A Discrete-Event Network Simulator
API
tta-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Marco Miozzo <marco.miozzo@cttc.es>
18 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
19 */
20
21#include <ns3/boolean.h>
22#include <ns3/log.h>
23#include <ns3/lte-amc.h>
24#include <ns3/lte-vendor-specific-parameters.h>
25#include <ns3/math.h>
26#include <ns3/pointer.h>
27#include <ns3/simulator.h>
28#include <ns3/tta-ff-mac-scheduler.h>
29
30#include <cfloat>
31#include <set>
32
33namespace ns3
34{
35
36NS_LOG_COMPONENT_DEFINE("TtaFfMacScheduler");
37
39static const int TtaType0AllocationRbg[4] = {
40 10, // RGB size 1
41 26, // RGB size 2
42 63, // RGB size 3
43 110, // RGB size 4
44}; // see table 7.1.6.1-1 of 36.213
45
46NS_OBJECT_ENSURE_REGISTERED(TtaFfMacScheduler);
47
49 : m_cschedSapUser(nullptr),
50 m_schedSapUser(nullptr),
51 m_nextRntiUl(0)
52{
53 m_amc = CreateObject<LteAmc>();
56}
57
59{
60 NS_LOG_FUNCTION(this);
61}
62
63void
65{
66 NS_LOG_FUNCTION(this);
75 delete m_schedSapProvider;
76}
77
80{
81 static TypeId tid =
82 TypeId("ns3::TtaFfMacScheduler")
84 .SetGroupName("Lte")
85 .AddConstructor<TtaFfMacScheduler>()
86 .AddAttribute("CqiTimerThreshold",
87 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
88 UintegerValue(1000),
90 MakeUintegerChecker<uint32_t>())
91 .AddAttribute("HarqEnabled",
92 "Activate/Deactivate the HARQ [by default is active].",
93 BooleanValue(true),
96 .AddAttribute("UlGrantMcs",
97 "The MCS of the UL grant, must be [0..15] (default 0)",
100 MakeUintegerChecker<uint8_t>());
101 return tid;
102}
103
104void
106{
107 m_cschedSapUser = s;
108}
109
110void
112{
113 m_schedSapUser = s;
114}
115
118{
119 return m_cschedSapProvider;
120}
121
124{
125 return m_schedSapProvider;
126}
127
128void
130{
132}
133
136{
137 return m_ffrSapUser;
138}
139
140void
143{
144 NS_LOG_FUNCTION(this);
145 // Read the subset of parameters used
149 cnf.m_result = SUCCESS;
151}
152
153void
156{
157 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
158 << (uint16_t)params.m_transmissionMode);
159 std::map<uint16_t, uint8_t>::iterator it = m_uesTxMode.find(params.m_rnti);
160 if (it == m_uesTxMode.end())
161 {
162 m_uesTxMode.insert(std::pair<uint16_t, double>(params.m_rnti, params.m_transmissionMode));
163 // generate HARQ buffers
164 m_dlHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
165 DlHarqProcessesStatus_t dlHarqPrcStatus;
166 dlHarqPrcStatus.resize(8, 0);
168 std::pair<uint16_t, DlHarqProcessesStatus_t>(params.m_rnti, dlHarqPrcStatus));
169 DlHarqProcessesTimer_t dlHarqProcessesTimer;
170 dlHarqProcessesTimer.resize(8, 0);
172 std::pair<uint16_t, DlHarqProcessesTimer_t>(params.m_rnti, dlHarqProcessesTimer));
174 dlHarqdci.resize(8);
176 std::pair<uint16_t, DlHarqProcessesDciBuffer_t>(params.m_rnti, dlHarqdci));
177 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
178 dlHarqRlcPdu.resize(2);
179 dlHarqRlcPdu.at(0).resize(8);
180 dlHarqRlcPdu.at(1).resize(8);
182 std::pair<uint16_t, DlHarqRlcPduListBuffer_t>(params.m_rnti, dlHarqRlcPdu));
183 m_ulHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
184 UlHarqProcessesStatus_t ulHarqPrcStatus;
185 ulHarqPrcStatus.resize(8, 0);
187 std::pair<uint16_t, UlHarqProcessesStatus_t>(params.m_rnti, ulHarqPrcStatus));
189 ulHarqdci.resize(8);
191 std::pair<uint16_t, UlHarqProcessesDciBuffer_t>(params.m_rnti, ulHarqdci));
192 }
193 else
194 {
195 (*it).second = params.m_transmissionMode;
196 }
197}
198
199void
202{
203 NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
204
205 std::set<uint16_t>::iterator it;
206 for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
207 {
208 it = m_flowStatsDl.find(params.m_rnti);
209
210 if (it == m_flowStatsDl.end())
211 {
212 m_flowStatsDl.insert(params.m_rnti);
213 m_flowStatsUl.insert(params.m_rnti);
214 }
215 }
216}
217
218void
221{
222 NS_LOG_FUNCTION(this);
223 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
224 {
225 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it =
226 m_rlcBufferReq.begin();
227 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
228 while (it != m_rlcBufferReq.end())
229 {
230 if (((*it).first.m_rnti == params.m_rnti) &&
231 ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
232 {
233 temp = it;
234 it++;
235 m_rlcBufferReq.erase(temp);
236 }
237 else
238 {
239 it++;
240 }
241 }
242 }
243}
244
245void
248{
249 NS_LOG_FUNCTION(this);
250
251 m_uesTxMode.erase(params.m_rnti);
252 m_dlHarqCurrentProcessId.erase(params.m_rnti);
253 m_dlHarqProcessesStatus.erase(params.m_rnti);
254 m_dlHarqProcessesTimer.erase(params.m_rnti);
257 m_ulHarqCurrentProcessId.erase(params.m_rnti);
258 m_ulHarqProcessesStatus.erase(params.m_rnti);
260 m_flowStatsDl.erase(params.m_rnti);
261 m_flowStatsUl.erase(params.m_rnti);
262 m_ceBsrRxed.erase(params.m_rnti);
263 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it =
264 m_rlcBufferReq.begin();
265 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
266 while (it != m_rlcBufferReq.end())
267 {
268 if ((*it).first.m_rnti == params.m_rnti)
269 {
270 temp = it;
271 it++;
272 m_rlcBufferReq.erase(temp);
273 }
274 else
275 {
276 it++;
277 }
278 }
279 if (m_nextRntiUl == params.m_rnti)
280 {
281 m_nextRntiUl = 0;
282 }
283}
284
285void
288{
289 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
290 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
291
292 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
293
294 LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
295
296 it = m_rlcBufferReq.find(flow);
297
298 if (it == m_rlcBufferReq.end())
299 {
300 m_rlcBufferReq.insert(
301 std::pair<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>(flow,
302 params));
303 }
304 else
305 {
306 (*it).second = params;
307 }
308}
309
310void
313{
314 NS_LOG_FUNCTION(this);
315 NS_FATAL_ERROR("method not implemented");
316}
317
318void
321{
322 NS_LOG_FUNCTION(this);
323 NS_FATAL_ERROR("method not implemented");
324}
325
326int
328{
329 for (int i = 0; i < 4; i++)
330 {
331 if (dlbandwidth < TtaType0AllocationRbg[i])
332 {
333 return (i + 1);
334 }
335 }
336
337 return (-1);
338}
339
340unsigned int
342{
343 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
344 unsigned int lcActive = 0;
345 for (it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
346 {
347 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
348 ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
349 ((*it).second.m_rlcStatusPduSize > 0)))
350 {
351 lcActive++;
352 }
353 if ((*it).first.m_rnti > rnti)
354 {
355 break;
356 }
357 }
358 return (lcActive);
359}
360
361bool
363{
364 NS_LOG_FUNCTION(this << rnti);
365
366 std::map<uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find(rnti);
367 if (it == m_dlHarqCurrentProcessId.end())
368 {
369 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
370 }
371 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
372 m_dlHarqProcessesStatus.find(rnti);
373 if (itStat == m_dlHarqProcessesStatus.end())
374 {
375 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
376 }
377 uint8_t i = (*it).second;
378 do
379 {
380 i = (i + 1) % HARQ_PROC_NUM;
381 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
382 if ((*itStat).second.at(i) == 0)
383 {
384 return (true);
385 }
386 else
387 {
388 return (false); // return a not valid harq proc id
389 }
390}
391
392uint8_t
394{
395 NS_LOG_FUNCTION(this << rnti);
396
397 if (m_harqOn == false)
398 {
399 return (0);
400 }
401
402 std::map<uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find(rnti);
403 if (it == m_dlHarqCurrentProcessId.end())
404 {
405 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
406 }
407 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
408 m_dlHarqProcessesStatus.find(rnti);
409 if (itStat == m_dlHarqProcessesStatus.end())
410 {
411 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
412 }
413 uint8_t i = (*it).second;
414 do
415 {
416 i = (i + 1) % HARQ_PROC_NUM;
417 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
418 if ((*itStat).second.at(i) == 0)
419 {
420 (*it).second = i;
421 (*itStat).second.at(i) = 1;
422 }
423 else
424 {
425 NS_FATAL_ERROR("No HARQ process available for RNTI "
426 << rnti << " check before update with HarqProcessAvailability");
427 }
428
429 return ((*it).second);
430}
431
432void
434{
435 NS_LOG_FUNCTION(this);
436
437 std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
438 for (itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
439 itTimers++)
440 {
441 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
442 {
443 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
444 {
445 // reset HARQ process
446
447 NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
448 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
449 m_dlHarqProcessesStatus.find((*itTimers).first);
450 if (itStat == m_dlHarqProcessesStatus.end())
451 {
452 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
453 << (*itTimers).first);
454 }
455 (*itStat).second.at(i) = 0;
456 (*itTimers).second.at(i) = 0;
457 }
458 else
459 {
460 (*itTimers).second.at(i)++;
461 }
462 }
463 }
464}
465
466void
469{
470 NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
471 << (0xF & params.m_sfnSf));
472 // API generated by RLC for triggering the scheduling of a DL subframe
473
474 // evaluate the relative channel quality indicator for each UE per each RBG
475 // (since we are using allocation type 0 the small unit of allocation is RBG)
476 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
477
479
481 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
482 std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
483 std::vector<bool> rbgMap; // global RBGs map
484 uint16_t rbgAllocatedNum = 0;
485 std::set<uint16_t> rntiAllocated;
486 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
488
489 // update UL HARQ proc id
490 std::map<uint16_t, uint8_t>::iterator itProcId;
491 for (itProcId = m_ulHarqCurrentProcessId.begin(); itProcId != m_ulHarqCurrentProcessId.end();
492 itProcId++)
493 {
494 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
495 }
496
497 // RACH Allocation
499 uint16_t rbStart = 0;
500 std::vector<struct RachListElement_s>::iterator itRach;
501 for (itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
502 {
504 (*itRach).m_estimatedSize,
505 " Default UL Grant MCS does not allow to send RACH messages");
507 newRar.m_rnti = (*itRach).m_rnti;
508 // DL-RACH Allocation
509 // Ideal: no needs of configuring m_dci
510 // UL-RACH Allocation
511 newRar.m_grant.m_rnti = newRar.m_rnti;
512 newRar.m_grant.m_mcs = m_ulGrantMcs;
513 uint16_t rbLen = 1;
514 uint16_t tbSizeBits = 0;
515 // find lowest TB size that fits UL grant estimated size
516 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
517 (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
518 {
519 rbLen++;
520 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
521 }
522 if (tbSizeBits < (*itRach).m_estimatedSize)
523 {
524 // no more allocation space: finish allocation
525 break;
526 }
527 newRar.m_grant.m_rbStart = rbStart;
528 newRar.m_grant.m_rbLen = rbLen;
529 newRar.m_grant.m_tbSize = tbSizeBits / 8;
530 newRar.m_grant.m_hopping = false;
531 newRar.m_grant.m_tpc = 0;
532 newRar.m_grant.m_cqiRequest = false;
533 newRar.m_grant.m_ulDelay = false;
534 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
535 << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize "
536 << newRar.m_grant.m_tbSize);
537 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
538 {
539 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
540 }
541
542 if (m_harqOn == true)
543 {
544 // generate UL-DCI for HARQ retransmissions
545 UlDciListElement_s uldci;
546 uldci.m_rnti = newRar.m_rnti;
547 uldci.m_rbLen = rbLen;
548 uldci.m_rbStart = rbStart;
549 uldci.m_mcs = m_ulGrantMcs;
550 uldci.m_tbSize = tbSizeBits / 8;
551 uldci.m_ndi = 1;
552 uldci.m_cceIndex = 0;
553 uldci.m_aggrLevel = 1;
554 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
555 uldci.m_hopping = false;
556 uldci.m_n2Dmrs = 0;
557 uldci.m_tpc = 0; // no power control
558 uldci.m_cqiRequest = false; // only period CQI at this stage
559 uldci.m_ulIndex = 0; // TDD parameter
560 uldci.m_dai = 1; // TDD parameter
561 uldci.m_freqHopping = 0;
562 uldci.m_pdcchPowerOffset = 0; // not used
563
564 uint8_t harqId = 0;
565 std::map<uint16_t, uint8_t>::iterator itProcId;
566 itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
567 if (itProcId == m_ulHarqCurrentProcessId.end())
568 {
569 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
570 }
571 harqId = (*itProcId).second;
572 std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci =
574 if (itDci == m_ulHarqProcessesDciBuffer.end())
575 {
576 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
577 << uldci.m_rnti);
578 }
579 (*itDci).second.at(harqId) = uldci;
580 }
581
582 rbStart = rbStart + rbLen;
583 ret.m_buildRarList.push_back(newRar);
584 }
585 m_rachList.clear();
586
587 // Process DL HARQ feedback
589 // retrieve past HARQ retx buffered
590 if (!m_dlInfoListBuffered.empty())
591 {
592 if (!params.m_dlInfoList.empty())
593 {
594 NS_LOG_INFO(this << " Received DL-HARQ feedback");
596 params.m_dlInfoList.begin(),
597 params.m_dlInfoList.end());
598 }
599 }
600 else
601 {
602 if (!params.m_dlInfoList.empty())
603 {
604 m_dlInfoListBuffered = params.m_dlInfoList;
605 }
606 }
607 if (m_harqOn == false)
608 {
609 // Ignore HARQ feedback
610 m_dlInfoListBuffered.clear();
611 }
612 std::vector<struct DlInfoListElement_s> dlInfoListUntxed;
613 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
614 {
615 std::set<uint16_t>::iterator itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
616 if (itRnti != rntiAllocated.end())
617 {
618 // RNTI already allocated for retx
619 continue;
620 }
621 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
622 std::vector<bool> retx;
623 NS_LOG_INFO(this << " Processing DLHARQ feedback");
624 if (nLayers == 1)
625 {
626 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
628 retx.push_back(false);
629 }
630 else
631 {
632 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
634 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
636 }
637 if (retx.at(0) || retx.at(1))
638 {
639 // retrieve HARQ process information
640 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
641 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
642 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
643 std::map<uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq =
645 if (itHarq == m_dlHarqProcessesDciBuffer.end())
646 {
647 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
648 }
649
650 DlDciListElement_s dci = (*itHarq).second.at(harqId);
651 int rv = 0;
652 if (dci.m_rv.size() == 1)
653 {
654 rv = dci.m_rv.at(0);
655 }
656 else
657 {
658 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
659 }
660
661 if (rv == 3)
662 {
663 // maximum number of retx reached -> drop process
664 NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
665 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator it =
666 m_dlHarqProcessesStatus.find(rnti);
667 if (it == m_dlHarqProcessesStatus.end())
668 {
669 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
670 << m_dlInfoListBuffered.at(i).m_rnti);
671 }
672 (*it).second.at(harqId) = 0;
673 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
675 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
676 {
677 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
678 << m_dlInfoListBuffered.at(i).m_rnti);
679 }
680 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
681 {
682 (*itRlcPdu).second.at(k).at(harqId).clear();
683 }
684 continue;
685 }
686 // check the feasibility of retransmitting on the same RBGs
687 // translate the DCI to Spectrum framework
688 std::vector<int> dciRbg;
689 uint32_t mask = 0x1;
690 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
691 for (int j = 0; j < 32; j++)
692 {
693 if (((dci.m_rbBitmap & mask) >> j) == 1)
694 {
695 dciRbg.push_back(j);
696 NS_LOG_INFO("\t" << j);
697 }
698 mask = (mask << 1);
699 }
700 bool free = true;
701 for (std::size_t j = 0; j < dciRbg.size(); j++)
702 {
703 if (rbgMap.at(dciRbg.at(j)) == true)
704 {
705 free = false;
706 break;
707 }
708 }
709 if (free)
710 {
711 // use the same RBGs for the retx
712 // reserve RBGs
713 for (std::size_t j = 0; j < dciRbg.size(); j++)
714 {
715 rbgMap.at(dciRbg.at(j)) = true;
716 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
717 rbgAllocatedNum++;
718 }
719
720 NS_LOG_INFO(this << " Send retx in the same RBGs");
721 }
722 else
723 {
724 // find RBGs for sending HARQ retx
725 uint8_t j = 0;
726 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
727 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
728 std::vector<bool> rbgMapCopy = rbgMap;
729 while ((j < dciRbg.size()) && (startRbg != rbgId))
730 {
731 if (rbgMapCopy.at(rbgId) == false)
732 {
733 rbgMapCopy.at(rbgId) = true;
734 dciRbg.at(j) = rbgId;
735 j++;
736 }
737 rbgId = (rbgId + 1) % rbgNum;
738 }
739 if (j == dciRbg.size())
740 {
741 // find new RBGs -> update DCI map
742 uint32_t rbgMask = 0;
743 for (std::size_t k = 0; k < dciRbg.size(); k++)
744 {
745 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
746 rbgAllocatedNum++;
747 }
748 dci.m_rbBitmap = rbgMask;
749 rbgMap = rbgMapCopy;
750 NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
751 }
752 else
753 {
754 // HARQ retx cannot be performed on this TTI -> store it
755 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
756 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
757 }
758 }
759 // retrieve RLC PDU list for retx TBsize and update DCI
761 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
763 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
764 {
765 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
766 }
767 for (std::size_t j = 0; j < nLayers; j++)
768 {
769 if (retx.at(j))
770 {
771 if (j >= dci.m_ndi.size())
772 {
773 // for avoiding errors in MIMO transient phases
774 dci.m_ndi.push_back(0);
775 dci.m_rv.push_back(0);
776 dci.m_mcs.push_back(0);
777 dci.m_tbsSize.push_back(0);
778 NS_LOG_INFO(this << " layer " << (uint16_t)j
779 << " no txed (MIMO transition)");
780 }
781 else
782 {
783 dci.m_ndi.at(j) = 0;
784 dci.m_rv.at(j)++;
785 (*itHarq).second.at(harqId).m_rv.at(j)++;
786 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
787 << (uint16_t)dci.m_rv.at(j));
788 }
789 }
790 else
791 {
792 // empty TB of layer j
793 dci.m_ndi.at(j) = 0;
794 dci.m_rv.at(j) = 0;
795 dci.m_mcs.at(j) = 0;
796 dci.m_tbsSize.at(j) = 0;
797 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
798 }
799 }
800 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
801 {
802 std::vector<struct RlcPduListElement_s> rlcPduListPerLc;
803 for (std::size_t j = 0; j < nLayers; j++)
804 {
805 if (retx.at(j))
806 {
807 if (j < dci.m_ndi.size())
808 {
809 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
810 << dci.m_tbsSize.at(j));
811 rlcPduListPerLc.push_back(
812 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
813 }
814 }
815 else
816 { // if no retx needed on layer j, push an RlcPduListElement_s object with
817 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
818 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
819 RlcPduListElement_s emptyElement;
820 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
821 .second.at(j)
822 .at(dci.m_harqProcess)
823 .at(k)
824 .m_logicalChannelIdentity;
825 emptyElement.m_size = 0;
826 rlcPduListPerLc.push_back(emptyElement);
827 }
828 }
829
830 if (!rlcPduListPerLc.empty())
831 {
832 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
833 }
834 }
835 newEl.m_rnti = rnti;
836 newEl.m_dci = dci;
837 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
838 // refresh timer
839 std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer =
840 m_dlHarqProcessesTimer.find(rnti);
841 if (itHarqTimer == m_dlHarqProcessesTimer.end())
842 {
843 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
844 }
845 (*itHarqTimer).second.at(harqId) = 0;
846 ret.m_buildDataList.push_back(newEl);
847 rntiAllocated.insert(rnti);
848 }
849 else
850 {
851 // update HARQ process status
852 NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
853 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator it =
855 if (it == m_dlHarqProcessesStatus.end())
856 {
857 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
858 << m_dlInfoListBuffered.at(i).m_rnti);
859 }
860 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
861 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
863 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
864 {
865 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
866 << m_dlInfoListBuffered.at(i).m_rnti);
867 }
868 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
869 {
870 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
871 }
872 }
873 }
874 m_dlInfoListBuffered.clear();
875 m_dlInfoListBuffered = dlInfoListUntxed;
876
877 if (rbgAllocatedNum == rbgNum)
878 {
879 // all the RBGs are already allocated -> exit
880 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
881 {
883 }
884 return;
885 }
886
887 for (int i = 0; i < rbgNum; i++)
888 {
889 NS_LOG_INFO(this << " ALLOCATION for RBG " << i << " of " << rbgNum);
890 if (rbgMap.at(i) == false)
891 {
892 std::set<uint16_t>::iterator it;
893 std::set<uint16_t>::iterator itMax = m_flowStatsDl.end();
894 double rcqiMax = 0.0;
895 for (it = m_flowStatsDl.begin(); it != m_flowStatsDl.end(); it++)
896 {
897 std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it));
898 if ((itRnti != rntiAllocated.end()) || (!HarqProcessAvailability((*it))))
899 {
900 // UE already allocated for HARQ or without HARQ process available -> drop it
901 if (itRnti != rntiAllocated.end())
902 {
903 NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx" << (uint16_t)(*it));
904 }
905 if (!HarqProcessAvailability((*it)))
906 {
907 NS_LOG_DEBUG(this << " RNTI discarded for HARQ id" << (uint16_t)(*it));
908 }
909 continue;
910 }
911
912 std::map<uint16_t, SbMeasResult_s>::iterator itSbCqi;
913 itSbCqi = m_a30CqiRxed.find((*it));
914 std::map<uint16_t, uint8_t>::iterator itWbCqi;
915 itWbCqi = m_p10CqiRxed.find((*it));
916
917 std::map<uint16_t, uint8_t>::iterator itTxMode;
918 itTxMode = m_uesTxMode.find((*it));
919 if (itTxMode == m_uesTxMode.end())
920 {
921 NS_FATAL_ERROR("No Transmission Mode info on user " << (*it));
922 }
923 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
924
925 std::vector<uint8_t> sbCqi;
926 if (itSbCqi == m_a30CqiRxed.end())
927 {
928 for (uint8_t k = 0; k < nLayer; k++)
929 {
930 sbCqi.push_back(1); // start with lowest value
931 }
932 }
933 else
934 {
935 sbCqi = (*itSbCqi).second.m_higherLayerSelected.at(i).m_sbCqi;
936 }
937
938 uint8_t wbCqi = 0;
939 if (itWbCqi != m_p10CqiRxed.end())
940 {
941 wbCqi = (*itWbCqi).second;
942 }
943 else
944 {
945 wbCqi = 1; // lowest value for trying a transmission
946 }
947
948 uint8_t cqi1 = sbCqi.at(0);
949 uint8_t cqi2 = 0;
950 if (sbCqi.size() > 1)
951 {
952 cqi2 = sbCqi.at(1);
953 }
954 if ((cqi1 > 0) ||
955 (cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
956 {
957 if (LcActivePerFlow((*it)) > 0)
958 {
959 // this UE has data to transmit
960 double achievableSbRate = 0.0;
961 double achievableWbRate = 0.0;
962 uint8_t sbMcs = 0;
963 uint8_t wbMcs = 0;
964 for (uint8_t k = 0; k < nLayer; k++)
965 {
966 if (sbCqi.size() > k)
967 {
968 sbMcs = m_amc->GetMcsFromCqi(sbCqi.at(k));
969 }
970 else
971 {
972 // no info on this subband -> worst MCS
973 sbMcs = 0;
974 }
975 achievableSbRate += ((m_amc->GetDlTbSizeFromMcs(sbMcs, rbgSize) / 8) /
976 0.001); // = TB size / TTI
977 wbMcs = m_amc->GetMcsFromCqi(wbCqi);
978 achievableWbRate += ((m_amc->GetDlTbSizeFromMcs(wbMcs, rbgSize) / 8) /
979 0.001); // = TB size / TTI
980 }
981
982 double metric = achievableSbRate / achievableWbRate;
983
984 if (metric > rcqiMax)
985 {
986 rcqiMax = metric;
987 itMax = it;
988 }
989 }
990 } // end if cqi
991
992 } // end for m_rlcBufferReq
993
994 if (itMax == m_flowStatsDl.end())
995 {
996 // no UE available for this RB
997 NS_LOG_INFO(this << " any UE found");
998 }
999 else
1000 {
1001 rbgMap.at(i) = true;
1002 std::map<uint16_t, std::vector<uint16_t>>::iterator itMap;
1003 itMap = allocationMap.find((*itMax));
1004 if (itMap == allocationMap.end())
1005 {
1006 // insert new element
1007 std::vector<uint16_t> tempMap;
1008 tempMap.push_back(i);
1009 allocationMap.insert(
1010 std::pair<uint16_t, std::vector<uint16_t>>((*itMax), tempMap));
1011 }
1012 else
1013 {
1014 (*itMap).second.push_back(i);
1015 }
1016 NS_LOG_INFO(this << " UE assigned " << (*itMax));
1017 }
1018 } // end for RBG free
1019 } // end for RBGs
1020
1021 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1022 // creating the correspondent DCIs
1023 std::map<uint16_t, std::vector<uint16_t>>::iterator itMap = allocationMap.begin();
1024 while (itMap != allocationMap.end())
1025 {
1026 // create new BuildDataListElement_s for this LC
1028 newEl.m_rnti = (*itMap).first;
1029 // create the DlDciListElement_s
1030 DlDciListElement_s newDci;
1031 newDci.m_rnti = (*itMap).first;
1032 newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
1033
1034 uint16_t lcActives = LcActivePerFlow((*itMap).first);
1035 NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1036 if (lcActives == 0)
1037 {
1038 // Set to max value, to avoid divide by 0 below
1039 lcActives = (uint16_t)65535; // UINT16_MAX;
1040 }
1041 uint16_t RgbPerRnti = (*itMap).second.size();
1042 std::map<uint16_t, SbMeasResult_s>::iterator itCqi;
1043 itCqi = m_a30CqiRxed.find((*itMap).first);
1044 std::map<uint16_t, uint8_t>::iterator itTxMode;
1045 itTxMode = m_uesTxMode.find((*itMap).first);
1046 if (itTxMode == m_uesTxMode.end())
1047 {
1048 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
1049 }
1050 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1051 std::vector<uint8_t> worstCqi(2, 15);
1052 if (itCqi != m_a30CqiRxed.end())
1053 {
1054 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1055 {
1056 if ((*itCqi).second.m_higherLayerSelected.size() > (*itMap).second.at(k))
1057 {
1058 NS_LOG_INFO(this << " RBG " << (*itMap).second.at(k) << " CQI "
1059 << (uint16_t)((*itCqi)
1060 .second.m_higherLayerSelected
1061 .at((*itMap).second.at(k))
1062 .m_sbCqi.at(0)));
1063 for (uint8_t j = 0; j < nLayer; j++)
1064 {
1065 if ((*itCqi)
1066 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1067 .m_sbCqi.size() > j)
1068 {
1069 if (((*itCqi)
1070 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1071 .m_sbCqi.at(j)) < worstCqi.at(j))
1072 {
1073 worstCqi.at(j) =
1074 ((*itCqi)
1075 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1076 .m_sbCqi.at(j));
1077 }
1078 }
1079 else
1080 {
1081 // no CQI for this layer of this suband -> worst one
1082 worstCqi.at(j) = 1;
1083 }
1084 }
1085 }
1086 else
1087 {
1088 for (uint8_t j = 0; j < nLayer; j++)
1089 {
1090 worstCqi.at(j) = 1; // try with lowest MCS in RBG with no info on channel
1091 }
1092 }
1093 }
1094 }
1095 else
1096 {
1097 for (uint8_t j = 0; j < nLayer; j++)
1098 {
1099 worstCqi.at(j) = 1; // try with lowest MCS in RBG with no info on channel
1100 }
1101 }
1102 for (uint8_t j = 0; j < nLayer; j++)
1103 {
1104 NS_LOG_INFO(this << " Layer " << (uint16_t)j << " CQI selected "
1105 << (uint16_t)worstCqi.at(j));
1106 }
1107 for (uint8_t j = 0; j < nLayer; j++)
1108 {
1109 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi(worstCqi.at(j)));
1110 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RgbPerRnti * rbgSize) /
1111 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1112 newDci.m_tbsSize.push_back(tbSize);
1113 NS_LOG_INFO(this << " Layer " << (uint16_t)j << " MCS selected"
1114 << m_amc->GetMcsFromCqi(worstCqi.at(j)));
1115 }
1116
1117 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1118 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1119 uint32_t rbgMask = 0;
1120 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1121 {
1122 rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
1123 NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
1124 }
1125 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1126
1127 // create the rlc PDUs -> equally divide resources among actives LCs
1128 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator
1129 itBufReq;
1130 for (itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1131 {
1132 if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1133 (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1134 ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1135 ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1136 {
1137 std::vector<struct RlcPduListElement_s> newRlcPduLe;
1138 for (uint8_t j = 0; j < nLayer; j++)
1139 {
1140 RlcPduListElement_s newRlcEl;
1141 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1142 newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1143 NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1144 << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1145 newRlcPduLe.push_back(newRlcEl);
1147 newRlcEl.m_logicalChannelIdentity,
1148 newRlcEl.m_size);
1149 if (m_harqOn == true)
1150 {
1151 // store RLC PDU list for HARQ
1152 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
1153 m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1154 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1155 {
1156 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1157 << (*itMap).first);
1158 }
1159 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1160 }
1161 }
1162 newEl.m_rlcPduList.push_back(newRlcPduLe);
1163 }
1164 if ((*itBufReq).first.m_rnti > (*itMap).first)
1165 {
1166 break;
1167 }
1168 }
1169 for (uint8_t j = 0; j < nLayer; j++)
1170 {
1171 newDci.m_ndi.push_back(1);
1172 newDci.m_rv.push_back(0);
1173 }
1174
1175 newDci.m_tpc = 1; // 1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1176
1177 newEl.m_dci = newDci;
1178
1179 if (m_harqOn == true)
1180 {
1181 // store DCI for HARQ
1182 std::map<uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci =
1184 if (itDci == m_dlHarqProcessesDciBuffer.end())
1185 {
1186 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1187 << newEl.m_rnti);
1188 }
1189 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1190 // refresh timer
1191 std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer =
1192 m_dlHarqProcessesTimer.find(newEl.m_rnti);
1193 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1194 {
1195 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1196 }
1197 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1198 }
1199
1200 // ...more parameters -> ignored in this version
1201
1202 ret.m_buildDataList.push_back(newEl);
1203
1204 itMap++;
1205 } // end while allocation
1206 ret.m_nrOfPdcchOfdmSymbols = 1;
1207
1209}
1210
1211void
1214{
1215 NS_LOG_FUNCTION(this);
1216
1217 m_rachList = params.m_rachList;
1218}
1219
1220void
1223{
1224 NS_LOG_FUNCTION(this);
1225
1226 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1227 {
1228 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1229 {
1230 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1231 << " reported");
1232 std::map<uint16_t, uint8_t>::iterator it;
1233 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1234 it = m_p10CqiRxed.find(rnti);
1235 if (it == m_p10CqiRxed.end())
1236 {
1237 // create the new entry
1238 m_p10CqiRxed.insert(std::pair<uint16_t, uint8_t>(
1239 rnti,
1240 params.m_cqiList.at(i).m_wbCqi.at(0))); // only codeword 0 at this stage (SISO)
1241 // generate correspondent timer
1242 m_p10CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1243 }
1244 else
1245 {
1246 // update the CQI value and refresh correspondent timer
1247 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1248 // update correspondent timer
1249 std::map<uint16_t, uint32_t>::iterator itTimers;
1250 itTimers = m_p10CqiTimers.find(rnti);
1251 (*itTimers).second = m_cqiTimersThreshold;
1252 }
1253 }
1254 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1255 {
1256 // subband CQI reporting high layer configured
1257 std::map<uint16_t, SbMeasResult_s>::iterator it;
1258 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1259 it = m_a30CqiRxed.find(rnti);
1260 if (it == m_a30CqiRxed.end())
1261 {
1262 // create the new entry
1263 m_a30CqiRxed.insert(
1264 std::pair<uint16_t, SbMeasResult_s>(rnti,
1265 params.m_cqiList.at(i).m_sbMeasResult));
1266 m_a30CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1267 }
1268 else
1269 {
1270 // update the CQI value and refresh correspondent timer
1271 (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1272 std::map<uint16_t, uint32_t>::iterator itTimers;
1273 itTimers = m_a30CqiTimers.find(rnti);
1274 (*itTimers).second = m_cqiTimersThreshold;
1275 }
1276 }
1277 else
1278 {
1279 NS_LOG_ERROR(this << " CQI type unknown");
1280 }
1281 }
1282}
1283
1284double
1285TtaFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1286{
1287 std::map<uint16_t, std::vector<double>>::iterator itCqi = m_ueCqi.find(rnti);
1288 if (itCqi == m_ueCqi.end())
1289 {
1290 // no cqi info about this UE
1291 return (NO_SINR);
1292 }
1293 else
1294 {
1295 // take the average SINR value among the available
1296 double sinrSum = 0;
1297 unsigned int sinrNum = 0;
1298 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1299 {
1300 double sinr = (*itCqi).second.at(i);
1301 if (sinr != NO_SINR)
1302 {
1303 sinrSum += sinr;
1304 sinrNum++;
1305 }
1306 }
1307 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1308 // store the value
1309 (*itCqi).second.at(rb) = estimatedSinr;
1310 return (estimatedSinr);
1311 }
1312}
1313
1314void
1317{
1318 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1319 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1320
1322
1323 // Generate RBs map
1325 std::vector<bool> rbMap;
1326 std::set<uint16_t> rntiAllocated;
1327 std::vector<uint16_t> rbgAllocationMap;
1328 // update with RACH allocation map
1329 rbgAllocationMap = m_rachAllocationMap;
1330 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1331 m_rachAllocationMap.clear();
1333
1334 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1335 // remove RACH allocation
1336 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1337 {
1338 if (rbgAllocationMap.at(i) != 0)
1339 {
1340 rbMap.at(i) = true;
1341 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1342 }
1343 }
1344
1345 if (m_harqOn == true)
1346 {
1347 // Process UL HARQ feedback
1348 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1349 {
1350 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1351 {
1352 // retx correspondent block: retrieve the UL-DCI
1353 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1354 std::map<uint16_t, uint8_t>::iterator itProcId =
1355 m_ulHarqCurrentProcessId.find(rnti);
1356 if (itProcId == m_ulHarqCurrentProcessId.end())
1357 {
1358 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1359 }
1360 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1361 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1362 << " i " << i << " size " << params.m_ulInfoList.size());
1363 std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq =
1364 m_ulHarqProcessesDciBuffer.find(rnti);
1365 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1366 {
1367 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1368 continue;
1369 }
1370 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1371 std::map<uint16_t, UlHarqProcessesStatus_t>::iterator itStat =
1372 m_ulHarqProcessesStatus.find(rnti);
1373 if (itStat == m_ulHarqProcessesStatus.end())
1374 {
1375 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1376 }
1377 if ((*itStat).second.at(harqId) >= 3)
1378 {
1379 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1380 continue;
1381 }
1382 bool free = true;
1383 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1384 {
1385 if (rbMap.at(j) == true)
1386 {
1387 free = false;
1388 NS_LOG_INFO(this << " BUSY " << j);
1389 }
1390 }
1391 if (free)
1392 {
1393 // retx on the same RBs
1394 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1395 {
1396 rbMap.at(j) = true;
1397 rbgAllocationMap.at(j) = dci.m_rnti;
1398 NS_LOG_INFO("\tRB " << j);
1399 }
1400 NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1401 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1402 << (*itStat).second.at(harqId) + 1);
1403 }
1404 else
1405 {
1406 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1407 continue;
1408 }
1409 dci.m_ndi = 0;
1410 // Update HARQ buffers with new HarqId
1411 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1412 (*itStat).second.at(harqId) = 0;
1413 (*itHarq).second.at((*itProcId).second) = dci;
1414 ret.m_dciList.push_back(dci);
1415 rntiAllocated.insert(dci.m_rnti);
1416 }
1417 else
1418 {
1419 NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1420 << params.m_ulInfoList.at(i).m_rnti);
1421 }
1422 }
1423 }
1424
1425 std::map<uint16_t, uint32_t>::iterator it;
1426 int nflows = 0;
1427
1428 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1429 {
1430 std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it).first);
1431 // select UEs with queues not empty and not yet allocated for HARQ
1432 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1433 {
1434 nflows++;
1435 }
1436 }
1437
1438 if (nflows == 0)
1439 {
1440 if (!ret.m_dciList.empty())
1441 {
1442 m_allocationMaps.insert(
1443 std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1445 }
1446
1447 return; // no flows to be scheduled
1448 }
1449
1450 // Divide the remaining resources equally among the active users starting from the subsequent
1451 // one served last scheduling trigger
1452 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size());
1453 if (rbPerFlow < 3)
1454 {
1455 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1456 // >= 7 bytes
1457 }
1458 int rbAllocated = 0;
1459
1460 if (m_nextRntiUl != 0)
1461 {
1462 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1463 {
1464 if ((*it).first == m_nextRntiUl)
1465 {
1466 break;
1467 }
1468 }
1469 if (it == m_ceBsrRxed.end())
1470 {
1471 NS_LOG_ERROR(this << " no user found");
1472 }
1473 }
1474 else
1475 {
1476 it = m_ceBsrRxed.begin();
1477 m_nextRntiUl = (*it).first;
1478 }
1479 do
1480 {
1481 std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it).first);
1482 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1483 {
1484 // UE already allocated for UL-HARQ -> skip it
1485 NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1486 << (*it).first);
1487 it++;
1488 if (it == m_ceBsrRxed.end())
1489 {
1490 // restart from the first
1491 it = m_ceBsrRxed.begin();
1492 }
1493 continue;
1494 }
1495 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1496 {
1497 // limit to physical resources last resource assignment
1498 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1499 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1500 if (rbPerFlow < 3)
1501 {
1502 // terminate allocation
1503 rbPerFlow = 0;
1504 }
1505 }
1506
1507 UlDciListElement_s uldci;
1508 uldci.m_rnti = (*it).first;
1509 uldci.m_rbLen = rbPerFlow;
1510 bool allocated = false;
1511 NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1512 << " flows " << nflows);
1513 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1514 (rbPerFlow != 0))
1515 {
1516 // check availability
1517 bool free = true;
1518 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1519 {
1520 if (rbMap.at(j) == true)
1521 {
1522 free = false;
1523 break;
1524 }
1525 }
1526 if (free)
1527 {
1528 uldci.m_rbStart = rbAllocated;
1529
1530 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1531 {
1532 rbMap.at(j) = true;
1533 // store info on allocation for managing ul-cqi interpretation
1534 rbgAllocationMap.at(j) = (*it).first;
1535 }
1536 rbAllocated += rbPerFlow;
1537 allocated = true;
1538 break;
1539 }
1540 rbAllocated++;
1541 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1542 {
1543 // limit to physical resources last resource assignment
1544 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1545 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1546 if (rbPerFlow < 3)
1547 {
1548 // terminate allocation
1549 rbPerFlow = 0;
1550 }
1551 }
1552 }
1553 if (!allocated)
1554 {
1555 // unable to allocate new resource: finish scheduling
1556 m_nextRntiUl = (*it).first;
1557 if (!ret.m_dciList.empty())
1558 {
1560 }
1561 m_allocationMaps.insert(
1562 std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1563 return;
1564 }
1565
1566 std::map<uint16_t, std::vector<double>>::iterator itCqi = m_ueCqi.find((*it).first);
1567 int cqi = 0;
1568 if (itCqi == m_ueCqi.end())
1569 {
1570 // no cqi info about this UE
1571 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1572 }
1573 else
1574 {
1575 // take the lowest CQI value (worst RB)
1576 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1577 "CQI of RNTI = " << (*it).first << " has expired");
1578 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1579 if (minSinr == NO_SINR)
1580 {
1581 minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1582 }
1583 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1584 {
1585 double sinr = (*itCqi).second.at(i);
1586 if (sinr == NO_SINR)
1587 {
1588 sinr = EstimateUlSinr((*it).first, i);
1589 }
1590 if (sinr < minSinr)
1591 {
1592 minSinr = sinr;
1593 }
1594 }
1595
1596 // translate SINR -> cqi: WILD ACK: same as DL
1597 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1598 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1599 if (cqi == 0)
1600 {
1601 it++;
1602 if (it == m_ceBsrRxed.end())
1603 {
1604 // restart from the first
1605 it = m_ceBsrRxed.begin();
1606 }
1607 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1608 // remove UE from allocation map
1609 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1610 {
1611 rbgAllocationMap.at(i) = 0;
1612 }
1613 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1614 }
1615 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1616 }
1617
1618 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1620 uldci.m_ndi = 1;
1621 uldci.m_cceIndex = 0;
1622 uldci.m_aggrLevel = 1;
1623 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1624 uldci.m_hopping = false;
1625 uldci.m_n2Dmrs = 0;
1626 uldci.m_tpc = 0; // no power control
1627 uldci.m_cqiRequest = false; // only period CQI at this stage
1628 uldci.m_ulIndex = 0; // TDD parameter
1629 uldci.m_dai = 1; // TDD parameter
1630 uldci.m_freqHopping = 0;
1631 uldci.m_pdcchPowerOffset = 0; // not used
1632 ret.m_dciList.push_back(uldci);
1633 // store DCI for HARQ_PERIOD
1634 uint8_t harqId = 0;
1635 if (m_harqOn == true)
1636 {
1637 std::map<uint16_t, uint8_t>::iterator itProcId;
1638 itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1639 if (itProcId == m_ulHarqCurrentProcessId.end())
1640 {
1641 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1642 }
1643 harqId = (*itProcId).second;
1644 std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci =
1646 if (itDci == m_ulHarqProcessesDciBuffer.end())
1647 {
1648 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1649 << uldci.m_rnti);
1650 }
1651 (*itDci).second.at(harqId) = uldci;
1652 // Update HARQ process status (RV 0)
1653 std::map<uint16_t, UlHarqProcessesStatus_t>::iterator itStat =
1654 m_ulHarqProcessesStatus.find(uldci.m_rnti);
1655 if (itStat == m_ulHarqProcessesStatus.end())
1656 {
1657 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1658 << uldci.m_rnti);
1659 }
1660 (*itStat).second.at(harqId) = 0;
1661 }
1662
1663 NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
1664 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1665 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1666 << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
1667 << (uint16_t)harqId);
1668
1669 it++;
1670 if (it == m_ceBsrRxed.end())
1671 {
1672 // restart from the first
1673 it = m_ceBsrRxed.begin();
1674 }
1675 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1676 {
1677 // Stop allocation: no more PRBs
1678 m_nextRntiUl = (*it).first;
1679 break;
1680 }
1681 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1682
1683 m_allocationMaps.insert(
1684 std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1686}
1687
1688void
1691{
1692 NS_LOG_FUNCTION(this);
1693}
1694
1695void
1698{
1699 NS_LOG_FUNCTION(this);
1700}
1701
1702void
1705{
1706 NS_LOG_FUNCTION(this);
1707
1708 std::map<uint16_t, uint32_t>::iterator it;
1709
1710 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1711 {
1712 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1713 {
1714 // buffer status report
1715 // note that this scheduler does not differentiate the
1716 // allocation according to which LCGs have more/less bytes
1717 // to send.
1718 // Hence the BSR of different LCGs are just summed up to get
1719 // a total queue size that is used for allocation purposes.
1720
1721 uint32_t buffer = 0;
1722 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1723 {
1724 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1725 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1726 }
1727
1728 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1729 NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
1730 it = m_ceBsrRxed.find(rnti);
1731 if (it == m_ceBsrRxed.end())
1732 {
1733 // create the new entry
1734 m_ceBsrRxed.insert(std::pair<uint16_t, uint32_t>(rnti, buffer));
1735 }
1736 else
1737 {
1738 // update the buffer size value
1739 (*it).second = buffer;
1740 }
1741 }
1742 }
1743}
1744
1745void
1748{
1749 NS_LOG_FUNCTION(this);
1750 // retrieve the allocation for this subframe
1751 switch (m_ulCqiFilter)
1752 {
1754 // filter all the CQIs that are not SRS based
1755 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1756 {
1757 return;
1758 }
1759 }
1760 break;
1762 // filter all the CQIs that are not SRS based
1763 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1764 {
1765 return;
1766 }
1767 }
1768 break;
1769 default:
1770 NS_FATAL_ERROR("Unknown UL CQI type");
1771 }
1772
1773 switch (params.m_ulCqi.m_type)
1774 {
1775 case UlCqi_s::PUSCH: {
1776 std::map<uint16_t, std::vector<uint16_t>>::iterator itMap;
1777 std::map<uint16_t, std::vector<double>>::iterator itCqi;
1778 NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
1779 << " subframe no. " << (0xF & params.m_sfnSf));
1780 itMap = m_allocationMaps.find(params.m_sfnSf);
1781 if (itMap == m_allocationMaps.end())
1782 {
1783 return;
1784 }
1785 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1786 {
1787 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1788 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1789 itCqi = m_ueCqi.find((*itMap).second.at(i));
1790 if (itCqi == m_ueCqi.end())
1791 {
1792 // create a new entry
1793 std::vector<double> newCqi;
1794 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1795 {
1796 if (i == j)
1797 {
1798 newCqi.push_back(sinr);
1799 }
1800 else
1801 {
1802 // initialize with NO_SINR value.
1803 newCqi.push_back(NO_SINR);
1804 }
1805 }
1806 m_ueCqi.insert(
1807 std::pair<uint16_t, std::vector<double>>((*itMap).second.at(i), newCqi));
1808 // generate correspondent timer
1809 m_ueCqiTimers.insert(
1810 std::pair<uint16_t, uint32_t>((*itMap).second.at(i), m_cqiTimersThreshold));
1811 }
1812 else
1813 {
1814 // update the value
1815 (*itCqi).second.at(i) = sinr;
1816 // NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR
1817 // " << sinr);
1818 // update correspondent timer
1819 std::map<uint16_t, uint32_t>::iterator itTimers;
1820 itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1821 (*itTimers).second = m_cqiTimersThreshold;
1822 }
1823 }
1824 // remove obsolete info on allocation
1825 m_allocationMaps.erase(itMap);
1826 }
1827 break;
1828 case UlCqi_s::SRS: {
1829 // get the RNTI from vendor specific parameters
1830 uint16_t rnti = 0;
1831 NS_ASSERT(!params.m_vendorSpecificList.empty());
1832 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1833 {
1834 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1835 {
1836 Ptr<SrsCqiRntiVsp> vsp =
1837 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1838 rnti = vsp->GetRnti();
1839 }
1840 }
1841 std::map<uint16_t, std::vector<double>>::iterator itCqi;
1842 itCqi = m_ueCqi.find(rnti);
1843 if (itCqi == m_ueCqi.end())
1844 {
1845 // create a new entry
1846 std::vector<double> newCqi;
1847 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1848 {
1849 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1850 newCqi.push_back(sinr);
1851 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1852 << sinr);
1853 }
1854 m_ueCqi.insert(std::pair<uint16_t, std::vector<double>>(rnti, newCqi));
1855 // generate correspondent timer
1856 m_ueCqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1857 }
1858 else
1859 {
1860 // update the values
1861 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1862 {
1863 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1864 (*itCqi).second.at(j) = sinr;
1865 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1866 << sinr);
1867 }
1868 // update correspondent timer
1869 std::map<uint16_t, uint32_t>::iterator itTimers;
1870 itTimers = m_ueCqiTimers.find(rnti);
1871 (*itTimers).second = m_cqiTimersThreshold;
1872 }
1873 }
1874 break;
1875 case UlCqi_s::PUCCH_1:
1876 case UlCqi_s::PUCCH_2:
1877 case UlCqi_s::PRACH: {
1878 NS_FATAL_ERROR("TtaFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1879 }
1880 break;
1881 default:
1882 NS_FATAL_ERROR("Unknown type of UL-CQI");
1883 }
1884}
1885
1886void
1888{
1889 // refresh DL CQI P01 Map
1890 std::map<uint16_t, uint32_t>::iterator itP10 = m_p10CqiTimers.begin();
1891 while (itP10 != m_p10CqiTimers.end())
1892 {
1893 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1894 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1895 if ((*itP10).second == 0)
1896 {
1897 // delete correspondent entries
1898 std::map<uint16_t, uint8_t>::iterator itMap = m_p10CqiRxed.find((*itP10).first);
1899 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1900 " Does not find CQI report for user " << (*itP10).first);
1901 NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
1902 m_p10CqiRxed.erase(itMap);
1903 std::map<uint16_t, uint32_t>::iterator temp = itP10;
1904 itP10++;
1905 m_p10CqiTimers.erase(temp);
1906 }
1907 else
1908 {
1909 (*itP10).second--;
1910 itP10++;
1911 }
1912 }
1913
1914 // refresh DL CQI A30 Map
1915 std::map<uint16_t, uint32_t>::iterator itA30 = m_a30CqiTimers.begin();
1916 while (itA30 != m_a30CqiTimers.end())
1917 {
1918 NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
1919 << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1920 if ((*itA30).second == 0)
1921 {
1922 // delete correspondent entries
1923 std::map<uint16_t, SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find((*itA30).first);
1924 NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
1925 " Does not find CQI report for user " << (*itA30).first);
1926 NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
1927 m_a30CqiRxed.erase(itMap);
1928 std::map<uint16_t, uint32_t>::iterator temp = itA30;
1929 itA30++;
1930 m_a30CqiTimers.erase(temp);
1931 }
1932 else
1933 {
1934 (*itA30).second--;
1935 itA30++;
1936 }
1937 }
1938}
1939
1940void
1942{
1943 // refresh UL CQI Map
1944 std::map<uint16_t, uint32_t>::iterator itUl = m_ueCqiTimers.begin();
1945 while (itUl != m_ueCqiTimers.end())
1946 {
1947 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
1948 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1949 if ((*itUl).second == 0)
1950 {
1951 // delete correspondent entries
1952 std::map<uint16_t, std::vector<double>>::iterator itMap = m_ueCqi.find((*itUl).first);
1953 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
1954 " Does not find CQI report for user " << (*itUl).first);
1955 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
1956 (*itMap).second.clear();
1957 m_ueCqi.erase(itMap);
1958 std::map<uint16_t, uint32_t>::iterator temp = itUl;
1959 itUl++;
1960 m_ueCqiTimers.erase(temp);
1961 }
1962 else
1963 {
1964 (*itUl).second--;
1965 itUl++;
1966 }
1967 }
1968}
1969
1970void
1971TtaFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
1972{
1973 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1974 LteFlowId_t flow(rnti, lcid);
1975 it = m_rlcBufferReq.find(flow);
1976 if (it != m_rlcBufferReq.end())
1977 {
1978 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
1979 << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
1980 << (*it).second.m_rlcRetransmissionQueueSize << " status "
1981 << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1982 // Update queues: RLC tx order Status, ReTx, Tx
1983 // Update status queue
1984 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1985 {
1986 (*it).second.m_rlcStatusPduSize = 0;
1987 }
1988 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
1989 (size >= (*it).second.m_rlcRetransmissionQueueSize))
1990 {
1991 (*it).second.m_rlcRetransmissionQueueSize = 0;
1992 }
1993 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1994 {
1995 uint32_t rlcOverhead;
1996 if (lcid == 1)
1997 {
1998 // for SRB1 (using RLC AM) it's better to
1999 // overestimate RLC overhead rather than
2000 // underestimate it and risk unneeded
2001 // segmentation which increases delay
2002 rlcOverhead = 4;
2003 }
2004 else
2005 {
2006 // minimum RLC overhead due to header
2007 rlcOverhead = 2;
2008 }
2009 // update transmission queue
2010 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2011 {
2012 (*it).second.m_rlcTransmissionQueueSize = 0;
2013 }
2014 else
2015 {
2016 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2017 }
2018 }
2019 }
2020 else
2021 {
2022 NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
2023 }
2024}
2025
2026void
2027TtaFfMacScheduler::UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
2028{
2029 size = size - 2; // remove the minimum RLC overhead
2030 std::map<uint16_t, uint32_t>::iterator it = m_ceBsrRxed.find(rnti);
2031 if (it != m_ceBsrRxed.end())
2032 {
2033 NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2034 if ((*it).second >= size)
2035 {
2036 (*it).second -= size;
2037 }
2038 else
2039 {
2040 (*it).second = 0;
2041 }
2042 }
2043 else
2044 {
2045 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
2046 }
2047}
2048
2049void
2051{
2052 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2054 params.m_rnti = rnti;
2055 params.m_transmissionMode = txMode;
2057}
2058
2059} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:41
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:141
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:78
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
Implements the SCHED SAP and CSCHED SAP for a Throughput to Average scheduler.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request function.
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request function.
std::set< uint16_t > m_flowStatsDl
Set of UE statistics (per RNTI basis) in downlink.
void DoDispose() override
Destructor implementation.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request function.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request function.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
void RefreshDlCqiMaps()
Refresh DL CQI maps.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR function.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
std::vector< struct RachListElement_s > m_rachList
RACH list.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request function.
friend class MemberSchedSapProvider< TtaFfMacScheduler >
allow MemberSchedSapProvider<TtaFfMacScheduler> class friend access
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request function.
void RefreshUlCqiMaps()
Refresh UL CQI maps.
static TypeId GetTypeId()
Get the type ID.
~TtaFfMacScheduler() override
Destructor.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
LteFfrSapUser * GetLteFfrSapUser() override
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request function.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request function.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request function.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request function.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request function.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update DL RLC buffer info function.
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active per flow function.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request function.
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request function.
friend class MemberCschedSapProvider< TtaFfMacScheduler >
allow MemberCschedSapProvider<TtaFfMacScheduler> class friend access
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
std::set< uint16_t > m_flowStatsUl
Set of UE statistics (per RNTI basis)
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request function.
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request function.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request function.
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:935
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NO_SINR
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:86
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
@ SUCCESS
Definition: ff-mac-common.h:62
static const int TtaType0AllocationRbg[4]
TTA type 0 allocation RBG.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
Definition: second.py:1
params
Fit Fluctuating Two Ray model to the 3GPP TR 38.901 using the Anderson-Darling goodness-of-fit ##.
See section 4.3.8 builDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:37
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.