated for retx
611  continue;
612  }
613  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
614  std::vector <bool> retx;
615  NS_LOG_INFO (this << " Processing DLHARQ feedback");
616  if (nLayers == 1)
617  {
618  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
619  retx.push_back (false);
620  }
621  else
622  {
623  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
624  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
625  }
626  if (retx.at (0) || retx.at (1))
627  {
628  // retrieve HARQ process information
629  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
630  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
631  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
632  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
633  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
634  {
635  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
636  }
637 
638  DlDciListElement_s dci = (*itHarq).second.at (harqId);
639  int rv = 0;
640  if (dci.m_rv.size () == 1)
641  {
642  rv = dci.m_rv.at (0);
643  }
644  else
645  {
646  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
647  }
648 
649  if (rv == 3)
650  {
651  // maximum number of retx reached -> drop process
652  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
653  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
654  if (it == m_dlHarqProcessesStatus.end ())
655  {
656  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
657  }
658  (*it).second.at (harqId) = 0;
659  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
660  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
661  {
662  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
663  }
664  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
665  {
666  (*itRlcPdu).second.at (k).at (harqId).clear ();
667  }
668  continue;
669  }
670  // check the feasibility of retransmitting on the same RBGs
671  // translate the DCI to Spectrum framework
672  std::vector <int> dciRbg;
673  uint32_t mask = 0x1;
674  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
675  for (int j = 0; j < 32; j++)
676  {
677  if (((dci.m_rbBitmap & mask) >> j) == 1)
678  {
679  dciRbg.push_back (j);
680  NS_LOG_INFO ("\t" << j);
681  }
682  mask = (mask << 1);
683  }
684  bool free = true;
685  for (uint8_t j = 0; j < dciRbg.size (); j++)
686  {
687  if (rbgMap.at (dciRbg.at (j)) == true)
688  {
689  free = false;
690  break;
691  }
692  }
693  if (free)
694  {
695  // use the same RBGs for the retx
696  // reserve RBGs
697  for (uint8_t j = 0; j < dciRbg.size (); j++)
698  {
699  rbgMap.at (dciRbg.at (j)) = true;
700  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
701  rbgAllocatedNum++;
702  }
703 
704  NS_LOG_INFO (this << " Send retx in the same RBGs");
705  }
706  else
707  {
708  // find RBGs for sending HARQ retx
709  uint8_t j = 0;
710  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
711  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
712  std::vector <bool> rbgMapCopy = rbgMap;
713  while ((j < dciRbg.size ())&&(startRbg != rbgId))
714  {
715  if (rbgMapCopy.at (rbgId) == false)
716  {
717  rbgMapCopy.at (rbgId) = true;
718  dciRbg.at (j) = rbgId;
719  j++;
720  }
721  rbgId = (rbgId + 1) % rbgNum;
722  }
723  if (j == dciRbg.size ())
724  {
725  // find new RBGs -> update DCI map
726  uint32_t rbgMask = 0;
727  for (uint16_t k = 0; k < dciRbg.size (); k++)
728  {
729  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
730  rbgAllocatedNum++;
731  }
732  dci.m_rbBitmap = rbgMask;
733  rbgMap = rbgMapCopy;
734  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
735  }
736  else
737  {
738  // HARQ retx cannot be performed on this TTI -> store it
739  dlInfoListUntxed.push_back (m_dlInfoListBuffered.at (i));
740  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
741  }
742  }
743  // retrieve RLC PDU list for retx TBsize and update DCI
745  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
746  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
747  {
748  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
749  }
750  for (uint8_t j = 0; j < nLayers; j++)
751  {
752  if (retx.at (j))
753  {
754  if (j >= dci.m_ndi.size ())
755  {
756  // for avoiding errors in MIMO transient phases
757  dci.m_ndi.push_back (0);
758  dci.m_rv.push_back (0);
759  dci.m_mcs.push_back (0);
760  dci.m_tbsSize.push_back (0);
761  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
762  }
763  else
764  {
765  dci.m_ndi.at (j) = 0;
766  dci.m_rv.at (j)++;
767  (*itHarq).second.at (harqId).m_rv.at (j)++;
768  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
769  }
770  }
771  else
772  {
773  // empty TB of layer j
774  dci.m_ndi.at (j) = 0;
775  dci.m_rv.at (j) = 0;
776  dci.m_mcs.at (j) = 0;
777  dci.m_tbsSize.at (j) = 0;
778  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
779  }
780  }
781  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
782  {
783  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
784  for (uint8_t j = 0; j < nLayers; j++)
785  {
786  if (retx.at (j))
787  {
788  if (j < dci.m_ndi.size ())
789  {
790  NS_LOG_INFO (" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at (j));
791  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
792  }
793  }
794  else
795  { // if no retx needed on layer j, push an RlcPduListElement_s object with m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
796  NS_LOG_INFO (" layer " << (uint16_t)j << " tb size "<<dci.m_tbsSize.at (j));
797  RlcPduListElement_s emptyElement;
798  emptyElement.m_logicalChannelIdentity = (*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k).m_logicalChannelIdentity;
799  emptyElement.m_size = 0;
800  rlcPduListPerLc.push_back (emptyElement);
801  }
802  }
803 
804  if (rlcPduListPerLc.size () > 0)
805  {
806  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
807  }
808  }
809  newEl.m_rnti = rnti;
810  newEl.m_dci = dci;
811  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
812  // refresh timer
813  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
814  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
815  {
816  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
817  }
818  (*itHarqTimer).second.at (harqId) = 0;
819  ret.m_buildDataList.push_back (newEl);
820  rntiAllocated.insert (rnti);
821  }
822  else
823  {
824  // update HARQ process status
825  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
826  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
827  if (it == m_dlHarqProcessesStatus.end ())
828  {
829  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
830  }
831  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
832  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
833  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
834  {
835  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
836  }
837  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
838  {
839  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
840  }
841  }
842  }
843  m_dlInfoListBuffered.clear ();
844  m_dlInfoListBuffered = dlInfoListUntxed;
845 
846  if (rbgAllocatedNum == rbgNum)
847  {
848  // all the RBGs are already allocated -> exit
849  if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
850  {
852  }
853  return;
854  }
855 
856 
857  std::set <uint16_t>::iterator it;
858  std::set <uint16_t>::iterator itMax = m_flowStatsDl.end ();
859  double metricMax = 0.0;
860  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
861  {
862  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it));
863  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it))))
864  {
865  // UE already allocated for HARQ or without HARQ process available -> drop it
866  if (itRnti != rntiAllocated.end ())
867  {
868  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it));
869  }
870  if (!HarqProcessAvailability ((*it)))
871  {
872  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it));
873  }
874 
875  continue;
876  }
877 
878  std::map <uint16_t,uint8_t>::iterator itTxMode;
879  itTxMode = m_uesTxMode.find ((*it));
880  if (itTxMode == m_uesTxMode.end ())
881  {
882  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it));
883  }
884  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
885  std::map <uint16_t,uint8_t>::iterator itCqi = m_p10CqiRxed.find ((*it));
886  uint8_t wbCqi = 0;
887  if (itCqi != m_p10CqiRxed.end ())
888  {
889  wbCqi = (*itCqi).second;
890  }
891  else
892  {
893  wbCqi = 1; // lowest value for trying a transmission
894  }
895 
896  if (wbCqi != 0)
897  {
898  // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
899  if (LcActivePerFlow (*it) > 0)
900  {
901  // this UE has data to transmit
902  double achievableRate = 0.0;
903  for (uint8_t k = 0; k < nLayer; k++)
904  {
905  uint8_t mcs = 0;
906  mcs = m_amc->GetMcsFromCqi (wbCqi);
907  achievableRate += ((m_amc->GetDlTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
908 
909  NS_LOG_DEBUG (this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate );
910  }
911 
912  double metric = achievableRate;
913 
914  if (metric > metricMax)
915  {
916  metricMax = metric;
917  itMax = it;
918  }
919  } // LcActivePerFlow
920 
921  } // cqi
922 
923  } // end for m_flowStatsDl
924 
925  if (itMax == m_flowStatsDl.end ())
926  {
927  // no UE available for downlink
928  NS_LOG_INFO (this << " any UE found");
929  }
930  else
931  {
932  // assign all free RBGs to this UE
933  std::vector <uint16_t> tempMap;
934  for (int i = 0; i < rbgNum; i++)
935  {
936  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
937  NS_LOG_DEBUG (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
938  if (rbgMap.at (i) == false)
939  {
940  rbgMap.at (i) = true;
941  tempMap.push_back (i);
942  } // end for RBG free
943 
944  } // end for RBGs
945 
946  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax), tempMap));
947  }
948 
949  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
950  // creating the correspondent DCIs
951  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
952  while (itMap != allocationMap.end ())
953  {
954  // create new BuildDataListElement_s for this LC
956  newEl.m_rnti = (*itMap).first;
957  // create the DlDciListElement_s
958  DlDciListElement_s newDci;
959  newDci.m_rnti = (*itMap).first;
960  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
961 
962  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
963  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
964  if (lcActives == 0)
965  {
966  // Set to max value, to avoid divide by 0 below
967  lcActives = (uint16_t)65535; // UINT16_MAX;
968  }
969  uint16_t RgbPerRnti = (*itMap).second.size ();
970  std::map <uint16_t,uint8_t>::iterator itCqi;
971  itCqi = m_p10CqiRxed.find ((*itMap).first);
972  std::map <uint16_t,uint8_t>::iterator itTxMode;
973  itTxMode = m_uesTxMode.find ((*itMap).first);
974  if (itTxMode == m_uesTxMode.end ())
975  {
976  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
977  }
978  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
979  for (uint8_t j = 0; j < nLayer; j++)
980  {
981  if (itCqi == m_p10CqiRxed.end ())
982  {
983  newDci.m_mcs.push_back (0); // no info on this user -> lowest MCS
984  }
985  else
986  {
987  newDci.m_mcs.push_back ( m_amc->GetMcsFromCqi ((*itCqi).second) );
988  }
989 
990  int tbSize = (m_amc->GetDlTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
991  newDci.m_tbsSize.push_back (tbSize);
992  }
993 
994  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
995  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
996  uint32_t rbgMask = 0;
997  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
998  {
999  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1000  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1001  }
1002  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1003 
1004  // create the rlc PDUs -> equally divide resources among actives LCs
1005  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1006  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1007  {
1008  if (((*itBufReq).first.m_rnti == (*itMap).first)
1009  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1010  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1011  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1012  {
1013  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1014  for (uint8_t j = 0; j < nLayer; j++)
1015  {
1016  RlcPduListElement_s newRlcEl;
1017  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1018  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1019  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1020  newRlcPduLe.push_back (newRlcEl);
1021  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1022  if (m_harqOn == true)
1023  {
1024  // store RLC PDU list for HARQ
1025  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1026  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1027  {
1028  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1029  }
1030  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1031  }
1032  }
1033  newEl.m_rlcPduList.push_back (newRlcPduLe);
1034  }
1035  if ((*itBufReq).first.m_rnti > (*itMap).first)
1036  {
1037  break;
1038  }
1039  }
1040  for (uint8_t j = 0; j < nLayer; j++)
1041  {
1042  newDci.m_ndi.push_back (1);
1043  newDci.m_rv.push_back (0);
1044  }
1045 
1046  newDci.m_tpc = 1; //1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1047 
1048  newEl.m_dci = newDci;
1049 
1050  if (m_harqOn == true)
1051  {
1052  // store DCI for HARQ
1053  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1054  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1055  {
1056  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1057  }
1058  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1059  // refresh timer
1060  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1061  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1062  {
1063  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1064  }
1065  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1066  }
1067 
1068  // ...more parameters -> ignored in this version
1069 
1070  ret.m_buildDataList.push_back (newEl);
1071 
1072  itMap++;
1073  } // end while allocation
1074  ret.m_nrOfPdcchOfdmSymbols = 1;
1075 
1077 
1078 
1079  return;
1080 }
1081 
1082 void
1084 {
1085  NS_LOG_FUNCTION (this);
1086 
1087  m_rachList = params.m_rachList;
1088 
1089  return;
1090 }
1091 
1092 void
1094 {
1095  NS_LOG_FUNCTION (this);
1096 
1097  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1098  {
1099  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1100  {
1101  NS_LOG_LOGIC ("wideband CQI " << (uint32_t) params.m_cqiList.at (i).m_wbCqi.at (0) << " reported");
1102  std::map <uint16_t,uint8_t>::iterator it;
1103  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1104  it = m_p10CqiRxed.find (rnti);
1105  if (it == m_p10CqiRxed.end ())
1106  {
1107  // create the new entry
1108  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1109  // generate correspondent timer
1110  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1111  }
1112  else
1113  {
1114  // update the CQI value and refresh correspondent timer
1115  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1116  // update correspondent timer
1117  std::map <uint16_t,uint32_t>::iterator itTimers;
1118  itTimers = m_p10CqiTimers.find (rnti);
1119  (*itTimers).second = m_cqiTimersThreshold;
1120  }
1121  }
1122  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1123  {
1124  // subband CQI reporting high layer configured
1125  std::map <uint16_t,SbMeasResult_s>::iterator it;
1126  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1127  it = m_a30CqiRxed.find (rnti);
1128  if (it == m_a30CqiRxed.end ())
1129  {
1130  // create the new entry
1131  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1132  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1133  }
1134  else
1135  {
1136  // update the CQI value and refresh correspondent timer
1137  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1138  std::map <uint16_t,uint32_t>::iterator itTimers;
1139  itTimers = m_a30CqiTimers.find (rnti);
1140  (*itTimers).second = m_cqiTimersThreshold;
1141  }
1142  }
1143  else
1144  {
1145  NS_LOG_ERROR (this << " CQI type unknown");
1146  }
1147  }
1148 
1149  return;
1150 }
1151 
1152 
1153 double
1154 TdMtFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1155 {
1156  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1157  if (itCqi == m_ueCqi.end ())
1158  {
1159  // no cqi info about this UE
1160  return (NO_SINR);
1161 
1162  }
1163  else
1164  {
1165  // take the average SINR value among the available
1166  double sinrSum = 0;
1167  unsigned int sinrNum = 0;
1168  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1169  {
1170  double sinr = (*itCqi).second.at (i);
1171  if (sinr != NO_SINR)
1172  {
1173  sinrSum += sinr;
1174  sinrNum++;
1175  }
1176  }
1177  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1178  // store the value
1179  (*itCqi).second.at (rb) = estimatedSinr;
1180  return (estimatedSinr);
1181  }
1182 }
1183 
1184 void
1186 {
1187  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1188 
1189  RefreshUlCqiMaps ();
1190 
1191  // Generate RBs map
1193  std::vector <bool> rbMap;
1194  uint16_t rbAllocatedNum = 0;
1195  std::set <uint16_t> rntiAllocated;
1196  std::vector <uint16_t> rbgAllocationMap;
1197  // update with RACH allocation map
1198  rbgAllocationMap = m_rachAllocationMap;
1199  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1200  m_rachAllocationMap.clear ();
1202 
1203  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1204  // remove RACH allocation
1205  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1206  {
1207  if (rbgAllocationMap.at (i) != 0)
1208  {
1209  rbMap.at (i) = true;
1210  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1211  }
1212  }
1213 
1214 
1215  if (m_harqOn == true)
1216  {
1217  // Process UL HARQ feedback
1218  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1219  {
1220  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1221  {
1222  // retx correspondent block: retrieve the UL-DCI
1223  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1224  std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1225  if (itProcId == m_ulHarqCurrentProcessId.end ())
1226  {
1227  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1228  }
1229  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1230  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1231  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1232  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1233  {
1234  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1235  continue;
1236  }
1237  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1238  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1239  if (itStat == m_ulHarqProcessesStatus.end ())
1240  {
1241  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1242  }
1243  if ((*itStat).second.at (harqId) >= 3)
1244  {
1245  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1246  continue;
1247  }
1248  bool free = true;
1249  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1250  {
1251  if (rbMap.at (j) == true)
1252  {
1253  free = false;
1254  NS_LOG_INFO (this << " BUSY " << j);
1255  }
1256  }
1257  if (free)
1258  {
1259  // retx on the same RBs
1260  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1261  {
1262  rbMap.at (j) = true;
1263  rbgAllocationMap.at (j) = dci.m_rnti;
1264  NS_LOG_INFO ("\tRB " << j);
1265  rbAllocatedNum++;
1266  }
1267  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1268  }
1269  else
1270  {
1271  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1272  continue;
1273  }
1274  dci.m_ndi = 0;
1275  // Update HARQ buffers with new HarqId
1276  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1277  (*itStat).second.at (harqId) = 0;
1278  (*itHarq).second.at ((*itProcId).second) = dci;
1279  ret.m_dciList.push_back (dci);
1280  rntiAllocated.insert (dci.m_rnti);
1281  }
1282  else
1283  {
1284  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1285  }
1286  }
1287  }
1288 
1289  std::map <uint16_t,uint32_t>::iterator it;
1290  int nflows = 0;
1291 
1292  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1293  {
1294  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1295  // select UEs with queues not empty and not yet allocated for HARQ
1296  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1297  {
1298  nflows++;
1299  }
1300  }
1301 
1302  if (nflows == 0)
1303  {
1304  if (ret.m_dciList.size () > 0)
1305  {
1306  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1308  }
1309 
1310  return; // no flows to be scheduled
1311  }
1312 
1313 
1314  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1315  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1316  if (rbPerFlow < 3)
1317  {
1318  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1319  }
1320  int rbAllocated = 0;
1321 
1322  if (m_nextRntiUl != 0)
1323  {
1324  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1325  {
1326  if ((*it).first == m_nextRntiUl)
1327  {
1328  break;
1329  }
1330  }
1331  if (it == m_ceBsrRxed.end ())
1332  {
1333  NS_LOG_ERROR (this << " no user found");
1334  }
1335  }
1336  else
1337  {
1338  it = m_ceBsrRxed.begin ();
1339  m_nextRntiUl = (*it).first;
1340  }
1341  do
1342  {
1343  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1344  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1345  {
1346  // UE already allocated for UL-HARQ -> skip it
1347  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1348  it++;
1349  if (it == m_ceBsrRxed.end ())
1350  {
1351  // restart from the first
1352  it = m_ceBsrRxed.begin ();
1353  }
1354  continue;
1355  }
1356  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1357  {
1358  // limit to physical resources last resource assignment
1359  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1360  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1361  if (rbPerFlow < 3)
1362  {
1363  // terminate allocation
1364  rbPerFlow = 0;
1365  }
1366  }
1367 
1368  UlDciListElement_s uldci;
1369  uldci.m_rnti = (*it).first;
1370  uldci.m_rbLen = rbPerFlow;
1371  bool allocated = false;
1372  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1373  while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1374  {
1375  // check availability
1376  bool free = true;
1377  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1378  {
1379  if (rbMap.at (j) == true)
1380  {
1381  free = false;
1382  break;
1383  }
1384  }
1385  if (free)
1386  {
1387  uldci.m_rbStart = rbAllocated;
1388 
1389  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1390  {
1391  rbMap.at (j) = true;
1392  // store info on allocation for managing ul-cqi interpretation
1393  rbgAllocationMap.at (j) = (*it).first;
1394  }
1395  rbAllocated += rbPerFlow;
1396  allocated = true;
1397  break;
1398  }
1399  rbAllocated++;
1400  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1401  {
1402  // limit to physical resources last resource assignment
1403  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1404  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1405  if (rbPerFlow < 3)
1406  {
1407  // terminate allocation
1408  rbPerFlow = 0;
1409  }
1410  }
1411  }
1412  if (!allocated)
1413  {
1414  // unable to allocate new resource: finish scheduling
1415  m_nextRntiUl = (*it).first;
1416  if (ret.m_dciList.size () > 0)
1417  {
1419  }
1420  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1421  return;
1422  }
1423 
1424 
1425 
1426  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1427  int cqi = 0;
1428  if (itCqi == m_ueCqi.end ())
1429  {
1430  // no cqi info about this UE
1431  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1432  }
1433  else
1434  {
1435  // take the lowest CQI value (worst RB)
1436  NS_ABORT_MSG_IF ((*itCqi).second.size() == 0, "CQI of RNTI = " << (*it).first << " has expired");
1437  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1438  if (minSinr == NO_SINR)
1439  {
1440  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1441  }
1442  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1443  {
1444  double sinr = (*itCqi).second.at (i);
1445  if (sinr == NO_SINR)
1446  {
1447  sinr = EstimateUlSinr ((*it).first, i);
1448  }
1449  if (sinr < minSinr)
1450  {
1451  minSinr = sinr;
1452  }
1453  }
1454 
1455  // translate SINR -> cqi: WILD ACK: same as DL
1456  double s = log2 ( 1 + (
1457  std::pow (10, minSinr / 10 ) /
1458  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1459  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1460  if (cqi == 0)
1461  {
1462  it++;
1463  if (it == m_ceBsrRxed.end ())
1464  {
1465  // restart from the first
1466  it = m_ceBsrRxed.begin ();
1467  }
1468  NS_LOG_DEBUG (this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1469  // remove UE from allocation map
1470  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1471  {
1472  rbgAllocationMap.at (i) = 0;
1473  }
1474  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1475  }
1476  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1477  }
1478 
1479  uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1480  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1481  uldci.m_ndi = 1;
1482  uldci.m_cceIndex = 0;
1483  uldci.m_aggrLevel = 1;
1484  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1485  uldci.m_hopping = false;
1486  uldci.m_n2Dmrs = 0;
1487  uldci.m_tpc = 0; // no power control
1488  uldci.m_cqiRequest = false; // only period CQI at this stage
1489  uldci.m_ulIndex = 0; // TDD parameter
1490  uldci.m_dai = 1; // TDD parameter
1491  uldci.m_freqHopping = 0;
1492  uldci.m_pdcchPowerOffset = 0; // not used
1493  ret.m_dciList.push_back (uldci);
1494  // store DCI for HARQ_PERIOD
1495  uint8_t harqId = 0;
1496  if (m_harqOn == true)
1497  {
1498  std::map <uint16_t, uint8_t>::iterator itProcId;
1499  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1500  if (itProcId == m_ulHarqCurrentProcessId.end ())
1501  {
1502  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1503  }
1504  harqId = (*itProcId).second;
1505  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1506  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1507  {
1508  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1509  }
1510  (*itDci).second.at (harqId) = uldci;
1511  // Update HARQ process status (RV 0)
1512  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (uldci.m_rnti);
1513  if (itStat == m_ulHarqProcessesStatus.end ())
1514  {
1515  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << uldci.m_rnti);
1516  }
1517  (*itStat).second.at (harqId) = 0;
1518  }
1519 
1520  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1521 
1522 
1523  it++;
1524  if (it == m_ceBsrRxed.end ())
1525  {
1526  // restart from the first
1527  it = m_ceBsrRxed.begin ();
1528  }
1529  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1530  {
1531  // Stop allocation: no more PRBs
1532  m_nextRntiUl = (*it).first;
1533  break;
1534  }
1535  }
1536  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1537 
1538 
1539  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1541 
1542  return;
1543 }
1544 
1545 void
1547 {
1548  NS_LOG_FUNCTION (this);
1549  return;
1550 }
1551 
1552 void
1554 {
1555  NS_LOG_FUNCTION (this);
1556  return;
1557 }
1558 
1559 void
1561 {
1562  NS_LOG_FUNCTION (this);
1563 
1564  std::map <uint16_t,uint32_t>::iterator it;
1565 
1566  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1567  {
1568  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1569  {
1570  // buffer status report
1571  // note that this scheduler does not differentiate the
1572  // allocation according to which LCGs have more/less bytes
1573  // to send.
1574  // Hence the BSR of different LCGs are just summed up to get
1575  // a total queue size that is used for allocation purposes.
1576 
1577  uint32_t buffer = 0;
1578  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1579  {
1580  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1581  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1582  }
1583 
1584  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1585  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1586  it = m_ceBsrRxed.find (rnti);
1587  if (it == m_ceBsrRxed.end ())
1588  {
1589  // create the new entry
1590  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1591  }
1592  else
1593  {
1594  // update the buffer size value
1595  (*it).second = buffer;
1596  }
1597  }
1598  }
1599 
1600  return;
1601 }
1602 
1603 void
1605 {
1606  NS_LOG_FUNCTION (this);
1607 // retrieve the allocation for this subframe
1608  switch (m_ulCqiFilter)
1609  {
1611  {
1612  // filter all the CQIs that are not SRS based
1613  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1614  {
1615  return;
1616  }
1617  }
1618  break;
1620  {
1621  // filter all the CQIs that are not SRS based
1622  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1623  {
1624  return;
1625  }
1626  }
1627  break;
1628  default:
1629  NS_FATAL_ERROR ("Unknown UL CQI type");
1630  }
1631 
1632  switch (params.m_ulCqi.m_type)
1633  {
1634  case UlCqi_s::PUSCH:
1635  {
1636  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1637  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1638  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1639  itMap = m_allocationMaps.find (params.m_sfnSf);
1640  if (itMap == m_allocationMaps.end ())
1641  {
1642  return;
1643  }
1644  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1645  {
1646  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1647  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1648  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1649  if (itCqi == m_ueCqi.end ())
1650  {
1651  // create a new entry
1652  std::vector <double> newCqi;
1653  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1654  {
1655  if (i == j)
1656  {
1657  newCqi.push_back (sinr);
1658  }
1659  else
1660  {
1661  // initialize with NO_SINR value.
1662  newCqi.push_back (NO_SINR);
1663  }
1664 
1665  }
1666  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1667  // generate correspondent timer
1668  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1669  }
1670  else
1671  {
1672  // update the value
1673  (*itCqi).second.at (i) = sinr;
1674  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1675  // update correspondent timer
1676  std::map <uint16_t, uint32_t>::iterator itTimers;
1677  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1678  (*itTimers).second = m_cqiTimersThreshold;
1679 
1680  }
1681 
1682  }
1683  // remove obsolete info on allocation
1684  m_allocationMaps.erase (itMap);
1685  }
1686  break;
1687  case UlCqi_s::SRS:
1688  {
1689  // get the RNTI from vendor specific parameters
1690  uint16_t rnti = 0;
1691  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1692  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1693  {
1694  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1695  {
1696  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1697  rnti = vsp->GetRnti ();
1698  }
1699  }
1700  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1701  itCqi = m_ueCqi.find (rnti);
1702  if (itCqi == m_ueCqi.end ())
1703  {
1704  // create a new entry
1705  std::vector <double> newCqi;
1706  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1707  {
1708  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1709  newCqi.push_back (sinr);
1710  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1711 
1712  }
1713  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1714  // generate correspondent timer
1715  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1716  }
1717  else
1718  {
1719  // update the values
1720  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1721  {
1722  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1723  (*itCqi).second.at (j) = sinr;
1724  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1725  }
1726  // update correspondent timer
1727  std::map <uint16_t, uint32_t>::iterator itTimers;
1728  itTimers = m_ueCqiTimers.find (rnti);
1729  (*itTimers).second = m_cqiTimersThreshold;
1730 
1731  }
1732 
1733 
1734  }
1735  break;
1736  case UlCqi_s::PUCCH_1:
1737  case UlCqi_s::PUCCH_2:
1738  case UlCqi_s::PRACH:
1739  {
1740  NS_FATAL_ERROR ("TdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1741  }
1742  break;
1743  default:
1744  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1745  }
1746  return;
1747 }
1748 
1749 void
1751 {
1752  // refresh DL CQI P01 Map
1753  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1754  while (itP10 != m_p10CqiTimers.end ())
1755  {
1756  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1757  if ((*itP10).second == 0)
1758  {
1759  // delete correspondent entries
1760  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1761  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1762  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1763  m_p10CqiRxed.erase (itMap);
1764  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1765  itP10++;
1766  m_p10CqiTimers.erase (temp);
1767  }
1768  else
1769  {
1770  (*itP10).second--;
1771  itP10++;
1772  }
1773  }
1774 
1775  // refresh DL CQI A30 Map
1776  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1777  while (itA30 != m_a30CqiTimers.end ())
1778  {
1779  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1780  if ((*itA30).second == 0)
1781  {
1782  // delete correspondent entries
1783  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1784  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1785  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
1786  m_a30CqiRxed.erase (itMap);
1787  std::map <uint16_t,uint32_t>::iterator temp = itA30;
1788  itA30++;
1789  m_a30CqiTimers.erase (temp);
1790  }
1791  else
1792  {
1793  (*itA30).second--;
1794  itA30++;
1795  }
1796  }
1797 
1798  return;
1799 }
1800 
1801 
1802 void
1804 {
1805  // refresh UL CQI Map
1806  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
1807  while (itUl != m_ueCqiTimers.end ())
1808  {
1809  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1810  if ((*itUl).second == 0)
1811  {
1812  // delete correspondent entries
1813  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
1814  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
1815  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
1816  (*itMap).second.clear ();
1817  m_ueCqi.erase (itMap);
1818  std::map <uint16_t,uint32_t>::iterator temp = itUl;
1819  itUl++;
1820  m_ueCqiTimers.erase (temp);
1821  }
1822  else
1823  {
1824  (*itUl).second--;
1825  itUl++;
1826  }
1827  }
1828 
1829  return;
1830 }
1831 
1832 void
1833 TdMtFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
1834 {
1835  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1836  LteFlowId_t flow (rnti, lcid);
1837  it = m_rlcBufferReq.find (flow);
1838  if (it != m_rlcBufferReq.end ())
1839  {
1840  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1841  // Update queues: RLC tx order Status, ReTx, Tx
1842  // Update status queue
1843  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1844  {
1845  (*it).second.m_rlcStatusPduSize = 0;
1846  }
1847  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
1848  {
1849  (*it).second.m_rlcRetransmissionQueueSize = 0;
1850  }
1851  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1852  {
1853  uint32_t rlcOverhead;
1854  if (lcid == 1)
1855  {
1856  // for SRB1 (using RLC AM) it's better to
1857  // overestimate RLC overhead rather than
1858  // underestimate it and risk unneeded
1859  // segmentation which increases delay
1860  rlcOverhead = 4;
1861  }
1862  else
1863  {
1864  // minimum RLC overhead due to header
1865  rlcOverhead = 2;
1866  }
1867  // update transmission queue
1868  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1869  {
1870  (*it).second.m_rlcTransmissionQueueSize = 0;
1871  }
1872  else
1873  {
1874  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1875  }
1876  }
1877  }
1878  else
1879  {
1880  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
1881  }
1882 }
1883 
1884 void
1885 TdMtFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
1886 {
1887 
1888  size = size - 2; // remove the minimum RLC overhead
1889  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
1890  if (it != m_ceBsrRxed.end ())
1891  {
1892  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1893  if ((*it).second >= size)
1894  {
1895  (*it).second -= size;
1896  }
1897  else
1898  {
1899  (*it).second = 0;
1900  }
1901  }
1902  else
1903  {
1904  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
1905  }
1906 
1907 }
1908 
1909 void
1911 {
1912  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
1914  params.m_rnti = rnti;
1915  params.m_transmissionMode = txMode;
1917 }
1918 
1919 
1920 }
std::vector< struct UlInfoListElement_s > m_ulInfoList
UL info list.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::set< uint16_t > m_flowStatsDl
Set of UE statistics (per RNTI basis) in downlink.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:73
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:138
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by "...
#define HARQ_PERIOD
Definition: lte-common.h:30
AttributeValue implementation for Boolean.
Definition: boolean.h:36
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE&#39;s buffer status reports received.
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:45
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR function.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs&#39; UL-CQI per RBG.
enum ns3::UlCqi_s::Type_e m_type
type
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method...
Definition: boolean.h:85
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
logicalChannelConfigList
std::vector< uint16_t > m_sinr
SINR.
uint16_t m_rnti
RNTI.
Definition: ff-mac-common.h:95
virtual LteFfrSapUser * GetLteFfrSapUser()
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file...
Definition: assert.h:67
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
std::vector< uint8_t > m_mcs
MCS.
virtual ~TdMtFfMacScheduler()
Destructor.
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
std::set< uint16_t > m_flowStatsUl
Set of UE statistics (per RNTI basis)
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:165
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
See section 4.3.10 buildRARListElement.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
uint8_t m_rbLen
length
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
uint8_t m_harqProcess
HARQ process.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE&#39;s timers on DL CQI P01 received.
std::vector< struct RachListElement_s > m_rachList
RACH list.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
vendor specific list
uint8_t m_aggrLevel
The aggregation level.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE&#39;s DL CQI A30 received.
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:39
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:96
Hold an unsigned integer type.
Definition: uinteger.h:44
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:212
void RefreshDlCqiMaps(void)
Refresh DL CQI maps function.
bool m_cqiRequest
CQI request.
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_cceIndex
Control Channel Element index.
Provides the SCHED SAP.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
int8_t m_tpc
Tx power control command.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
std::vector< uint8_t > m_logicalChannelIdentity
logical channel identity
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:289
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
uint8_t m_logicalChannelIdentity
logical channel identity
std::vector< struct CqiListElement_s > m_cqiList
CQI list.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
std::vector< struct DlInfoListElement_s > m_dlInfoList
DL info list.
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
uint8_t m_tpc
Tx power control command.
int8_t m_pdcchPowerOffset
CCH power offset.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:99
See section 4.3.9 rlcPDU_ListElement.
Every class exported by the ns3 library is enclosed in the ns3 namespace.
static const int TdMtType0AllocationRbg[4]
TDMT type 0 allocation RBG.
uint8_t m_freqHopping
freq hopping
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE&#39;s timers on DL CQI A30 received.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
std::vector< uint8_t > m_rv
Redundancy version.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
MemberCschedSapProvider class.
virtual void SetLteFfrSapProvider(LteFfrSapProvider *s)
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
uint8_t m_ulIndex
UL index.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
#define SRS_CQI_RNTI_VSP
This abstract base class identifies the interface by means of which the helper object can plug on the...
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:88
FfMacCschedSapUser class.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
MAC CE list.
std::vector< struct RachListElement_s > m_rachList
RACH list.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:155
uint8_t m_n2Dmrs
n2 DMRS
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE&#39;s LC info.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:184
LteFlowId structure.
Definition: lte-common.h:36
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
Ptr< const AttributeChecker > MakeBooleanChecker(void)
Definition: boolean.cc:121
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE&#39;s DL CQI P01 received.
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:257
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_UL_CONFIG_IND primitive.
void RefreshUlCqiMaps(void)
Refresh UL CQI maps function.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request.
MemberSchedSapProvider class.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
uint8_t m_dai
DL assignment index.
virtual void DoDispose(void)
Destructor implementation.
#define HARQ_DL_TIMEOUT
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
#define NO_SINR
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
Implements the SCHED SAP and CSCHED SAP for a Time Domain Maximize Throughput scheduler.
struct DlDciListElement_s m_dci
DCI.
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method...
Definition: uinteger.h:45
unsigned int LcActivePerFlow(uint16_t rnti)
LC active flow function.
a unique identifier for an interface.
Definition: type-id.h:58
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:98
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:923
#define HARQ_PROC_NUM
FfMacSchedSapUser class.
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
static TypeId GetTypeId(void)
Get the type ID.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
uint8_t m_ueTxAntennaSelection
UE antenna selection.
See section 4.3.8 builDataListElement.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs&#39; timers on UL-CQI per RBG.