A Discrete-Event Network Simulator
API
tdbet-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Marco Miozzo <marco.miozzo@cttc.es>
18 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
19 */
20
21#include <ns3/boolean.h>
22#include <ns3/log.h>
23#include <ns3/lte-amc.h>
24#include <ns3/lte-vendor-specific-parameters.h>
25#include <ns3/math.h>
26#include <ns3/pointer.h>
27#include <ns3/simulator.h>
28#include <ns3/tdbet-ff-mac-scheduler.h>
29
30#include <cfloat>
31#include <set>
32
33namespace ns3
34{
35
36NS_LOG_COMPONENT_DEFINE("TdBetFfMacScheduler");
37
39static const int TdBetType0AllocationRbg[4] = {
40 10, // RGB size 1
41 26, // RGB size 2
42 63, // RGB size 3
43 110, // RGB size 4
44}; // see table 7.1.6.1-1 of 36.213
45
46NS_OBJECT_ENSURE_REGISTERED(TdBetFfMacScheduler);
47
49 : m_cschedSapUser(nullptr),
50 m_schedSapUser(nullptr),
51 m_timeWindow(99.0),
52 m_nextRntiUl(0)
53{
54 m_amc = CreateObject<LteAmc>();
57}
58
60{
61 NS_LOG_FUNCTION(this);
62}
63
64void
66{
67 NS_LOG_FUNCTION(this);
76 delete m_schedSapProvider;
77}
78
81{
82 static TypeId tid =
83 TypeId("ns3::TdBetFfMacScheduler")
85 .SetGroupName("Lte")
86 .AddConstructor<TdBetFfMacScheduler>()
87 .AddAttribute("CqiTimerThreshold",
88 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
89 UintegerValue(1000),
91 MakeUintegerChecker<uint32_t>())
92 .AddAttribute("HarqEnabled",
93 "Activate/Deactivate the HARQ [by default is active].",
94 BooleanValue(true),
97 .AddAttribute("UlGrantMcs",
98 "The MCS of the UL grant, must be [0..15] (default 0)",
101 MakeUintegerChecker<uint8_t>());
102 return tid;
103}
104
105void
107{
108 m_cschedSapUser = s;
109}
110
111void
113{
114 m_schedSapUser = s;
115}
116
119{
120 return m_cschedSapProvider;
121}
122
125{
126 return m_schedSapProvider;
127}
128
129void
131{
133}
134
137{
138 return m_ffrSapUser;
139}
140
141void
144{
145 NS_LOG_FUNCTION(this);
146 // Read the subset of parameters used
150 cnf.m_result = SUCCESS;
152}
153
154void
157{
158 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
159 << (uint16_t)params.m_transmissionMode);
160 std::map<uint16_t, uint8_t>::iterator it = m_uesTxMode.find(params.m_rnti);
161 if (it == m_uesTxMode.end())
162 {
163 m_uesTxMode.insert(std::pair<uint16_t, double>(params.m_rnti, params.m_transmissionMode));
164 // generate HARQ buffers
165 m_dlHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
166 DlHarqProcessesStatus_t dlHarqPrcStatus;
167 dlHarqPrcStatus.resize(8, 0);
169 std::pair<uint16_t, DlHarqProcessesStatus_t>(params.m_rnti, dlHarqPrcStatus));
170 DlHarqProcessesTimer_t dlHarqProcessesTimer;
171 dlHarqProcessesTimer.resize(8, 0);
173 std::pair<uint16_t, DlHarqProcessesTimer_t>(params.m_rnti, dlHarqProcessesTimer));
175 dlHarqdci.resize(8);
177 std::pair<uint16_t, DlHarqProcessesDciBuffer_t>(params.m_rnti, dlHarqdci));
178 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
179 dlHarqRlcPdu.resize(2);
180 dlHarqRlcPdu.at(0).resize(8);
181 dlHarqRlcPdu.at(1).resize(8);
183 std::pair<uint16_t, DlHarqRlcPduListBuffer_t>(params.m_rnti, dlHarqRlcPdu));
184 m_ulHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
185 UlHarqProcessesStatus_t ulHarqPrcStatus;
186 ulHarqPrcStatus.resize(8, 0);
188 std::pair<uint16_t, UlHarqProcessesStatus_t>(params.m_rnti, ulHarqPrcStatus));
190 ulHarqdci.resize(8);
192 std::pair<uint16_t, UlHarqProcessesDciBuffer_t>(params.m_rnti, ulHarqdci));
193 }
194 else
195 {
196 (*it).second = params.m_transmissionMode;
197 }
198}
199
200void
203{
204 NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
205
206 std::map<uint16_t, tdbetsFlowPerf_t>::iterator it;
207 for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
208 {
209 it = m_flowStatsDl.find(params.m_rnti);
210
211 if (it == m_flowStatsDl.end())
212 {
213 tdbetsFlowPerf_t flowStatsDl;
214 flowStatsDl.flowStart = Simulator::Now();
215 flowStatsDl.totalBytesTransmitted = 0;
216 flowStatsDl.lastTtiBytesTrasmitted = 0;
217 flowStatsDl.lastAveragedThroughput = 1;
218 m_flowStatsDl.insert(std::pair<uint16_t, tdbetsFlowPerf_t>(params.m_rnti, flowStatsDl));
219 tdbetsFlowPerf_t flowStatsUl;
220 flowStatsUl.flowStart = Simulator::Now();
221 flowStatsUl.totalBytesTransmitted = 0;
222 flowStatsUl.lastTtiBytesTrasmitted = 0;
223 flowStatsUl.lastAveragedThroughput = 1;
224 m_flowStatsUl.insert(std::pair<uint16_t, tdbetsFlowPerf_t>(params.m_rnti, flowStatsUl));
225 }
226 }
227}
228
229void
232{
233 NS_LOG_FUNCTION(this);
234 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
235 {
236 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it =
237 m_rlcBufferReq.begin();
238 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
239 while (it != m_rlcBufferReq.end())
240 {
241 if (((*it).first.m_rnti == params.m_rnti) &&
242 ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
243 {
244 temp = it;
245 it++;
246 m_rlcBufferReq.erase(temp);
247 }
248 else
249 {
250 it++;
251 }
252 }
253 }
254}
255
256void
259{
260 NS_LOG_FUNCTION(this);
261
262 m_uesTxMode.erase(params.m_rnti);
263 m_dlHarqCurrentProcessId.erase(params.m_rnti);
264 m_dlHarqProcessesStatus.erase(params.m_rnti);
265 m_dlHarqProcessesTimer.erase(params.m_rnti);
268 m_ulHarqCurrentProcessId.erase(params.m_rnti);
269 m_ulHarqProcessesStatus.erase(params.m_rnti);
271 m_flowStatsDl.erase(params.m_rnti);
272 m_flowStatsUl.erase(params.m_rnti);
273 m_ceBsrRxed.erase(params.m_rnti);
274 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it =
275 m_rlcBufferReq.begin();
276 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
277 while (it != m_rlcBufferReq.end())
278 {
279 if ((*it).first.m_rnti == params.m_rnti)
280 {
281 temp = it;
282 it++;
283 m_rlcBufferReq.erase(temp);
284 }
285 else
286 {
287 it++;
288 }
289 }
290 if (m_nextRntiUl == params.m_rnti)
291 {
292 m_nextRntiUl = 0;
293 }
294}
295
296void
299{
300 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
301 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
302
303 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
304
305 LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
306
307 it = m_rlcBufferReq.find(flow);
308
309 if (it == m_rlcBufferReq.end())
310 {
311 m_rlcBufferReq.insert(
312 std::pair<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>(flow,
313 params));
314 }
315 else
316 {
317 (*it).second = params;
318 }
319}
320
321void
324{
325 NS_LOG_FUNCTION(this);
326 NS_FATAL_ERROR("method not implemented");
327}
328
329void
332{
333 NS_LOG_FUNCTION(this);
334 NS_FATAL_ERROR("method not implemented");
335}
336
337int
339{
340 for (int i = 0; i < 4; i++)
341 {
342 if (dlbandwidth < TdBetType0AllocationRbg[i])
343 {
344 return (i + 1);
345 }
346 }
347
348 return (-1);
349}
350
351unsigned int
353{
354 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
355 unsigned int lcActive = 0;
356 for (it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
357 {
358 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
359 ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
360 ((*it).second.m_rlcStatusPduSize > 0)))
361 {
362 lcActive++;
363 }
364 if ((*it).first.m_rnti > rnti)
365 {
366 break;
367 }
368 }
369 return (lcActive);
370}
371
372bool
374{
375 NS_LOG_FUNCTION(this << rnti);
376
377 std::map<uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find(rnti);
378 if (it == m_dlHarqCurrentProcessId.end())
379 {
380 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
381 }
382 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
383 m_dlHarqProcessesStatus.find(rnti);
384 if (itStat == m_dlHarqProcessesStatus.end())
385 {
386 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
387 }
388 uint8_t i = (*it).second;
389 do
390 {
391 i = (i + 1) % HARQ_PROC_NUM;
392 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
393 if ((*itStat).second.at(i) == 0)
394 {
395 return (true);
396 }
397 else
398 {
399 return (false); // return a not valid harq proc id
400 }
401}
402
403uint8_t
405{
406 NS_LOG_FUNCTION(this << rnti);
407
408 if (m_harqOn == false)
409 {
410 return (0);
411 }
412
413 std::map<uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find(rnti);
414 if (it == m_dlHarqCurrentProcessId.end())
415 {
416 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
417 }
418 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
419 m_dlHarqProcessesStatus.find(rnti);
420 if (itStat == m_dlHarqProcessesStatus.end())
421 {
422 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
423 }
424 uint8_t i = (*it).second;
425 do
426 {
427 i = (i + 1) % HARQ_PROC_NUM;
428 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
429 if ((*itStat).second.at(i) == 0)
430 {
431 (*it).second = i;
432 (*itStat).second.at(i) = 1;
433 }
434 else
435 {
436 NS_FATAL_ERROR("No HARQ process available for RNTI "
437 << rnti << " check before update with HarqProcessAvailability");
438 }
439
440 return ((*it).second);
441}
442
443void
445{
446 NS_LOG_FUNCTION(this);
447
448 std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
449 for (itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
450 itTimers++)
451 {
452 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
453 {
454 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
455 {
456 // reset HARQ process
457
458 NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
459 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator itStat =
460 m_dlHarqProcessesStatus.find((*itTimers).first);
461 if (itStat == m_dlHarqProcessesStatus.end())
462 {
463 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
464 << (*itTimers).first);
465 }
466 (*itStat).second.at(i) = 0;
467 (*itTimers).second.at(i) = 0;
468 }
469 else
470 {
471 (*itTimers).second.at(i)++;
472 }
473 }
474 }
475}
476
477void
480{
481 NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
482 << (0xF & params.m_sfnSf));
483 // API generated by RLC for triggering the scheduling of a DL subframe
484
485 // evaluate the relative channel quality indicator for each UE per each RBG
486 // (since we are using allocation type 0 the small unit of allocation is RBG)
487 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
488
490
492 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
493 std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
494 std::vector<bool> rbgMap; // global RBGs map
495 uint16_t rbgAllocatedNum = 0;
496 std::set<uint16_t> rntiAllocated;
497 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
499
500 // update UL HARQ proc id
501 std::map<uint16_t, uint8_t>::iterator itProcId;
502 for (itProcId = m_ulHarqCurrentProcessId.begin(); itProcId != m_ulHarqCurrentProcessId.end();
503 itProcId++)
504 {
505 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
506 }
507
508 // RACH Allocation
510 uint16_t rbStart = 0;
511 std::vector<struct RachListElement_s>::iterator itRach;
512 for (itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
513 {
515 (*itRach).m_estimatedSize,
516 " Default UL Grant MCS does not allow to send RACH messages");
518 newRar.m_rnti = (*itRach).m_rnti;
519 // DL-RACH Allocation
520 // Ideal: no needs of configuring m_dci
521 // UL-RACH Allocation
522 newRar.m_grant.m_rnti = newRar.m_rnti;
523 newRar.m_grant.m_mcs = m_ulGrantMcs;
524 uint16_t rbLen = 1;
525 uint16_t tbSizeBits = 0;
526 // find lowest TB size that fits UL grant estimated size
527 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
528 (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
529 {
530 rbLen++;
531 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
532 }
533 if (tbSizeBits < (*itRach).m_estimatedSize)
534 {
535 // no more allocation space: finish allocation
536 break;
537 }
538 newRar.m_grant.m_rbStart = rbStart;
539 newRar.m_grant.m_rbLen = rbLen;
540 newRar.m_grant.m_tbSize = tbSizeBits / 8;
541 newRar.m_grant.m_hopping = false;
542 newRar.m_grant.m_tpc = 0;
543 newRar.m_grant.m_cqiRequest = false;
544 newRar.m_grant.m_ulDelay = false;
545 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
546 << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize "
547 << newRar.m_grant.m_tbSize);
548 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
549 {
550 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
551 }
552
553 if (m_harqOn == true)
554 {
555 // generate UL-DCI for HARQ retransmissions
556 UlDciListElement_s uldci;
557 uldci.m_rnti = newRar.m_rnti;
558 uldci.m_rbLen = rbLen;
559 uldci.m_rbStart = rbStart;
560 uldci.m_mcs = m_ulGrantMcs;
561 uldci.m_tbSize = tbSizeBits / 8;
562 uldci.m_ndi = 1;
563 uldci.m_cceIndex = 0;
564 uldci.m_aggrLevel = 1;
565 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
566 uldci.m_hopping = false;
567 uldci.m_n2Dmrs = 0;
568 uldci.m_tpc = 0; // no power control
569 uldci.m_cqiRequest = false; // only period CQI at this stage
570 uldci.m_ulIndex = 0; // TDD parameter
571 uldci.m_dai = 1; // TDD parameter
572 uldci.m_freqHopping = 0;
573 uldci.m_pdcchPowerOffset = 0; // not used
574
575 uint8_t harqId = 0;
576 std::map<uint16_t, uint8_t>::iterator itProcId;
577 itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
578 if (itProcId == m_ulHarqCurrentProcessId.end())
579 {
580 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
581 }
582 harqId = (*itProcId).second;
583 std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci =
585 if (itDci == m_ulHarqProcessesDciBuffer.end())
586 {
587 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
588 << uldci.m_rnti);
589 }
590 (*itDci).second.at(harqId) = uldci;
591 }
592
593 rbStart = rbStart + rbLen;
594 ret.m_buildRarList.push_back(newRar);
595 }
596 m_rachList.clear();
597
598 // Process DL HARQ feedback
600 // retrieve past HARQ retx buffered
601 if (!m_dlInfoListBuffered.empty())
602 {
603 if (!params.m_dlInfoList.empty())
604 {
605 NS_LOG_INFO(this << " Received DL-HARQ feedback");
607 params.m_dlInfoList.begin(),
608 params.m_dlInfoList.end());
609 }
610 }
611 else
612 {
613 if (!params.m_dlInfoList.empty())
614 {
615 m_dlInfoListBuffered = params.m_dlInfoList;
616 }
617 }
618 if (m_harqOn == false)
619 {
620 // Ignore HARQ feedback
621 m_dlInfoListBuffered.clear();
622 }
623 std::vector<struct DlInfoListElement_s> dlInfoListUntxed;
624 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
625 {
626 std::set<uint16_t>::iterator itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
627 if (itRnti != rntiAllocated.end())
628 {
629 // RNTI already allocated for retx
630 continue;
631 }
632 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
633 std::vector<bool> retx;
634 NS_LOG_INFO(this << " Processing DLHARQ feedback");
635 if (nLayers == 1)
636 {
637 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
639 retx.push_back(false);
640 }
641 else
642 {
643 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
645 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
647 }
648 if (retx.at(0) || retx.at(1))
649 {
650 // retrieve HARQ process information
651 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
652 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
653 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
654 std::map<uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq =
656 if (itHarq == m_dlHarqProcessesDciBuffer.end())
657 {
658 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
659 }
660
661 DlDciListElement_s dci = (*itHarq).second.at(harqId);
662 int rv = 0;
663 if (dci.m_rv.size() == 1)
664 {
665 rv = dci.m_rv.at(0);
666 }
667 else
668 {
669 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
670 }
671
672 if (rv == 3)
673 {
674 // maximum number of retx reached -> drop process
675 NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
676 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator it =
677 m_dlHarqProcessesStatus.find(rnti);
678 if (it == m_dlHarqProcessesStatus.end())
679 {
680 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
681 << m_dlInfoListBuffered.at(i).m_rnti);
682 }
683 (*it).second.at(harqId) = 0;
684 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
686 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
687 {
688 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
689 << m_dlInfoListBuffered.at(i).m_rnti);
690 }
691 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
692 {
693 (*itRlcPdu).second.at(k).at(harqId).clear();
694 }
695 continue;
696 }
697 // check the feasibility of retransmitting on the same RBGs
698 // translate the DCI to Spectrum framework
699 std::vector<int> dciRbg;
700 uint32_t mask = 0x1;
701 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
702 for (int j = 0; j < 32; j++)
703 {
704 if (((dci.m_rbBitmap & mask) >> j) == 1)
705 {
706 dciRbg.push_back(j);
707 NS_LOG_INFO("\t" << j);
708 }
709 mask = (mask << 1);
710 }
711 bool free = true;
712 for (std::size_t j = 0; j < dciRbg.size(); j++)
713 {
714 if (rbgMap.at(dciRbg.at(j)) == true)
715 {
716 free = false;
717 break;
718 }
719 }
720 if (free)
721 {
722 // use the same RBGs for the retx
723 // reserve RBGs
724 for (std::size_t j = 0; j < dciRbg.size(); j++)
725 {
726 rbgMap.at(dciRbg.at(j)) = true;
727 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
728 rbgAllocatedNum++;
729 }
730
731 NS_LOG_INFO(this << " Send retx in the same RBGs");
732 }
733 else
734 {
735 // find RBGs for sending HARQ retx
736 uint8_t j = 0;
737 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
738 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
739 std::vector<bool> rbgMapCopy = rbgMap;
740 while ((j < dciRbg.size()) && (startRbg != rbgId))
741 {
742 if (rbgMapCopy.at(rbgId) == false)
743 {
744 rbgMapCopy.at(rbgId) = true;
745 dciRbg.at(j) = rbgId;
746 j++;
747 }
748 rbgId = (rbgId + 1) % rbgNum;
749 }
750 if (j == dciRbg.size())
751 {
752 // find new RBGs -> update DCI map
753 uint32_t rbgMask = 0;
754 for (std::size_t k = 0; k < dciRbg.size(); k++)
755 {
756 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
757 rbgAllocatedNum++;
758 }
759 dci.m_rbBitmap = rbgMask;
760 rbgMap = rbgMapCopy;
761 NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
762 }
763 else
764 {
765 // HARQ retx cannot be performed on this TTI -> store it
766 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
767 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
768 }
769 }
770 // retrieve RLC PDU list for retx TBsize and update DCI
772 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
774 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
775 {
776 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
777 }
778 for (std::size_t j = 0; j < nLayers; j++)
779 {
780 if (retx.at(j))
781 {
782 if (j >= dci.m_ndi.size())
783 {
784 // for avoiding errors in MIMO transient phases
785 dci.m_ndi.push_back(0);
786 dci.m_rv.push_back(0);
787 dci.m_mcs.push_back(0);
788 dci.m_tbsSize.push_back(0);
789 NS_LOG_INFO(this << " layer " << (uint16_t)j
790 << " no txed (MIMO transition)");
791 }
792 else
793 {
794 dci.m_ndi.at(j) = 0;
795 dci.m_rv.at(j)++;
796 (*itHarq).second.at(harqId).m_rv.at(j)++;
797 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
798 << (uint16_t)dci.m_rv.at(j));
799 }
800 }
801 else
802 {
803 // empty TB of layer j
804 dci.m_ndi.at(j) = 0;
805 dci.m_rv.at(j) = 0;
806 dci.m_mcs.at(j) = 0;
807 dci.m_tbsSize.at(j) = 0;
808 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
809 }
810 }
811 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
812 {
813 std::vector<struct RlcPduListElement_s> rlcPduListPerLc;
814 for (std::size_t j = 0; j < nLayers; j++)
815 {
816 if (retx.at(j))
817 {
818 if (j < dci.m_ndi.size())
819 {
820 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
821 << dci.m_tbsSize.at(j));
822 rlcPduListPerLc.push_back(
823 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
824 }
825 }
826 else
827 { // if no retx needed on layer j, push an RlcPduListElement_s object with
828 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
829 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
830 RlcPduListElement_s emptyElement;
831 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
832 .second.at(j)
833 .at(dci.m_harqProcess)
834 .at(k)
835 .m_logicalChannelIdentity;
836 emptyElement.m_size = 0;
837 rlcPduListPerLc.push_back(emptyElement);
838 }
839 }
840
841 if (!rlcPduListPerLc.empty())
842 {
843 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
844 }
845 }
846 newEl.m_rnti = rnti;
847 newEl.m_dci = dci;
848 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
849 // refresh timer
850 std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer =
851 m_dlHarqProcessesTimer.find(rnti);
852 if (itHarqTimer == m_dlHarqProcessesTimer.end())
853 {
854 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
855 }
856 (*itHarqTimer).second.at(harqId) = 0;
857 ret.m_buildDataList.push_back(newEl);
858 rntiAllocated.insert(rnti);
859 }
860 else
861 {
862 // update HARQ process status
863 NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
864 std::map<uint16_t, DlHarqProcessesStatus_t>::iterator it =
866 if (it == m_dlHarqProcessesStatus.end())
867 {
868 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
869 << m_dlInfoListBuffered.at(i).m_rnti);
870 }
871 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
872 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
874 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
875 {
876 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
877 << m_dlInfoListBuffered.at(i).m_rnti);
878 }
879 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
880 {
881 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
882 }
883 }
884 }
885 m_dlInfoListBuffered.clear();
886 m_dlInfoListBuffered = dlInfoListUntxed;
887
888 if (rbgAllocatedNum == rbgNum)
889 {
890 // all the RBGs are already allocated -> exit
891 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
892 {
894 }
895 return;
896 }
897
898 std::map<uint16_t, tdbetsFlowPerf_t>::iterator it;
899 std::map<uint16_t, tdbetsFlowPerf_t>::iterator itMax = m_flowStatsDl.end();
900 double metricMax = 0.0;
901 for (it = m_flowStatsDl.begin(); it != m_flowStatsDl.end(); it++)
902 {
903 // check first what are channel conditions for this UE, if CQI!=0
904 std::map<uint16_t, uint8_t>::iterator itCqi;
905 itCqi = m_p10CqiRxed.find((*it).first);
906 std::map<uint16_t, uint8_t>::iterator itTxMode;
907 itTxMode = m_uesTxMode.find((*it).first);
908 if (itTxMode == m_uesTxMode.end())
909 {
910 NS_FATAL_ERROR("No Transmission Mode info on user " << (*it).first);
911 }
912 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
913
914 uint8_t cqiSum = 0;
915 for (uint8_t j = 0; j < nLayer; j++)
916 {
917 if (itCqi == m_p10CqiRxed.end())
918 {
919 cqiSum += 1; // no info on this user -> lowest MCS
920 }
921 else
922 {
923 cqiSum = (*itCqi).second;
924 }
925 }
926 if (cqiSum == 0)
927 {
928 NS_LOG_INFO("Skip this flow, CQI==0, rnti:" << (*it).first);
929 continue;
930 }
931
932 std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it).first);
933 if ((itRnti != rntiAllocated.end()) || (!HarqProcessAvailability((*it).first)))
934 {
935 // UE already allocated for HARQ or without HARQ process available -> drop it
936 if (itRnti != rntiAllocated.end())
937 {
938 NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx" << (uint16_t)(*it).first);
939 }
940 if (!HarqProcessAvailability((*it).first))
941 {
942 NS_LOG_DEBUG(this << " RNTI discarded for HARQ id" << (uint16_t)(*it).first);
943 }
944 continue;
945 }
946
947 double metric = 1 / (*it).second.lastAveragedThroughput;
948
949 if (metric > metricMax)
950 {
951 metricMax = metric;
952 itMax = it;
953 }
954 } // end for m_flowStatsDl
955
956 if (itMax == m_flowStatsDl.end())
957 {
958 // no UE available for downlink
959 return;
960 }
961 else
962 {
963 // assign all RBGs to this UE
964 std::vector<uint16_t> tempMap;
965 tempMap.reserve(rbgNum);
966 for (int i = 0; i < rbgNum; i++)
967 {
968 tempMap.push_back(i);
969 }
970 allocationMap.insert(std::pair<uint16_t, std::vector<uint16_t>>((*itMax).first, tempMap));
971 }
972
973 // reset TTI stats of users
974 std::map<uint16_t, tdbetsFlowPerf_t>::iterator itStats;
975 for (itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
976 {
977 (*itStats).second.lastTtiBytesTrasmitted = 0;
978 }
979
980 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
981 // creating the correspondent DCIs
982 std::map<uint16_t, std::vector<uint16_t>>::iterator itMap = allocationMap.begin();
983 while (itMap != allocationMap.end())
984 {
985 // create new BuildDataListElement_s for this LC
987 newEl.m_rnti = (*itMap).first;
988 // create the DlDciListElement_s
989 DlDciListElement_s newDci;
990 newDci.m_rnti = (*itMap).first;
991 newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
992
993 uint16_t lcActives = LcActivePerFlow((*itMap).first);
994 NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
995 if (lcActives == 0)
996 {
997 // Set to max value, to avoid divide by 0 below
998 lcActives = (uint16_t)65535; // UINT16_MAX;
999 }
1000 uint16_t RgbPerRnti = (*itMap).second.size();
1001 std::map<uint16_t, uint8_t>::iterator itCqi;
1002 itCqi = m_p10CqiRxed.find((*itMap).first);
1003 std::map<uint16_t, uint8_t>::iterator itTxMode;
1004 itTxMode = m_uesTxMode.find((*itMap).first);
1005 if (itTxMode == m_uesTxMode.end())
1006 {
1007 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
1008 }
1009 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1010
1011 uint32_t bytesTxed = 0;
1012 for (uint8_t j = 0; j < nLayer; j++)
1013 {
1014 if (itCqi == m_p10CqiRxed.end())
1015 {
1016 newDci.m_mcs.push_back(0); // no info on this user -> lowest MCS
1017 }
1018 else
1019 {
1020 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
1021 }
1022
1023 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RgbPerRnti * rbgSize) /
1024 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1025 newDci.m_tbsSize.push_back(tbSize);
1026 bytesTxed += tbSize;
1027 }
1028
1029 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1030 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1031 uint32_t rbgMask = 0;
1032 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1033 {
1034 rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
1035 NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
1036 }
1037 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1038
1039 // create the rlc PDUs -> equally divide resources among actives LCs
1040 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator
1041 itBufReq;
1042 for (itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1043 {
1044 if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1045 (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1046 ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1047 ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1048 {
1049 std::vector<struct RlcPduListElement_s> newRlcPduLe;
1050 for (uint8_t j = 0; j < nLayer; j++)
1051 {
1052 RlcPduListElement_s newRlcEl;
1053 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1054 newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1055 NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1056 << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1057 newRlcPduLe.push_back(newRlcEl);
1059 newRlcEl.m_logicalChannelIdentity,
1060 newRlcEl.m_size);
1061 if (m_harqOn == true)
1062 {
1063 // store RLC PDU list for HARQ
1064 std::map<uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu =
1065 m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1066 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1067 {
1068 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1069 << (*itMap).first);
1070 }
1071 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1072 }
1073 }
1074 newEl.m_rlcPduList.push_back(newRlcPduLe);
1075 }
1076 if ((*itBufReq).first.m_rnti > (*itMap).first)
1077 {
1078 break;
1079 }
1080 }
1081 for (uint8_t j = 0; j < nLayer; j++)
1082 {
1083 newDci.m_ndi.push_back(1);
1084 newDci.m_rv.push_back(0);
1085 }
1086
1087 newDci.m_tpc = 1; // 1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1088
1089 newEl.m_dci = newDci;
1090
1091 if (m_harqOn == true)
1092 {
1093 // store DCI for HARQ
1094 std::map<uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci =
1096 if (itDci == m_dlHarqProcessesDciBuffer.end())
1097 {
1098 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1099 << newEl.m_rnti);
1100 }
1101 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1102 // refresh timer
1103 std::map<uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer =
1104 m_dlHarqProcessesTimer.find(newEl.m_rnti);
1105 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1106 {
1107 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1108 }
1109 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1110 }
1111
1112 // ...more parameters -> ignored in this version
1113
1114 ret.m_buildDataList.push_back(newEl);
1115 // update UE stats
1116 std::map<uint16_t, tdbetsFlowPerf_t>::iterator it;
1117 it = m_flowStatsDl.find((*itMap).first);
1118 if (it != m_flowStatsDl.end())
1119 {
1120 (*it).second.lastTtiBytesTrasmitted = bytesTxed;
1121 NS_LOG_INFO(this << " UE total bytes txed " << (*it).second.lastTtiBytesTrasmitted);
1122 }
1123 else
1124 {
1125 NS_FATAL_ERROR(this << " No Stats for this allocated UE");
1126 }
1127
1128 itMap++;
1129 } // end while allocation
1130 ret.m_nrOfPdcchOfdmSymbols = 1;
1131
1132 // update UEs stats
1133 NS_LOG_INFO(this << " Update UEs statistics");
1134 for (itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
1135 {
1136 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1137 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1138 // Evolution, Ed Wiley)
1139 (*itStats).second.lastAveragedThroughput =
1140 ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1141 ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1142 NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1143 NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1144 (*itStats).second.lastTtiBytesTrasmitted = 0;
1145 }
1146
1148}
1149
1150void
1153{
1154 NS_LOG_FUNCTION(this);
1155
1156 m_rachList = params.m_rachList;
1157}
1158
1159void
1162{
1163 NS_LOG_FUNCTION(this);
1164
1165 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1166 {
1167 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1168 {
1169 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1170 << " reported");
1171 std::map<uint16_t, uint8_t>::iterator it;
1172 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1173 it = m_p10CqiRxed.find(rnti);
1174 if (it == m_p10CqiRxed.end())
1175 {
1176 // create the new entry
1177 m_p10CqiRxed.insert(std::pair<uint16_t, uint8_t>(
1178 rnti,
1179 params.m_cqiList.at(i).m_wbCqi.at(0))); // only codeword 0 at this stage (SISO)
1180 // generate correspondent timer
1181 m_p10CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1182 }
1183 else
1184 {
1185 // update the CQI value and refresh correspondent timer
1186 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1187 // update correspondent timer
1188 std::map<uint16_t, uint32_t>::iterator itTimers;
1189 itTimers = m_p10CqiTimers.find(rnti);
1190 (*itTimers).second = m_cqiTimersThreshold;
1191 }
1192 }
1193 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1194 {
1195 // subband CQI reporting high layer configured
1196 std::map<uint16_t, SbMeasResult_s>::iterator it;
1197 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1198 it = m_a30CqiRxed.find(rnti);
1199 if (it == m_a30CqiRxed.end())
1200 {
1201 // create the new entry
1202 m_a30CqiRxed.insert(
1203 std::pair<uint16_t, SbMeasResult_s>(rnti,
1204 params.m_cqiList.at(i).m_sbMeasResult));
1205 m_a30CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1206 }
1207 else
1208 {
1209 // update the CQI value and refresh correspondent timer
1210 (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1211 std::map<uint16_t, uint32_t>::iterator itTimers;
1212 itTimers = m_a30CqiTimers.find(rnti);
1213 (*itTimers).second = m_cqiTimersThreshold;
1214 }
1215 }
1216 else
1217 {
1218 NS_LOG_ERROR(this << " CQI type unknown");
1219 }
1220 }
1221}
1222
1223double
1224TdBetFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1225{
1226 std::map<uint16_t, std::vector<double>>::iterator itCqi = m_ueCqi.find(rnti);
1227 if (itCqi == m_ueCqi.end())
1228 {
1229 // no cqi info about this UE
1230 return (NO_SINR);
1231 }
1232 else
1233 {
1234 // take the average SINR value among the available
1235 double sinrSum = 0;
1236 unsigned int sinrNum = 0;
1237 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1238 {
1239 double sinr = (*itCqi).second.at(i);
1240 if (sinr != NO_SINR)
1241 {
1242 sinrSum += sinr;
1243 sinrNum++;
1244 }
1245 }
1246 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1247 // store the value
1248 (*itCqi).second.at(rb) = estimatedSinr;
1249 return (estimatedSinr);
1250 }
1251}
1252
1253void
1256{
1257 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1258 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1259
1261
1262 // Generate RBs map
1264 std::vector<bool> rbMap;
1265 std::set<uint16_t> rntiAllocated;
1266 std::vector<uint16_t> rbgAllocationMap;
1267 // update with RACH allocation map
1268 rbgAllocationMap = m_rachAllocationMap;
1269 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1270 m_rachAllocationMap.clear();
1272
1273 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1274 // remove RACH allocation
1275 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1276 {
1277 if (rbgAllocationMap.at(i) != 0)
1278 {
1279 rbMap.at(i) = true;
1280 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1281 }
1282 }
1283
1284 if (m_harqOn == true)
1285 {
1286 // Process UL HARQ feedback
1287 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1288 {
1289 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1290 {
1291 // retx correspondent block: retrieve the UL-DCI
1292 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1293 std::map<uint16_t, uint8_t>::iterator itProcId =
1294 m_ulHarqCurrentProcessId.find(rnti);
1295 if (itProcId == m_ulHarqCurrentProcessId.end())
1296 {
1297 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1298 }
1299 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1300 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1301 << " i " << i << " size " << params.m_ulInfoList.size());
1302 std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq =
1303 m_ulHarqProcessesDciBuffer.find(rnti);
1304 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1305 {
1306 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1307 continue;
1308 }
1309 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1310 std::map<uint16_t, UlHarqProcessesStatus_t>::iterator itStat =
1311 m_ulHarqProcessesStatus.find(rnti);
1312 if (itStat == m_ulHarqProcessesStatus.end())
1313 {
1314 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1315 }
1316 if ((*itStat).second.at(harqId) >= 3)
1317 {
1318 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1319 continue;
1320 }
1321 bool free = true;
1322 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1323 {
1324 if (rbMap.at(j) == true)
1325 {
1326 free = false;
1327 NS_LOG_INFO(this << " BUSY " << j);
1328 }
1329 }
1330 if (free)
1331 {
1332 // retx on the same RBs
1333 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1334 {
1335 rbMap.at(j) = true;
1336 rbgAllocationMap.at(j) = dci.m_rnti;
1337 NS_LOG_INFO("\tRB " << j);
1338 }
1339 NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1340 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1341 << (*itStat).second.at(harqId) + 1);
1342 }
1343 else
1344 {
1345 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1346 continue;
1347 }
1348 dci.m_ndi = 0;
1349 // Update HARQ buffers with new HarqId
1350 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1351 (*itStat).second.at(harqId) = 0;
1352 (*itHarq).second.at((*itProcId).second) = dci;
1353 ret.m_dciList.push_back(dci);
1354 rntiAllocated.insert(dci.m_rnti);
1355 }
1356 else
1357 {
1358 NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1359 << params.m_ulInfoList.at(i).m_rnti);
1360 }
1361 }
1362 }
1363
1364 std::map<uint16_t, uint32_t>::iterator it;
1365 int nflows = 0;
1366
1367 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1368 {
1369 std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it).first);
1370 // select UEs with queues not empty and not yet allocated for HARQ
1371 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1372 {
1373 nflows++;
1374 }
1375 }
1376
1377 if (nflows == 0)
1378 {
1379 if (!ret.m_dciList.empty())
1380 {
1381 m_allocationMaps.insert(
1382 std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1384 }
1385
1386 return; // no flows to be scheduled
1387 }
1388
1389 // Divide the remaining resources equally among the active users starting from the subsequent
1390 // one served last scheduling trigger
1391 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size());
1392 if (rbPerFlow < 3)
1393 {
1394 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1395 // >= 7 bytes
1396 }
1397 int rbAllocated = 0;
1398
1399 std::map<uint16_t, tdbetsFlowPerf_t>::iterator itStats;
1400 if (m_nextRntiUl != 0)
1401 {
1402 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1403 {
1404 if ((*it).first == m_nextRntiUl)
1405 {
1406 break;
1407 }
1408 }
1409 if (it == m_ceBsrRxed.end())
1410 {
1411 NS_LOG_ERROR(this << " no user found");
1412 }
1413 }
1414 else
1415 {
1416 it = m_ceBsrRxed.begin();
1417 m_nextRntiUl = (*it).first;
1418 }
1419 do
1420 {
1421 std::set<uint16_t>::iterator itRnti = rntiAllocated.find((*it).first);
1422 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1423 {
1424 // UE already allocated for UL-HARQ -> skip it
1425 NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1426 << (*it).first);
1427 it++;
1428 if (it == m_ceBsrRxed.end())
1429 {
1430 // restart from the first
1431 it = m_ceBsrRxed.begin();
1432 }
1433 continue;
1434 }
1435 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1436 {
1437 // limit to physical resources last resource assignment
1438 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1439 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1440 if (rbPerFlow < 3)
1441 {
1442 // terminate allocation
1443 rbPerFlow = 0;
1444 }
1445 }
1446
1447 UlDciListElement_s uldci;
1448 uldci.m_rnti = (*it).first;
1449 uldci.m_rbLen = rbPerFlow;
1450 bool allocated = false;
1451 NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1452 << " flows " << nflows);
1453 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1454 (rbPerFlow != 0))
1455 {
1456 // check availability
1457 bool free = true;
1458 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1459 {
1460 if (rbMap.at(j) == true)
1461 {
1462 free = false;
1463 break;
1464 }
1465 }
1466 if (free)
1467 {
1468 uldci.m_rbStart = rbAllocated;
1469
1470 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1471 {
1472 rbMap.at(j) = true;
1473 // store info on allocation for managing ul-cqi interpretation
1474 rbgAllocationMap.at(j) = (*it).first;
1475 }
1476 rbAllocated += rbPerFlow;
1477 allocated = true;
1478 break;
1479 }
1480 rbAllocated++;
1481 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1482 {
1483 // limit to physical resources last resource assignment
1484 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1485 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1486 if (rbPerFlow < 3)
1487 {
1488 // terminate allocation
1489 rbPerFlow = 0;
1490 }
1491 }
1492 }
1493 if (!allocated)
1494 {
1495 // unable to allocate new resource: finish scheduling
1496 m_nextRntiUl = (*it).first;
1497 if (!ret.m_dciList.empty())
1498 {
1500 }
1501 m_allocationMaps.insert(
1502 std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1503 return;
1504 }
1505
1506 std::map<uint16_t, std::vector<double>>::iterator itCqi = m_ueCqi.find((*it).first);
1507 int cqi = 0;
1508 if (itCqi == m_ueCqi.end())
1509 {
1510 // no cqi info about this UE
1511 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1512 }
1513 else
1514 {
1515 // take the lowest CQI value (worst RB)
1516 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1517 "CQI of RNTI = " << (*it).first << " has expired");
1518 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1519 if (minSinr == NO_SINR)
1520 {
1521 minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1522 }
1523 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1524 {
1525 double sinr = (*itCqi).second.at(i);
1526 if (sinr == NO_SINR)
1527 {
1528 sinr = EstimateUlSinr((*it).first, i);
1529 }
1530 if (sinr < minSinr)
1531 {
1532 minSinr = sinr;
1533 }
1534 }
1535
1536 // translate SINR -> cqi: WILD ACK: same as DL
1537 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1538 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1539 if (cqi == 0)
1540 {
1541 it++;
1542 if (it == m_ceBsrRxed.end())
1543 {
1544 // restart from the first
1545 it = m_ceBsrRxed.begin();
1546 }
1547 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1548 // remove UE from allocation map
1549 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1550 {
1551 rbgAllocationMap.at(i) = 0;
1552 }
1553 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1554 }
1555 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1556 }
1557
1558 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1560 uldci.m_ndi = 1;
1561 uldci.m_cceIndex = 0;
1562 uldci.m_aggrLevel = 1;
1563 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1564 uldci.m_hopping = false;
1565 uldci.m_n2Dmrs = 0;
1566 uldci.m_tpc = 0; // no power control
1567 uldci.m_cqiRequest = false; // only period CQI at this stage
1568 uldci.m_ulIndex = 0; // TDD parameter
1569 uldci.m_dai = 1; // TDD parameter
1570 uldci.m_freqHopping = 0;
1571 uldci.m_pdcchPowerOffset = 0; // not used
1572 ret.m_dciList.push_back(uldci);
1573 // store DCI for HARQ_PERIOD
1574 uint8_t harqId = 0;
1575 if (m_harqOn == true)
1576 {
1577 std::map<uint16_t, uint8_t>::iterator itProcId;
1578 itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1579 if (itProcId == m_ulHarqCurrentProcessId.end())
1580 {
1581 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1582 }
1583 harqId = (*itProcId).second;
1584 std::map<uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci =
1586 if (itDci == m_ulHarqProcessesDciBuffer.end())
1587 {
1588 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1589 << uldci.m_rnti);
1590 }
1591 (*itDci).second.at(harqId) = uldci;
1592 // Update HARQ process status (RV 0)
1593 std::map<uint16_t, UlHarqProcessesStatus_t>::iterator itStat =
1594 m_ulHarqProcessesStatus.find(uldci.m_rnti);
1595 if (itStat == m_ulHarqProcessesStatus.end())
1596 {
1597 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1598 << uldci.m_rnti);
1599 }
1600 (*itStat).second.at(harqId) = 0;
1601 }
1602
1603 NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
1604 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1605 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1606 << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
1607 << (uint16_t)harqId);
1608
1609 // update TTI UE stats
1610 itStats = m_flowStatsUl.find((*it).first);
1611 if (itStats != m_flowStatsUl.end())
1612 {
1613 (*itStats).second.lastTtiBytesTrasmitted = uldci.m_tbSize;
1614 }
1615 else
1616 {
1617 NS_LOG_DEBUG(this << " No Stats for this allocated UE");
1618 }
1619
1620 it++;
1621 if (it == m_ceBsrRxed.end())
1622 {
1623 // restart from the first
1624 it = m_ceBsrRxed.begin();
1625 }
1626 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1627 {
1628 // Stop allocation: no more PRBs
1629 m_nextRntiUl = (*it).first;
1630 break;
1631 }
1632 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1633
1634 // Update global UE stats
1635 // update UEs stats
1636 for (itStats = m_flowStatsUl.begin(); itStats != m_flowStatsUl.end(); itStats++)
1637 {
1638 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1639 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1640 // Evolution, Ed Wiley)
1641 (*itStats).second.lastAveragedThroughput =
1642 ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1643 ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1644 NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1645 NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1646 (*itStats).second.lastTtiBytesTrasmitted = 0;
1647 }
1648 m_allocationMaps.insert(
1649 std::pair<uint16_t, std::vector<uint16_t>>(params.m_sfnSf, rbgAllocationMap));
1651}
1652
1653void
1656{
1657 NS_LOG_FUNCTION(this);
1658}
1659
1660void
1663{
1664 NS_LOG_FUNCTION(this);
1665}
1666
1667void
1670{
1671 NS_LOG_FUNCTION(this);
1672
1673 std::map<uint16_t, uint32_t>::iterator it;
1674
1675 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1676 {
1677 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1678 {
1679 // buffer status report
1680 // note that this scheduler does not differentiate the
1681 // allocation according to which LCGs have more/less bytes
1682 // to send.
1683 // Hence the BSR of different LCGs are just summed up to get
1684 // a total queue size that is used for allocation purposes.
1685
1686 uint32_t buffer = 0;
1687 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1688 {
1689 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1690 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1691 }
1692
1693 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1694 NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
1695 it = m_ceBsrRxed.find(rnti);
1696 if (it == m_ceBsrRxed.end())
1697 {
1698 // create the new entry
1699 m_ceBsrRxed.insert(std::pair<uint16_t, uint32_t>(rnti, buffer));
1700 }
1701 else
1702 {
1703 // update the buffer size value
1704 (*it).second = buffer;
1705 }
1706 }
1707 }
1708}
1709
1710void
1713{
1714 NS_LOG_FUNCTION(this);
1715 // retrieve the allocation for this subframe
1716 switch (m_ulCqiFilter)
1717 {
1719 // filter all the CQIs that are not SRS based
1720 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1721 {
1722 return;
1723 }
1724 }
1725 break;
1727 // filter all the CQIs that are not SRS based
1728 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1729 {
1730 return;
1731 }
1732 }
1733 break;
1734 default:
1735 NS_FATAL_ERROR("Unknown UL CQI type");
1736 }
1737
1738 switch (params.m_ulCqi.m_type)
1739 {
1740 case UlCqi_s::PUSCH: {
1741 std::map<uint16_t, std::vector<uint16_t>>::iterator itMap;
1742 std::map<uint16_t, std::vector<double>>::iterator itCqi;
1743 NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
1744 << " subframe no. " << (0xF & params.m_sfnSf));
1745 itMap = m_allocationMaps.find(params.m_sfnSf);
1746 if (itMap == m_allocationMaps.end())
1747 {
1748 return;
1749 }
1750 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1751 {
1752 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1753 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1754 itCqi = m_ueCqi.find((*itMap).second.at(i));
1755 if (itCqi == m_ueCqi.end())
1756 {
1757 // create a new entry
1758 std::vector<double> newCqi;
1759 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1760 {
1761 if (i == j)
1762 {
1763 newCqi.push_back(sinr);
1764 }
1765 else
1766 {
1767 // initialize with NO_SINR value.
1768 newCqi.push_back(NO_SINR);
1769 }
1770 }
1771 m_ueCqi.insert(
1772 std::pair<uint16_t, std::vector<double>>((*itMap).second.at(i), newCqi));
1773 // generate correspondent timer
1774 m_ueCqiTimers.insert(
1775 std::pair<uint16_t, uint32_t>((*itMap).second.at(i), m_cqiTimersThreshold));
1776 }
1777 else
1778 {
1779 // update the value
1780 (*itCqi).second.at(i) = sinr;
1781 NS_LOG_DEBUG(this << " RNTI " << (*itMap).second.at(i) << " RB " << i << " SINR "
1782 << sinr);
1783 // update correspondent timer
1784 std::map<uint16_t, uint32_t>::iterator itTimers;
1785 itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1786 (*itTimers).second = m_cqiTimersThreshold;
1787 }
1788 }
1789 // remove obsolete info on allocation
1790 m_allocationMaps.erase(itMap);
1791 }
1792 break;
1793 case UlCqi_s::SRS: {
1794 // get the RNTI from vendor specific parameters
1795 uint16_t rnti = 0;
1796 NS_ASSERT(!params.m_vendorSpecificList.empty());
1797 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1798 {
1799 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1800 {
1801 Ptr<SrsCqiRntiVsp> vsp =
1802 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1803 rnti = vsp->GetRnti();
1804 }
1805 }
1806 std::map<uint16_t, std::vector<double>>::iterator itCqi;
1807 itCqi = m_ueCqi.find(rnti);
1808 if (itCqi == m_ueCqi.end())
1809 {
1810 // create a new entry
1811 std::vector<double> newCqi;
1812 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1813 {
1814 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1815 newCqi.push_back(sinr);
1816 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1817 << sinr);
1818 }
1819 m_ueCqi.insert(std::pair<uint16_t, std::vector<double>>(rnti, newCqi));
1820 // generate correspondent timer
1821 m_ueCqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1822 }
1823 else
1824 {
1825 // update the values
1826 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1827 {
1828 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1829 (*itCqi).second.at(j) = sinr;
1830 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1831 << sinr);
1832 }
1833 // update correspondent timer
1834 std::map<uint16_t, uint32_t>::iterator itTimers;
1835 itTimers = m_ueCqiTimers.find(rnti);
1836 (*itTimers).second = m_cqiTimersThreshold;
1837 }
1838 }
1839 break;
1840 case UlCqi_s::PUCCH_1:
1841 case UlCqi_s::PUCCH_2:
1842 case UlCqi_s::PRACH: {
1843 NS_FATAL_ERROR("TdBetFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1844 }
1845 break;
1846 default:
1847 NS_FATAL_ERROR("Unknown type of UL-CQI");
1848 }
1849}
1850
1851void
1853{
1854 // refresh DL CQI P01 Map
1855 std::map<uint16_t, uint32_t>::iterator itP10 = m_p10CqiTimers.begin();
1856 while (itP10 != m_p10CqiTimers.end())
1857 {
1858 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1859 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1860 if ((*itP10).second == 0)
1861 {
1862 // delete correspondent entries
1863 std::map<uint16_t, uint8_t>::iterator itMap = m_p10CqiRxed.find((*itP10).first);
1864 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1865 " Does not find CQI report for user " << (*itP10).first);
1866 NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
1867 m_p10CqiRxed.erase(itMap);
1868 std::map<uint16_t, uint32_t>::iterator temp = itP10;
1869 itP10++;
1870 m_p10CqiTimers.erase(temp);
1871 }
1872 else
1873 {
1874 (*itP10).second--;
1875 itP10++;
1876 }
1877 }
1878
1879 // refresh DL CQI A30 Map
1880 std::map<uint16_t, uint32_t>::iterator itA30 = m_a30CqiTimers.begin();
1881 while (itA30 != m_a30CqiTimers.end())
1882 {
1883 NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
1884 << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1885 if ((*itA30).second == 0)
1886 {
1887 // delete correspondent entries
1888 std::map<uint16_t, SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find((*itA30).first);
1889 NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
1890 " Does not find CQI report for user " << (*itA30).first);
1891 NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
1892 m_a30CqiRxed.erase(itMap);
1893 std::map<uint16_t, uint32_t>::iterator temp = itA30;
1894 itA30++;
1895 m_a30CqiTimers.erase(temp);
1896 }
1897 else
1898 {
1899 (*itA30).second--;
1900 itA30++;
1901 }
1902 }
1903}
1904
1905void
1907{
1908 // refresh UL CQI Map
1909 std::map<uint16_t, uint32_t>::iterator itUl = m_ueCqiTimers.begin();
1910 while (itUl != m_ueCqiTimers.end())
1911 {
1912 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
1913 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1914 if ((*itUl).second == 0)
1915 {
1916 // delete correspondent entries
1917 std::map<uint16_t, std::vector<double>>::iterator itMap = m_ueCqi.find((*itUl).first);
1918 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
1919 " Does not find CQI report for user " << (*itUl).first);
1920 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
1921 (*itMap).second.clear();
1922 m_ueCqi.erase(itMap);
1923 std::map<uint16_t, uint32_t>::iterator temp = itUl;
1924 itUl++;
1925 m_ueCqiTimers.erase(temp);
1926 }
1927 else
1928 {
1929 (*itUl).second--;
1930 itUl++;
1931 }
1932 }
1933}
1934
1935void
1936TdBetFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
1937{
1938 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1939 LteFlowId_t flow(rnti, lcid);
1940 it = m_rlcBufferReq.find(flow);
1941 if (it != m_rlcBufferReq.end())
1942 {
1943 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
1944 << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
1945 << (*it).second.m_rlcRetransmissionQueueSize << " status "
1946 << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1947 // Update queues: RLC tx order Status, ReTx, Tx
1948 // Update status queue
1949 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1950 {
1951 (*it).second.m_rlcStatusPduSize = 0;
1952 }
1953 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
1954 (size >= (*it).second.m_rlcRetransmissionQueueSize))
1955 {
1956 (*it).second.m_rlcRetransmissionQueueSize = 0;
1957 }
1958 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1959 {
1960 uint32_t rlcOverhead;
1961 if (lcid == 1)
1962 {
1963 // for SRB1 (using RLC AM) it's better to
1964 // overestimate RLC overhead rather than
1965 // underestimate it and risk unneeded
1966 // segmentation which increases delay
1967 rlcOverhead = 4;
1968 }
1969 else
1970 {
1971 // minimum RLC overhead due to header
1972 rlcOverhead = 2;
1973 }
1974 // update transmission queue
1975 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1976 {
1977 (*it).second.m_rlcTransmissionQueueSize = 0;
1978 }
1979 else
1980 {
1981 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1982 }
1983 }
1984 }
1985 else
1986 {
1987 NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
1988 }
1989}
1990
1991void
1993{
1994 size = size - 2; // remove the minimum RLC overhead
1995 std::map<uint16_t, uint32_t>::iterator it = m_ceBsrRxed.find(rnti);
1996 if (it != m_ceBsrRxed.end())
1997 {
1998 NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1999 if ((*it).second >= size)
2000 {
2001 (*it).second -= size;
2002 }
2003 else
2004 {
2005 (*it).second = 0;
2006 }
2007 }
2008 else
2009 {
2010 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
2011 }
2012}
2013
2014void
2016{
2017 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2019 params.m_rnti = rnti;
2020 params.m_transmissionMode = txMode;
2022}
2023
2024} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:41
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:141
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:78
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:199
Implements the SCHED SAP and CSCHED SAP for a Time Domain Blind Equal Throughput scheduler.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR function.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
std::map< uint16_t, tdbetsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
void RefreshDlCqiMaps()
Refresh DL CQI maps function.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ process ID.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
std::map< uint16_t, tdbetsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
std::vector< struct RachListElement_s > m_rachList
RACH list.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
void DoDispose() override
Destructor implementation.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
LteFfrSapUser * GetLteFfrSapUser() override
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
static TypeId GetTypeId()
Get the type ID.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
friend class MemberSchedSapProvider< TdBetFfMacScheduler >
allow MemberSchedSapProvider<TdBetFfMacScheduler> class friend access
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request.
friend class MemberCschedSapProvider< TdBetFfMacScheduler >
allow MemberCschedSapProvider<TdBetFfMacScheduler> class friend access
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
void RefreshUlCqiMaps()
Refresh UL CQI maps function.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
~TdBetFfMacScheduler() override
Destructor.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active flow function.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:935
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NO_SINR
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:86
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
static const int TdBetType0AllocationRbg[4]
TDBET type 0 allocation RBG.
@ SUCCESS
Definition: ff-mac-common.h:62
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
params
Fit Fluctuating Two Ray model to the 3GPP TR 38.901 using the Anderson-Darling goodness-of-fit ##.
See section 4.3.8 builDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:37
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
tdbetsFlowPerf_t structure
double lastAveragedThroughput
last average throughput
Time flowStart
flow start time
unsigned long totalBytesTransmitted
total bytes transmitted
unsigned int lastTtiBytesTrasmitted
last total bytes transmitted