A Discrete-Event Network Simulator
API
tdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Marco Miozzo <marco.miozzo@cttc.es>
18 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
19 */
20
21#include <ns3/boolean.h>
22#include <ns3/log.h>
23#include <ns3/lte-amc.h>
24#include <ns3/lte-vendor-specific-parameters.h>
25#include <ns3/math.h>
26#include <ns3/pointer.h>
27#include <ns3/simulator.h>
28#include <ns3/tdmt-ff-mac-scheduler.h>
29
30#include <cfloat>
31#include <set>
32
33namespace ns3
34{
35
36NS_LOG_COMPONENT_DEFINE("TdMtFfMacScheduler");
37
39static const int TdMtType0AllocationRbg[4] = {
40 10, // RGB size 1
41 26, // RGB size 2
42 63, // RGB size 3
43 110, // RGB size 4
44}; // see table 7.1.6.1-1 of 36.213
45
46NS_OBJECT_ENSURE_REGISTERED(TdMtFfMacScheduler);
47
49 : m_cschedSapUser(nullptr),
50 m_schedSapUser(nullptr),
51 m_nextRntiUl(0)
52{
53 m_amc = CreateObject<LteAmc>();
56}
57
59{
60 NS_LOG_FUNCTION(this);
61}
62
63void
65{
66 NS_LOG_FUNCTION(this);
75 delete m_schedSapProvider;
76}
77
80{
81 static TypeId tid =
82 TypeId("ns3::TdMtFfMacScheduler")
84 .SetGroupName("Lte")
85 .AddConstructor<TdMtFfMacScheduler>()
86 .AddAttribute("CqiTimerThreshold",
87 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
88 UintegerValue(1000),
90 MakeUintegerChecker<uint32_t>())
91 .AddAttribute("HarqEnabled",
92 "Activate/Deactivate the HARQ [by default is active].",
93 BooleanValue(true),
96 .AddAttribute("UlGrantMcs",
97 "The MCS of the UL grant, must be [0..15] (default 0)",
100 MakeUintegerChecker<uint8_t>());
101 return tid;
102}
103
104void
106{
107 m_cschedSapUser = s;
108}
109
110void
112{
113 m_schedSapUser = s;
114}
115
118{
119 return m_cschedSapProvider;
120}
121
124{
125 return m_schedSapProvider;
126}
127
128void
130{
132}
133
136{
137 return m_ffrSapUser;
138}
139
140void
143{
144 NS_LOG_FUNCTION(this);
145 // Read the subset of parameters used
149 cnf.m_result = SUCCESS;
151}
152
153void
156{
157 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
158 << (uint16_t)params.m_transmissionMode);
159 std::map<uint16_t, uint8_t>::iterator it = m_uesTxMode.find(params.m_rnti);
160 if (it == m_uesTxMode.end())
161 {
162 m_uesTxMode.insert(std::pair<uint16_t, double>(params.m_rnti, params.m_transmissionMode));
163 // generate HARQ buffers
164 m_dlHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
165 DlHarqProcessesStatus_t dlHarqPrcStatus;
166 dlHarqPrcStatus.resize(8, 0);
168 std::pair<uint16_t, DlHarqProcessesStatus_t>(params.m_rnti, dlHarqPrcStatus));
169 DlHarqProcessesTimer_t dlHarqProcessesTimer;
170 dlHarqProcessesTimer.resize(8, 0);
172 std::pair<uint16_t, DlHarqProcessesTimer_t>(params.m_rnti, dlHarqProcessesTimer));
174 dlHarqdci.resize(8);
176 std::pair<uint16_t, DlHarqProcessesDciBuffer_t>(params.m_rnti, dlHarqdci));
177 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
178 dlHarqRlcPdu.resize(2);
179 dlHarqRlcPdu.at(0).resize(8);
180 dlHarqRlcPdu.at(1).resize(8);
182 std::pair<uint16_t, DlHarqRlcPduListBuffer_t>(params.m_rnti, dlHarqRlcPdu));
183 m_ulHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
184 UlHarqProcessesStatus_t ulHarqPrcStatus;
185 ulHarqPrcStatus.resize(8, 0);
187 std::pair<uint16_t, UlHarqProcessesStatus_t>(params.m_rnti, ulHarqPrcStatus));
189 ulHarqdci.resize(8);
191 std::pair<uint16_t, UlHarqProcessesDciBuffer_t>(params.m_rnti, ulHarqdci));
192 }
193 else
194 {
195 (*it).second = params.m_transmissionMode;
196 }
197}
198
199void
202{
203 NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
204
205 std::set<uint16_t>::iterator it;
206 for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
207 {
208 it = m_flowStatsDl.find(params.m_rnti);
209
210 if (it == m_flowStatsDl.end())
211 {
212 m_flowStatsDl.insert(params.m_rnti);
213 m_flowStatsUl.insert(params.m_rnti);
214 }
215 }
216}
217
218void
221{
222 NS_LOG_FUNCTION(this);
223 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
224 {
225 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it =
226 m_rlcBufferReq.begin();
227 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
228 while (it != m_rlcBufferReq.end())
229 {
230 if (((*it).first.m_rnti == params.m_rnti) &&
231 ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
232 {
233 temp = it;
234 it++;
235 m_rlcBufferReq.erase(temp);
236 }
237 else
238 {
239 it++;
240 }
241 }
242 }
243}
244
245void
248{
249 NS_LOG_FUNCTION(this);
250
251 m_uesTxMode.erase(params.m_rnti);
252 m_dlHarqCurrentProcessId.erase(params.m_rnti);
253 m_dlHarqProcessesStatus.erase(params.m_rnti);
254 m_dlHarqProcessesTimer.erase(params.m_rnti);
257 m_ulHarqCurrentProcessId.erase(params.m_rnti);
258 m_ulHarqProcessesStatus.erase(params.m_rnti);
260 m_flowStatsDl.erase(params.m_rnti);
261 m_flowStatsUl.erase(params.m_rnti);
262 m_ceBsrRxed.erase(params.m_rnti);
263 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it =
264 m_rlcBufferReq.begin();
265 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
266 while (it != m_rlcBufferReq.end())
267 {
268 if ((*it).first.m_rnti == params.m_rnti)
269 {
270 temp = it;
271 it++;
272 m_rlcBufferReq.erase(temp);
273 }
274 else
275 {
276 it++;
277 }
278 }
279 if (m_nextRntiUl == params.m_rnti)
280 {
281 m_nextRntiUl = 0;
282 }
283}
284
285void
288{
289 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
290 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
291
292 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
293
294 LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
295
296 it = m_rlcBufferReq.find(flow);
297
298 if (it == m_rlcBufferReq.end())
299 {
300 m_rlcBufferReq.insert(
301 std::pair<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>(flow,
302 params));
303 }
304 else
305 {
306 (*it).second = params;
307 }
308}
309
310void
313{
314 NS_LOG_FUNCTION(this);
315 NS_FATAL_ERROR("method not implemented");
316}
317
318void
321{
322 NS_LOG_FUNCTION(this);
323 NS_FATAL_ERROR("method not implemented");
324}
325
326int
328{
329 for (int i = 0; i < 4; i++)
330 {
331 if (dlbandwidth < TdMtType0AllocationRbg[i])
332 {
333 return (i + 1);
334 }
335 }
336
337 return (-1);
338}
339
340unsigned int
342{
343 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
344 unsigned int lcActive = 0;
345 for (it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
346 {
347 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
348 ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
349 ((*it).second.m_rlcStatusPduSize > 0)))
350 {
351 lcActive++;
352 }
353 if ((*it).first.m_rnti > rnti)
354 {
355 break;
356 }
357 }
358 return (lcActive);
359}
360
361bool
363{
364 NS_LOG_FUNCTION(this << rnti);
365
366 std::map<uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find(rnti);
367 if (it == m_dlHarqCurrentProcessId.end())
368 {
369 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
370 }
371 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
372 m_dlHarqProcessesStatus.find(rnti);
373 if (itStat == m_dlHarqProcessesStatus.end())
374 {
375 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
376 }
377 uint8_t i = (*it).second;
378 do
379 {
380 i = (i + 1) % HARQ_PROC_NUM;
381 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
382 if ((*itStat).second.at(i) == 0)
383 {
384 return (true);
385 }
386 else
387 {
388 return (false); // return a not valid harq proc id
389 }
390}
391
392uint8_t
394{
395 NS_LOG_FUNCTION(this << rnti);
396
397 if (m_harqOn == false)
398 {
399 return (0);
400 }
401
402 std::map<uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find(rnti);
403 if (it == m_dlHarqCurrentProcessId.end())
404 {
405 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
406 }
407 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
408 m_dlHarqProcessesStatus.find(rnti);
409 if (itStat == m_dlHarqProcessesStatus.end())
410 {
411 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
412 }
413 uint8_t i = (*it).second;
414 do
415 {
416 i = (i + 1) % HARQ_PROC_NUM;
417 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
418 if ((*itStat).second.at(i) == 0)
419 {
420 (*it).second = i;
421 (*itStat).second.at(i) = 1;
422 }
423 else
424 {
425 NS_FATAL_ERROR("No HARQ process available for RNTI "
426 << rnti << " check before update with HarqProcessAvailability");
427 }
428
429 return ((*it).second);
430}
431
432void
434{
435 NS_LOG_FUNCTION(this);
436
437 std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
438 for (itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
439 itTimers++)
440 {
441 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
442 {
443 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
444 {
445 // reset HARQ process
446
447 NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
448 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
449 m_dlHarqProcessesStatus.find((*itTimers).first);
450 if (itStat == m_dlHarqProcessesStatus.end())
451 {
452 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
453 << (*itTimers).first);
454 }
455 (*itStat).second.at(i) = 0;
456 (*itTimers).second.at(i) = 0;
457 }
458 else
459 {
460 (*itTimers).second.at(i)++;
461 }
462 }
463 }
464}
465
466void
469{
470 NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
471 << (0xF & params.m_sfnSf));
472 // API generated by RLC for triggering the scheduling of a DL subframe
473
474 // evaluate the relative channel quality indicator for each UE per each RBG
475 // (since we are using allocation type 0 the small unit of allocation is RBG)
476 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
477
479
481 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
482 std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
483 std::vector<bool> rbgMap; // global RBGs map
484 uint16_t rbgAllocatedNum = 0;
485 std::set<uint16_t> rntiAllocated;
486 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
488
489 // update UL HARQ proc id
490 std::map<uint16_t, uint8_t>::iterator itProcId;
491 for (itProcId = m_ulHarqCurrentProcessId.begin(); itProcId != m_ulHarqCurrentProcessId.end();
492 itProcId++)
493 {
494 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
495 }
496
497 // RACH Allocation
499 uint16_t rbStart = 0;
500 std::vector<struct RachListElement_s>::iterator itRach;
501 for (itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
502 {
504 (*itRach).m_estimatedSize,
505 " Default UL Grant MCS does not allow to send RACH messages");
507 newRar.m_rnti = (*itRach).m_rnti;
508 // DL-RACH Allocation
509 // Ideal: no needs of configuring m_dci
510 // UL-RACH Allocation
511 newRar.m_grant.m_rnti = newRar.m_rnti;
512 newRar.m_grant.m_mcs = m_ulGrantMcs;
513 uint16_t rbLen = 1;
514 uint16_t tbSizeBits = 0;
515 // find lowest TB size that fits UL grant estimated size
516 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
517 (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
518 {
519 rbLen++;
520 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
521 }
522 if (tbSizeBits < (*itRach).m_estimatedSize)
523 {
524 // no more allocation space: finish allocation
525 break;
526 }
527 newRar.m_grant.m_rbStart = rbStart;
528 newRar.m_grant.m_rbLen = rbLen;
529 newRar.m_grant.m_tbSize = tbSizeBits / 8;
530 newRar.m_grant.m_hopping = false;
531 newRar.m_grant.m_tpc = 0;
532 newRar.m_grant.m_cqiRequest = false;
533 newRar.m_grant.m_ulDelay = false;
534 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
535 << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize "
536 << newRar.m_grant.m_tbSize);
537 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
538 {
539 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
540 }
541
542 if (m_harqOn == true)
543 {
544 // generate UL-DCI for HARQ retransmissions
545 UlDciListElement_s uldci;
546 uldci.m_rnti = newRar.m_rnti;
547 uldci.m_rbLen = rbLen;
548 uldci.m_rbStart = rbStart;
549 uldci.m_mcs = m_ulGrantMcs;
550 uldci.m_tbSize = tbSizeBits / 8;
551 uldci.m_ndi = 1;
552 uldci.m_cceIndex = 0;
553 uldci.m_aggrLevel = 1;
554 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
555 uldci.m_hopping = false;
556 uldci.m_n2Dmrs = 0;
557 uldci.m_tpc = 0; // no power control
558 uldci.m_cqiRequest = false; // only period CQI at this stage
559 uldci.m_ulIndex = 0; // TDD parameter
560 uldci.m_dai = 1; // TDD parameter
561 uldci.m_freqHopping = 0;
562 uldci.m_pdcchPowerOffset = 0; // not used
563
564 uint8_t harqId = 0;
565 std::map<uint16_t, uint8_t>::iterator itProcId;
566 itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
567 if (itProcId == m_ulHarqCurrentProcessId.end())
568 {
569 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
570 }
571 harqId = (*itProcId).second;
572 std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci =
574 if (itDci == m_ulHarqProcessesDciBuffer.end())
575 {
576 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
577 << uldci.m_rnti);
578 }
579 (*itDci).second.at(harqId) = uldci;
580 }
581
582 rbStart = rbStart + rbLen;
583 ret.m_buildRarList.push_back(newRar);
584 }
585 m_rachList.clear();
586
587 // Process DL HARQ feedback
589 // retrieve past HARQ retx buffered
590 if (!m_dlInfoListBuffered.empty())
591 {
592 if (!params.m_dlInfoList.empty())
593 {
594 NS_LOG_INFO(this << " Received DL-HARQ feedback");
596 params.m_dlInfoList.begin(),
597 params.m_dlInfoList.end());
598 }
599 }
600 else
601 {
602 if (!params.m_dlInfoList.empty())
603 {
604 m_dlInfoListBuffered = params.m_dlInfoList;
605 }
606 }
607 if (m_harqOn == false)
608 {
609 // Ignore HARQ feedback
610 m_dlInfoListBuffered.clear();
611 }
612 std::vector<struct DlInfoListElement_s> dlInfoListUntxed;
613 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
614 {
615 std::set<uint16_t>::iterator itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
616 if (itRnti != rntiAllocated.end())
617 {
618 // RNTI already allocated for retx
619 continue;
620 }
621 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
622 std::vector<bool> retx;
623 NS_LOG_INFO(this << " Processing DLHARQ feedback");
624 if (nLayers == 1)
625 {
626 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
628 retx.push_back(false);
629 }
630 else
631 {
632 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
634 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
636 }
637 if (retx.at(0) || retx.at(1))
638 {
639 // retrieve HARQ process information
640 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
641 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
642 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
643 std::map<uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq =
645 if (itHarq == m_dlHarqProcessesDciBuffer.end())
646 {
647 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
648 }
649
650 DlDciListElement_s dci = (*itHarq).second.at(harqId);
651 int rv = 0;
652 if (dci.m_rv.size() == 1)
653 {
654 rv = dci.m_rv.at(0);
655 }
656 else
657 {
658 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
659 }
660
661 if (rv == 3)
662 {
663 // maximum number of retx reached -> drop process
664 NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
665 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator it =
666 m_dlHarqProcessesStatus.find(rnti);
667 if (it == m_dlHarqProcessesStatus.end())
668 {
669 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
670 << m_dlInfoListBuffered.at(i).m_rnti);
671 }
672 (*it).second.at(harqId) = 0;
673 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
675 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
676 {
677 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
678 << m_dlInfoListBuffered.at(i).m_rnti);
679 }
680 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
681 {
682 (*itRlcPdu).second.at(k).at(harqId).clear();
683 }
684 continue;
685 }
686 // check the feasibility of retransmitting on the same RBGs
687 // translate the DCI to Spectrum framework
688 std::vector<int> dciRbg;
689 uint32_t mask = 0x1;
690 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
691 for (int j = 0; j < 32; j++)
692 {
693 if (((dci.m_rbBitmap & mask) >> j) == 1)
694 {
695 dciRbg.push_back(j);
696 NS_LOG_INFO("\t" << j);
697 }
698 mask = (mask << 1);
699 }
700 bool free = true;
701 for (std::size_t j = 0; j < dciRbg.size(); j++)
702 {
703 if (rbgMap.at(dciRbg.at(j)) == true)
704 {
705 free = false;
706 break;
707 }
708 }
709 if (free)
710 {
711 // use the same RBGs for the retx
712 // reserve RBGs
713 for (std::size_t j = 0; j < dciRbg.size(); j++)
714 {
715 rbgMap.at(dciRbg.at(j)) = true;
716 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
717 rbgAllocatedNum++;
718 }
719
720 NS_LOG_INFO(this << " Send retx in the same RBGs");
721 }
722 else
723 {
724 // find RBGs for sending HARQ retx
725 uint8_t j = 0;
726 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
727 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
728 std::vector<bool> rbgMapCopy = rbgMap;
729 while ((j < dciRbg.size()) && (startRbg != rbgId))
730 {
731 if (rbgMapCopy.at(rbgId) == false)
732 {
733 rbgMapCopy.at(rbgId) = true;
734 dciRbg.at(j) = rbgId;
735 j++;
736 }
737 rbgId = (rbgId + 1) % rbgNum;
738 }
739 if (j == dciRbg.size())
740 {
741 // find new RBGs -> update DCI map
742 uint32_t rbgMask = 0;
743 for (std::size_t k = 0; k < dciRbg.size(); k++)
744 {
745 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
746 rbgAllocatedNum++;
747 }
748 dci.m_rbBitmap = rbgMask;
749 rbgMap = rbgMapCopy;
750 NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
751 }
752 else
753 {
754 // HARQ retx cannot be performed on this TTI -> store it
755 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
756 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
757 }
758 }
759 // retrieve RLC PDU list for retx TBsize and update DCI
761 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
763 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
764 {
765 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
766 }
767 for (std::size_t j = 0; j < nLayers; j++)
768 {
769 if (retx.at(j))
770 {
771 if (j >= dci.m_ndi.size())
772 {
773 // for avoiding errors in MIMO transient phases
774 dci.m_ndi.push_back(0);
775 dci.m_rv.push_back(0);
776 dci.m_mcs.push_back(0);
777 dci.m_tbsSize.push_back(0);
778 NS_LOG_INFO(this << " layer " << (uint16_t)j
779 << " no txed (MIMO transition)");
780 }
781 else
782 {
783 dci.m_ndi.at(j) = 0;
784 dci.m_rv.at(j)++;
785 (*itHarq).second.at(harqId).m_rv.at(j)++;
786 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
787 << (uint16_t)dci.m_rv.at(j));
788 }
789 }
790 else
791 {
792 // empty TB of layer j
793 dci.m_ndi.at(j) = 0;
794 dci.m_rv.at(j) = 0;
795 dci.m_mcs.at(j) = 0;
796 dci.m_tbsSize.at(j) = 0;
797 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
798 }
799 }
800 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
801 {
802 std::vector<struct RlcPduListElement_s> rlcPduListPerLc;
803 for (std::size_t j = 0; j < nLayers; j++)
804 {
805 if (retx.at(j))
806 {
807 if (j < dci.m_ndi.size())
808 {
809 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
810 << dci.m_tbsSize.at(j));
811 rlcPduListPerLc.push_back(
812 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
813 }
814 }
815 else
816 { // if no retx needed on layer j, push an RlcPduListElement_s object with
817 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
818 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
819 RlcPduListElement_s emptyElement;
820 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
821 .second.at(j)
822 .at(dci.m_harqProcess)
823 .at(k)
824 .m_logicalChannelIdentity;
825 emptyElement.m_size = 0;
826 rlcPduListPerLc.push_back(emptyElement);
827 }
828 }
829
830 if (!rlcPduListPerLc.empty())
831 {
832 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
833 }
834 }
835 newEl.m_rnti = rnti;
836 newEl.m_dci = dci;
837 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
838 // refresh timer
839 std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer =
840 m_dlHarqProcessesTimer.find(rnti);
841 if (itHarqTimer == m_dlHarqProcessesTimer.end())
842 {
843 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
844 }
845 (*itHarqTimer).second.at(harqId) = 0;
846 ret.m_buildDataList.push_back(newEl);
847 rntiAllocated.insert(rnti);
848 }
849 else
850 {
851 // update HARQ process status
852 NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
853 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator it =
855 if (it == m_dlHarqProcessesStatus.end())
856 {
857 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
858 << m_dlInfoListBuffered.at(i).m_rnti);
859 }
860 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
861 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
863 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
864 {
865 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
866 << m_dlInfoListBuffered.at(i).m_rnti);
867 }
868 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
869 {
870 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
871 }
872 }
873 }
874 m_dlInfoListBuffered.clear();
875 m_dlInfoListBuffered = dlInfoListUntxed;
876
877 if (rbgAllocatedNum == rbgNum)
878 {
879 // all the RBGs are already allocated -> exit
880 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
881 {
883 }
884 return;
885 }
886
887 std::set<uint16_t>::iterator it;
888 std::set<uint16_t>::iterator itMax = m_flowStatsDl.end();
889 double metricMax = 0.0;
890 for (it = m_flowStatsDl.begin(); it != m_flowStatsDl.end(); it++)
891 {
892 std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it));
893 if ((itRnti != rntiAllocated.end()) || (!HarqProcessAvailability((*it))))
894 {
895 // UE already allocated for HARQ or without HARQ process available -> drop it
896 if (itRnti != rntiAllocated.end())
897 {
898 NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx" << (uint16_t)(*it));
899 }
900 if (!HarqProcessAvailability((*it)))
901 {
902 NS_LOG_DEBUG(this << " RNTI discarded for HARQ id" << (uint16_t)(*it));
903 }
904
905 continue;
906 }
907
908 std::map<uint16_t, uint8_t>::iterator itTxMode;
909 itTxMode = m_uesTxMode.find((*it));
910 if (itTxMode == m_uesTxMode.end())
911 {
912 NS_FATAL_ERROR("No Transmission Mode info on user " << (*it));
913 }
914 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
915 std::map<uint16_t, uint8_t>::iterator itCqi = m_p10CqiRxed.find((*it));
916 uint8_t wbCqi = 0;
917 if (itCqi != m_p10CqiRxed.end())
918 {
919 wbCqi = (*itCqi).second;
920 }
921 else
922 {
923 wbCqi = 1; // lowest value for trying a transmission
924 }
925
926 if (wbCqi != 0)
927 {
928 // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
929 if (LcActivePerFlow(*it) > 0)
930 {
931 // this UE has data to transmit
932 double achievableRate = 0.0;
933 for (uint8_t k = 0; k < nLayer; k++)
934 {
935 uint8_t mcs = 0;
936 mcs = m_amc->GetMcsFromCqi(wbCqi);
937 achievableRate +=
938 ((m_amc->GetDlTbSizeFromMcs(mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
939
940 NS_LOG_DEBUG(this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs
941 << " achievableRate " << achievableRate);
942 }
943
944 double metric = achievableRate;
945
946 if (metric > metricMax)
947 {
948 metricMax = metric;
949 itMax = it;
950 }
951 } // LcActivePerFlow
952
953 } // cqi
954
955 } // end for m_flowStatsDl
956
957 if (itMax == m_flowStatsDl.end())
958 {
959 // no UE available for downlink
960 NS_LOG_INFO(this << " any UE found");
961 }
962 else
963 {
964 // assign all free RBGs to this UE
965 std::vector<uint16_t> tempMap;
966 for (int i = 0; i < rbgNum; i++)
967 {
968 NS_LOG_INFO(this << " ALLOCATION for RBG " << i << " of " << rbgNum);
969 NS_LOG_DEBUG(this << " ALLOCATION for RBG " << i << " of " << rbgNum);
970 if (rbgMap.at(i) == false)
971 {
972 rbgMap.at(i) = true;
973 tempMap.push_back(i);
974 } // end for RBG free
975
976 } // end for RBGs
977 if (!tempMap.empty())
978 {
979 allocationMap.insert(std::pair<uint16_t, std::vector<uint16_t>>((*itMax), tempMap));
980 }
981 }
982
983 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
984 // creating the correspondent DCIs
985 std::map<uint16_t, std::vector<uint16_t>>::iterator itMap = allocationMap.begin();
986 while (itMap != allocationMap.end())
987 {
988 // create new BuildDataListElement_s for this LC
990 newEl.m_rnti = (*itMap).first;
991 // create the DlDciListElement_s
992 DlDciListElement_s newDci;
993 newDci.m_rnti = (*itMap).first;
994 newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
995
996 uint16_t lcActives = LcActivePerFlow((*itMap).first);
997 NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
998 if (lcActives == 0)
999 {
1000 // Set to max value, to avoid divide by 0 below
1001 lcActives = (uint16_t)65535; // UINT16_MAX;
1002 }
1003 uint16_t RgbPerRnti = (*itMap).second.size();
1004 std::map<uint16_t, uint8_t>::iterator itCqi;
1005 itCqi = m_p10CqiRxed.find((*itMap).first);
1006 std::map<uint16_t, uint8_t>::iterator itTxMode;
1007 itTxMode = m_uesTxMode.find((*itMap).first);
1008 if (itTxMode == m_uesTxMode.end())
1009 {
1010 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
1011 }
1012 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1013 for (uint8_t j = 0; j < nLayer; j++)
1014 {
1015 if (itCqi == m_p10CqiRxed.end())
1016 {
1017 newDci.m_mcs.push_back(0); // no info on this user -> lowest MCS
1018 }
1019 else
1020 {
1021 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
1022 }
1023
1024 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RgbPerRnti * rbgSize) /
1025 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1026 newDci.m_tbsSize.push_back(tbSize);
1027 }
1028
1029 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1030 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1031 uint32_t rbgMask = 0;
1032 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1033 {
1034 rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
1035 NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
1036 }
1037 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1038
1039 // create the rlc PDUs -> equally divide resources among actives LCs
1040 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator
1041 itBufReq;
1042 for (itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1043 {
1044 if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1045 (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1046 ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1047 ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1048 {
1049 std::vector<struct RlcPduListElement_s> newRlcPduLe;
1050 for (uint8_t j = 0; j < nLayer; j++)
1051 {
1052 RlcPduListElement_s newRlcEl;
1053 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1054 newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1055 NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1056 << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1057 newRlcPduLe.push_back(newRlcEl);
1059 newRlcEl.m_logicalChannelIdentity,
1060 newRlcEl.m_size);
1061 if (m_harqOn == true)
1062 {
1063 // store RLC PDU list for HARQ
1064 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
1065 m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1066 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1067 {
1068 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1069 << (*itMap).first);
1070 }
1071 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1072 }
1073 }
1074 newEl.m_rlcPduList.push_back(newRlcPduLe);
1075 }
1076 if ((*itBufReq).first.m_rnti > (*itMap).first)
1077 {
1078 break;
1079 }
1080 }
1081 for (uint8_t j = 0; j < nLayer; j++)
1082 {
1083 newDci.m_ndi.push_back(1);
1084 newDci.m_rv.push_back(0);
1085 }
1086
1087 newDci.m_tpc = 1; // 1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1088
1089 newEl.m_dci = newDci;
1090
1091 if (m_harqOn == true)
1092 {
1093 // store DCI for HARQ
1094 std::map<uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci =
1096 if (itDci == m_dlHarqProcessesDciBuffer.end())
1097 {
1098 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1099 << newEl.m_rnti);
1100 }
1101 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1102 // refresh timer
1103 std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer =
1104 m_dlHarqProcessesTimer.find(newEl.m_rnti);
1105 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1106 {
1107 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1108 }
1109 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1110 }
1111
1112 // ...more parameters -> ignored in this version
1113
1114 ret.m_buildDataList.push_back(newEl);
1115
1116 itMap++;
1117 } // end while allocation
1118 ret.m_nrOfPdcchOfdmSymbols = 1;
1119
1121}
1122
1123void
1126{
1127 NS_LOG_FUNCTION(this);
1128
1129 m_rachList = params.m_rachList;
1130}
1131
1132void
1135{
1136 NS_LOG_FUNCTION(this);
1137
1138 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1139 {
1140 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1141 {
1142 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1143 << " reported");
1144 std::map<uint16_t, uint8_t>::iterator it;
1145 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1146 it = m_p10CqiRxed.find(rnti);
1147 if (it == m_p10CqiRxed.end())
1148 {
1149 // create the new entry
1150 m_p10CqiRxed.insert(std::pair<uint16_t, uint8_t>(
1151 rnti,
1152 params.m_cqiList.at(i).m_wbCqi.at(0))); // only codeword 0 at this stage (SISO)
1153 // generate correspondent timer
1154 m_p10CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1155 }
1156 else
1157 {
1158 // update the CQI value and refresh correspondent timer
1159 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1160 // update correspondent timer
1161 std::map<uint16_t, uint32_t>::iterator itTimers;
1162 itTimers = m_p10CqiTimers.find(rnti);
1163 (*itTimers).second = m_cqiTimersThreshold;
1164 }
1165 }
1166 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1167 {
1168 // subband CQI reporting high layer configured
1169 std::map<uint16_t, SbMeasResult_s>::iterator it;
1170 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1171 it = m_a30CqiRxed.find(rnti);
1172 if (it == m_a30CqiRxed.end())
1173 {
1174 // create the new entry
1175 m_a30CqiRxed.insert(
1176 std::pair<uint16_t, SbMeasResult_s>(rnti,
1177 params.m_cqiList.at(i).m_sbMeasResult));
1178 m_a30CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1179 }
1180 else
1181 {
1182 // update the CQI value and refresh correspondent timer
1183 (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1184 std::map<uint16_t, uint32_t>::iterator itTimers;
1185 itTimers = m_a30CqiTimers.find(rnti);
1186 (*itTimers).second = m_cqiTimersThreshold;
1187 }
1188 }
1189 else
1190 {
1191 NS_LOG_ERROR(this << " CQI type unknown");
1192 }
1193 }
1194}
1195
1196double
1197TdMtFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1198{
1199 std::map<uint16_t, std::vector<double>>::iterator itCqi = m_ueCqi.find(rnti);
1200 if (itCqi == m_ueCqi.end())
1201 {
1202 // no cqi info about this UE
1203 return (NO_SINR);
1204 }
1205 else
1206 {
1207 // take the average SINR value among the available
1208 double sinrSum = 0;
1209 unsigned int sinrNum = 0;
1210 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1211 {
1212 double sinr = (*itCqi).second.at(i);
1213 if (sinr != NO_SINR)
1214 {
1215 sinrSum += sinr;
1216 sinrNum++;
1217 }
1218 }
1219 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1220 // store the value
1221 (*itCqi).second.at(rb) = estimatedSinr;
1222 return (estimatedSinr);
1223 }
1224}
1225
1226void
1229{
1230 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1231 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1232
1234
1235 // Generate RBs map
1237 std::vector<bool> rbMap;
1238 std::set<uint16_t> rntiAllocated;
1239 std::vector<uint16_t> rbgAllocationMap;
1240 // update with RACH allocation map
1241 rbgAllocationMap = m_rachAllocationMap;
1242 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1243 m_rachAllocationMap.clear();
1245
1246 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1247 // remove RACH allocation
1248 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1249 {
1250 if (rbgAllocationMap.at(i) != 0)
1251 {
1252 rbMap.at(i) = true;
1253 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1254 }
1255 }
1256
1257 if (m_harqOn == true)
1258 {
1259 // Process UL HARQ feedback
1260 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1261 {
1262 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1263 {
1264 // retx correspondent block: retrieve the UL-DCI
1265 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1266 std::map<uint16_t, uint8_t>::iterator itProcId =
1267 m_ulHarqCurrentProcessId.find(rnti);
1268 if (itProcId == m_ulHarqCurrentProcessId.end())
1269 {
1270 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1271 }
1272 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1273 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1274 << " i " << i << " size " << params.m_ulInfoList.size());
1275 std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq =
1276 m_ulHarqProcessesDciBuffer.find(rnti);
1277 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1278 {
1279 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1280 continue;
1281 }
1282 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1283 std::map<uint16_t, UlHarqProcessesStatus_t>::iterator itStat =
1284 m_ulHarqProcessesStatus.find(rnti);
1285 if (itStat == m_ulHarqProcessesStatus.end())
1286 {
1287 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1288 }
1289 if ((*itStat).second.at(harqId) >= 3)
1290 {
1291 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1292 continue;
1293 }
1294 bool free = true;
1295 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1296 {
1297 if (rbMap.at(j) == true)
1298 {
1299 free = false;
1300 NS_LOG_INFO(this << " BUSY " << j);
1301 }
1302 }
1303 if (free)
1304 {
1305 // retx on the same RBs
1306 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1307 {
1308 rbMap.at(j) = true;
1309 rbgAllocationMap.at(j) = dci.m_rnti;
1310 NS_LOG_INFO("\tRB " << j);
1311 }
1312 NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1313 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1314 << (*itStat).second.at(harqId) + 1);
1315 }
1316 else
1317 {
1318 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1319 continue;
1320 }
1321 dci.m_ndi = 0;
1322 // Update HARQ buffers with new HarqId
1323 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1324 (*itStat).second.at(harqId) = 0;
1325 (*itHarq).second.at((*itProcId).second) = dci;
1326 ret.m_dciList.push_back(dci);
1327 rntiAllocated.insert(dci.m_rnti);
1328 }
1329 else
1330 {
1331 NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1332 << params.m_ulInfoList.at(i).m_rnti);
1333 }
1334 }
1335 }
1336
1337 std::map<uint16_t, uint32_t>::iterator it;
1338 int nflows = 0;
1339
1340 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1341 {
1342 std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it).first);
1343 // select UEs with queues not empty and not yet allocated for HARQ
1344 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1345 {
1346 nflows++;
1347 }
1348 }
1349
1350 if (nflows == 0)
1351 {
1352 if (!ret.m_dciList.empty())
1353 {
1354 m_allocationMaps.insert(
1355 std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1357 }
1358
1359 return; // no flows to be scheduled
1360 }
1361
1362 // Divide the remaining resources equally among the active users starting from the subsequent
1363 // one served last scheduling trigger
1364 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size());
1365 if (rbPerFlow < 3)
1366 {
1367 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1368 // >= 7 bytes
1369 }
1370 int rbAllocated = 0;
1371
1372 if (m_nextRntiUl != 0)
1373 {
1374 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1375 {
1376 if ((*it).first == m_nextRntiUl)
1377 {
1378 break;
1379 }
1380 }
1381 if (it == m_ceBsrRxed.end())
1382 {
1383 NS_LOG_ERROR(this << " no user found");
1384 }
1385 }
1386 else
1387 {
1388 it = m_ceBsrRxed.begin();
1389 m_nextRntiUl = (*it).first;
1390 }
1391 do
1392 {
1393 std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it).first);
1394 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1395 {
1396 // UE already allocated for UL-HARQ -> skip it
1397 NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1398 << (*it).first);
1399 it++;
1400 if (it == m_ceBsrRxed.end())
1401 {
1402 // restart from the first
1403 it = m_ceBsrRxed.begin();
1404 }
1405 continue;
1406 }
1407 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1408 {
1409 // limit to physical resources last resource assignment
1410 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1411 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1412 if (rbPerFlow < 3)
1413 {
1414 // terminate allocation
1415 rbPerFlow = 0;
1416 }
1417 }
1418
1419 UlDciListElement_s uldci;
1420 uldci.m_rnti = (*it).first;
1421 uldci.m_rbLen = rbPerFlow;
1422 bool allocated = false;
1423 NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1424 << " flows " << nflows);
1425 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1426 (rbPerFlow != 0))
1427 {
1428 // check availability
1429 bool free = true;
1430 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1431 {
1432 if (rbMap.at(j) == true)
1433 {
1434 free = false;
1435 break;
1436 }
1437 }
1438 if (free)
1439 {
1440 uldci.m_rbStart = rbAllocated;
1441
1442 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1443 {
1444 rbMap.at(j) = true;
1445 // store info on allocation for managing ul-cqi interpretation
1446 rbgAllocationMap.at(j) = (*it).first;
1447 }
1448 rbAllocated += rbPerFlow;
1449 allocated = true;
1450 break;
1451 }
1452 rbAllocated++;
1453 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1454 {
1455 // limit to physical resources last resource assignment
1456 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1457 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1458 if (rbPerFlow < 3)
1459 {
1460 // terminate allocation
1461 rbPerFlow = 0;
1462 }
1463 }
1464 }
1465 if (!allocated)
1466 {
1467 // unable to allocate new resource: finish scheduling
1468 m_nextRntiUl = (*it).first;
1469 if (!ret.m_dciList.empty())
1470 {
1472 }
1473 m_allocationMaps.insert(
1474 std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1475 return;
1476 }
1477
1478 std::map<uint16_t, std::vector<double>>::iterator itCqi = m_ueCqi.find((*it).first);
1479 int cqi = 0;
1480 if (itCqi == m_ueCqi.end())
1481 {
1482 // no cqi info about this UE
1483 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1484 }
1485 else
1486 {
1487 // take the lowest CQI value (worst RB)
1488 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1489 "CQI of RNTI = " << (*it).first << " has expired");
1490 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1491 if (minSinr == NO_SINR)
1492 {
1493 minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1494 }
1495 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1496 {
1497 double sinr = (*itCqi).second.at(i);
1498 if (sinr == NO_SINR)
1499 {
1500 sinr = EstimateUlSinr((*it).first, i);
1501 }
1502 if (sinr < minSinr)
1503 {
1504 minSinr = sinr;
1505 }
1506 }
1507
1508 // translate SINR -> cqi: WILD ACK: same as DL
1509 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1510 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1511 if (cqi == 0)
1512 {
1513 it++;
1514 if (it == m_ceBsrRxed.end())
1515 {
1516 // restart from the first
1517 it = m_ceBsrRxed.begin();
1518 }
1519 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1520 // remove UE from allocation map
1521 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1522 {
1523 rbgAllocationMap.at(i) = 0;
1524 }
1525 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1526 }
1527 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1528 }
1529
1530 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1532 uldci.m_ndi = 1;
1533 uldci.m_cceIndex = 0;
1534 uldci.m_aggrLevel = 1;
1535 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1536 uldci.m_hopping = false;
1537 uldci.m_n2Dmrs = 0;
1538 uldci.m_tpc = 0; // no power control
1539 uldci.m_cqiRequest = false; // only period CQI at this stage
1540 uldci.m_ulIndex = 0; // TDD parameter
1541 uldci.m_dai = 1; // TDD parameter
1542 uldci.m_freqHopping = 0;
1543 uldci.m_pdcchPowerOffset = 0; // not used
1544 ret.m_dciList.push_back(uldci);
1545 // store DCI for HARQ_PERIOD
1546 uint8_t harqId = 0;
1547 if (m_harqOn == true)
1548 {
1549 std::map<uint16_t, uint8_t>::iterator itProcId;
1550 itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1551 if (itProcId == m_ulHarqCurrentProcessId.end())
1552 {
1553 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1554 }
1555 harqId = (*itProcId).second;
1556 std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci =
1558 if (itDci == m_ulHarqProcessesDciBuffer.end())
1559 {
1560 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1561 << uldci.m_rnti);
1562 }
1563 (*itDci).second.at(harqId) = uldci;
1564 // Update HARQ process status (RV 0)
1565 std::map<uint16_t, UlHarqProcessesStatus_t>::iterator itStat =
1566 m_ulHarqProcessesStatus.find(uldci.m_rnti);
1567 if (itStat == m_ulHarqProcessesStatus.end())
1568 {
1569 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1570 << uldci.m_rnti);
1571 }
1572 (*itStat).second.at(harqId) = 0;
1573 }
1574
1575 NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
1576 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1577 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1578 << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
1579 << (uint16_t)harqId);
1580
1581 it++;
1582 if (it == m_ceBsrRxed.end())
1583 {
1584 // restart from the first
1585 it = m_ceBsrRxed.begin();
1586 }
1587 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1588 {
1589 // Stop allocation: no more PRBs
1590 m_nextRntiUl = (*it).first;
1591 break;
1592 }
1593 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1594
1595 m_allocationMaps.insert(
1596 std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1598}
1599
1600void
1603{
1604 NS_LOG_FUNCTION(this);
1605}
1606
1607void
1610{
1611 NS_LOG_FUNCTION(this);
1612}
1613
1614void
1617{
1618 NS_LOG_FUNCTION(this);
1619
1620 std::map<uint16_t, uint32_t>::iterator it;
1621
1622 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1623 {
1624 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1625 {
1626 // buffer status report
1627 // note that this scheduler does not differentiate the
1628 // allocation according to which LCGs have more/less bytes
1629 // to send.
1630 // Hence the BSR of different LCGs are just summed up to get
1631 // a total queue size that is used for allocation purposes.
1632
1633 uint32_t buffer = 0;
1634 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1635 {
1636 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1637 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1638 }
1639
1640 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1641 NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
1642 it = m_ceBsrRxed.find(rnti);
1643 if (it == m_ceBsrRxed.end())
1644 {
1645 // create the new entry
1646 m_ceBsrRxed.insert(std::pair<uint16_t, uint32_t>(rnti, buffer));
1647 }
1648 else
1649 {
1650 // update the buffer size value
1651 (*it).second = buffer;
1652 }
1653 }
1654 }
1655}
1656
1657void
1660{
1661 NS_LOG_FUNCTION(this);
1662 // retrieve the allocation for this subframe
1663 switch (m_ulCqiFilter)
1664 {
1666 // filter all the CQIs that are not SRS based
1667 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1668 {
1669 return;
1670 }
1671 }
1672 break;
1674 // filter all the CQIs that are not SRS based
1675 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1676 {
1677 return;
1678 }
1679 }
1680 break;
1681 default:
1682 NS_FATAL_ERROR("Unknown UL CQI type");
1683 }
1684
1685 switch (params.m_ulCqi.m_type)
1686 {
1687 case UlCqi_s::PUSCH: {
1688 std::map<uint16_t, std::vector<uint16_t>>::iterator itMap;
1689 std::map<uint16_t, std::vector<double>>::iterator itCqi;
1690 NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
1691 << " subframe no. " << (0xF & params.m_sfnSf));
1692 itMap = m_allocationMaps.find(params.m_sfnSf);
1693 if (itMap == m_allocationMaps.end())
1694 {
1695 return;
1696 }
1697 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1698 {
1699 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1700 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1701 itCqi = m_ueCqi.find((*itMap).second.at(i));
1702 if (itCqi == m_ueCqi.end())
1703 {
1704 // create a new entry
1705 std::vector<double> newCqi;
1706 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1707 {
1708 if (i == j)
1709 {
1710 newCqi.push_back(sinr);
1711 }
1712 else
1713 {
1714 // initialize with NO_SINR value.
1715 newCqi.push_back(NO_SINR);
1716 }
1717 }
1718 m_ueCqi.insert(
1719 std::pair<uint16_t, std::vector<double>>((*itMap).second.at(i), newCqi));
1720 // generate correspondent timer
1721 m_ueCqiTimers.insert(
1722 std::pair<uint16_t, uint32_t>((*itMap).second.at(i), m_cqiTimersThreshold));
1723 }
1724 else
1725 {
1726 // update the value
1727 (*itCqi).second.at(i) = sinr;
1728 NS_LOG_DEBUG(this << " RNTI " << (*itMap).second.at(i) << " RB " << i << " SINR "
1729 << sinr);
1730 // update correspondent timer
1731 std::map<uint16_t, uint32_t>::iterator itTimers;
1732 itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1733 (*itTimers).second = m_cqiTimersThreshold;
1734 }
1735 }
1736 // remove obsolete info on allocation
1737 m_allocationMaps.erase(itMap);
1738 }
1739 break;
1740 case UlCqi_s::SRS: {
1741 // get the RNTI from vendor specific parameters
1742 uint16_t rnti = 0;
1743 NS_ASSERT(!params.m_vendorSpecificList.empty());
1744 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1745 {
1746 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1747 {
1748 Ptr<SrsCqiRntiVsp> vsp =
1749 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1750 rnti = vsp->GetRnti();
1751 }
1752 }
1753 std::map<uint16_t, std::vector<double>>::iterator itCqi;
1754 itCqi = m_ueCqi.find(rnti);
1755 if (itCqi == m_ueCqi.end())
1756 {
1757 // create a new entry
1758 std::vector<double> newCqi;
1759 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1760 {
1761 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1762 newCqi.push_back(sinr);
1763 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1764 << sinr);
1765 }
1766 m_ueCqi.insert(std::pair<uint16_t, std::vector<double>>(rnti, newCqi));
1767 // generate correspondent timer
1768 m_ueCqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1769 }
1770 else
1771 {
1772 // update the values
1773 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1774 {
1775 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1776 (*itCqi).second.at(j) = sinr;
1777 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1778 << sinr);
1779 }
1780 // update correspondent timer
1781 std::map<uint16_t, uint32_t>::iterator itTimers;
1782 itTimers = m_ueCqiTimers.find(rnti);
1783 (*itTimers).second = m_cqiTimersThreshold;
1784 }
1785 }
1786 break;
1787 case UlCqi_s::PUCCH_1:
1788 case UlCqi_s::PUCCH_2:
1789 case UlCqi_s::PRACH: {
1790 NS_FATAL_ERROR("TdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1791 }
1792 break;
1793 default:
1794 NS_FATAL_ERROR("Unknown type of UL-CQI");
1795 }
1796}
1797
1798void
1800{
1801 // refresh DL CQI P01 Map
1802 std::map<uint16_t, uint32_t>::iterator itP10 = m_p10CqiTimers.begin();
1803 while (itP10 != m_p10CqiTimers.end())
1804 {
1805 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1806 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1807 if ((*itP10).second == 0)
1808 {
1809 // delete correspondent entries
1810 std::map<uint16_t, uint8_t>::iterator itMap = m_p10CqiRxed.find((*itP10).first);
1811 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1812 " Does not find CQI report for user " << (*itP10).first);
1813 NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
1814 m_p10CqiRxed.erase(itMap);
1815 std::map<uint16_t, uint32_t>::iterator temp = itP10;
1816 itP10++;
1817 m_p10CqiTimers.erase(temp);
1818 }
1819 else
1820 {
1821 (*itP10).second--;
1822 itP10++;
1823 }
1824 }
1825
1826 // refresh DL CQI A30 Map
1827 std::map<uint16_t, uint32_t>::iterator itA30 = m_a30CqiTimers.begin();
1828 while (itA30 != m_a30CqiTimers.end())
1829 {
1830 NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
1831 << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1832 if ((*itA30).second == 0)
1833 {
1834 // delete correspondent entries
1835 std::map<uint16_t, SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find((*itA30).first);
1836 NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
1837 " Does not find CQI report for user " << (*itA30).first);
1838 NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
1839 m_a30CqiRxed.erase(itMap);
1840 std::map<uint16_t, uint32_t>::iterator temp = itA30;
1841 itA30++;
1842 m_a30CqiTimers.erase(temp);
1843 }
1844 else
1845 {
1846 (*itA30).second--;
1847 itA30++;
1848 }
1849 }
1850}
1851
1852void
1854{
1855 // refresh UL CQI Map
1856 std::map<uint16_t, uint32_t>::iterator itUl = m_ueCqiTimers.begin();
1857 while (itUl != m_ueCqiTimers.end())
1858 {
1859 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
1860 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1861 if ((*itUl).second == 0)
1862 {
1863 // delete correspondent entries
1864 std::map<uint16_t, std::vector<double>>::iterator itMap = m_ueCqi.find((*itUl).first);
1865 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
1866 " Does not find CQI report for user " << (*itUl).first);
1867 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
1868 (*itMap).second.clear();
1869 m_ueCqi.erase(itMap);
1870 std::map<uint16_t, uint32_t>::iterator temp = itUl;
1871 itUl++;
1872 m_ueCqiTimers.erase(temp);
1873 }
1874 else
1875 {
1876 (*itUl).second--;
1877 itUl++;
1878 }
1879 }
1880}
1881
1882void
1883TdMtFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
1884{
1885 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1886 LteFlowId_t flow(rnti, lcid);
1887 it = m_rlcBufferReq.find(flow);
1888 if (it != m_rlcBufferReq.end())
1889 {
1890 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
1891 << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
1892 << (*it).second.m_rlcRetransmissionQueueSize << " status "
1893 << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1894 // Update queues: RLC tx order Status, ReTx, Tx
1895 // Update status queue
1896 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1897 {
1898 (*it).second.m_rlcStatusPduSize = 0;
1899 }
1900 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
1901 (size >= (*it).second.m_rlcRetransmissionQueueSize))
1902 {
1903 (*it).second.m_rlcRetransmissionQueueSize = 0;
1904 }
1905 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1906 {
1907 uint32_t rlcOverhead;
1908 if (lcid == 1)
1909 {
1910 // for SRB1 (using RLC AM) it's better to
1911 // overestimate RLC overhead rather than
1912 // underestimate it and risk unneeded
1913 // segmentation which increases delay
1914 rlcOverhead = 4;
1915 }
1916 else
1917 {
1918 // minimum RLC overhead due to header
1919 rlcOverhead = 2;
1920 }
1921 // update transmission queue
1922 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1923 {
1924 (*it).second.m_rlcTransmissionQueueSize = 0;
1925 }
1926 else
1927 {
1928 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1929 }
1930 }
1931 }
1932 else
1933 {
1934 NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
1935 }
1936}
1937
1938void
1940{
1941 size = size - 2; // remove the minimum RLC overhead
1942 std::map<uint16_t, uint32_t>::iterator it = m_ceBsrRxed.find(rnti);
1943 if (it != m_ceBsrRxed.end())
1944 {
1945 NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1946 if ((*it).second >= size)
1947 {
1948 (*it).second -= size;
1949 }
1950 else
1951 {
1952 (*it).second = 0;
1953 }
1954 }
1955 else
1956 {
1957 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
1958 }
1959}
1960
1961void
1963{
1964 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
1966 params.m_rnti = rnti;
1967 params.m_transmissionMode = txMode;
1969}
1970
1971} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:41
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:141
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:78
Implements the SCHED SAP and CSCHED SAP for a Time Domain Maximize Throughput scheduler.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
LteFfrSapUser * GetLteFfrSapUser() override
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
std::set< uint16_t > m_flowStatsDl
Set of UE statistics (per RNTI basis) in downlink.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request.
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
friend class MemberSchedSapProvider< TdMtFfMacScheduler >
allow MemberSchedSapProvider<TdMtFfMacScheduler> class friend access
int GetRbgSize(int dlbandwidth)
Get RBG size function.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
friend class MemberCschedSapProvider< TdMtFfMacScheduler >
allow MemberCschedSapProvider<TdMtFfMacScheduler> class friend access
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
std::set< uint16_t > m_flowStatsUl
Set of UE statistics (per RNTI basis)
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
unsigned int LcActivePerFlow(uint16_t rnti)
LC active flow function.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
static TypeId GetTypeId()
Get the type ID.
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
void DoDispose() override
Destructor implementation.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
void RefreshDlCqiMaps()
Refresh DL CQI maps function.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
~TdMtFfMacScheduler() override
Destructor.
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR function.
std::vector< struct RachListElement_s > m_rachList
RACH list.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
void RefreshUlCqiMaps()
Refresh UL CQI maps function.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:935
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NO_SINR
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:86
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
@ SUCCESS
Definition: ff-mac-common.h:62
static const int TdMtType0AllocationRbg[4]
TDMT type 0 allocation RBG.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
params
Fit Fluctuating Two Ray model to the 3GPP TR 38.901 using the Anderson-Darling goodness-of-fit ##.
See section 4.3.8 builDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:37
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.