A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
wifi-txop-aggregation.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016 Sébastien Deronne
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Sébastien Deronne <sebastien.deronne@gmail.com>
18 */
19
20#include "ns3/boolean.h"
21#include "ns3/command-line.h"
22#include "ns3/config.h"
23#include "ns3/internet-stack-helper.h"
24#include "ns3/ipv4-address-helper.h"
25#include "ns3/log.h"
26#include "ns3/mobility-helper.h"
27#include "ns3/packet-sink-helper.h"
28#include "ns3/pointer.h"
29#include "ns3/qos-txop.h"
30#include "ns3/ssid.h"
31#include "ns3/string.h"
32#include "ns3/udp-client-server-helper.h"
33#include "ns3/uinteger.h"
34#include "ns3/wifi-mac.h"
35#include "ns3/wifi-net-device.h"
36#include "ns3/yans-wifi-channel.h"
37#include "ns3/yans-wifi-helper.h"
38
39// This is an example that illustrates how 802.11n aggregation is configured.
40// It defines 4 independent Wi-Fi networks (working on different channels).
41// Each network contains one access point and one station. Each station
42// continuously transmits data packets to its respective AP.
43//
44// Network topology (numbers in parentheses are channel numbers):
45//
46// Network A (36) Network B (40) Network C (44) Network D (48)
47// * * * * * * * *
48// | | | | | | | |
49// AP A STA A AP B STA B AP C STA C AP D STA D
50//
51// The aggregation parameters are configured differently on the 4 stations:
52// - station A uses default aggregation parameter values (A-MSDU disabled, A-MPDU enabled with
53// maximum size of 65 kB);
54// - station B doesn't use aggregation (both A-MPDU and A-MSDU are disabled);
55// - station C enables A-MSDU (with maximum size of 8 kB) but disables A-MPDU;
56// - station D uses two-level aggregation (A-MPDU with maximum size of 32 kB and A-MSDU with maximum
57// size of 4 kB).
58//
59// The user can select the distance between the stations and the APs, can enable/disable the RTS/CTS
60// mechanism and can modify the duration of a TXOP. Example: ./ns3 run "wifi-txop-aggregation
61// --distance=10 --enableRts=0 --simulationTime=20"
62//
63// The output prints the throughput and the maximum TXOP duration measured for the 4 cases/networks
64// described above. When default aggregation parameters are enabled, the
65// maximum A-MPDU size is 65 kB and the throughput is maximal. When aggregation is disabled, the
66// throughput is about the half of the physical bitrate. When only A-MSDU is enabled, the throughput
67// is increased but is not maximal, since the maximum A-MSDU size is limited to 7935 bytes (whereas
68// the maximum A-MPDU size is limited to 65535 bytes). When A-MSDU and A-MPDU are both enabled (=
69// two-level aggregation), the throughput is slightly smaller than the first scenario since we set a
70// smaller maximum A-MPDU size.
71//
72// When the distance is increased, the frame error rate gets higher, and the output shows how it
73// affects the throughput for the 4 networks. Even through A-MSDU has less overheads than A-MPDU,
74// A-MSDU is less robust against transmission errors than A-MPDU. When the distance is augmented,
75// the throughput for the third scenario is more affected than the throughput obtained in other
76// networks.
77
78using namespace ns3;
79
80NS_LOG_COMPONENT_DEFINE("TxopMpduAggregation");
81
86{
94 void Trace(Time startTime, Time duration, uint8_t linkId);
95 Time m_max{Seconds(0)};
96};
97
98void
99TxopDurationTracer::Trace(Time startTime, Time duration, uint8_t linkId)
100{
101 if (duration > m_max)
102 {
103 m_max = duration;
104 }
105}
106
107int
108main(int argc, char* argv[])
109{
110 uint32_t payloadSize = 1472; // bytes
111 double simulationTime = 10; // seconds
112 double txopLimit = 3520; // microseconds
113 double distance = 5; // meters
114 bool enableRts = 0;
115 bool enablePcap = 0;
116 bool verifyResults = 0; // used for regression
117
118 CommandLine cmd(__FILE__);
119 cmd.AddValue("payloadSize", "Payload size in bytes", payloadSize);
120 cmd.AddValue("enableRts", "Enable or disable RTS/CTS", enableRts);
121 cmd.AddValue("txopLimit", "TXOP duration in microseconds", txopLimit);
122 cmd.AddValue("simulationTime", "Simulation time in seconds", simulationTime);
123 cmd.AddValue("distance",
124 "Distance in meters between the station and the access point",
125 distance);
126 cmd.AddValue("enablePcap", "Enable/disable pcap file generation", enablePcap);
127 cmd.AddValue("verifyResults",
128 "Enable/disable results verification at the end of the simulation",
129 verifyResults);
130 cmd.Parse(argc, argv);
131
132 Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold",
133 enableRts ? StringValue("0") : StringValue("999999"));
134
136 wifiStaNodes.Create(4);
137 NodeContainer wifiApNodes;
138 wifiApNodes.Create(4);
139
142 phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO);
143 phy.SetChannel(channel.Create());
144
146 wifi.SetStandard(WIFI_STANDARD_80211n);
147 wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager",
148 "DataMode",
149 StringValue("HtMcs7"),
150 "ControlMode",
151 StringValue("HtMcs0"));
153
154 NetDeviceContainer staDeviceA;
155 NetDeviceContainer staDeviceB;
156 NetDeviceContainer staDeviceC;
157 NetDeviceContainer staDeviceD;
158 NetDeviceContainer apDeviceA;
159 NetDeviceContainer apDeviceB;
160 NetDeviceContainer apDeviceC;
161 NetDeviceContainer apDeviceD;
162 Ssid ssid;
163
164 // Network A
165 ssid = Ssid("network-A");
166 phy.Set("ChannelSettings", StringValue("{36, 0, BAND_5GHZ, 0}"));
167 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
168 staDeviceA = wifi.Install(phy, mac, wifiStaNodes.Get(0));
169
170 mac.SetType("ns3::ApWifiMac",
171 "Ssid",
172 SsidValue(ssid),
173 "EnableBeaconJitter",
174 BooleanValue(false));
175 apDeviceA = wifi.Install(phy, mac, wifiApNodes.Get(0));
176
177 // Modify EDCA configuration (TXOP limit) for AC_BE
178 Ptr<NetDevice> dev = wifiApNodes.Get(0)->GetDevice(0);
179 Ptr<WifiNetDevice> wifi_dev = DynamicCast<WifiNetDevice>(dev);
180 PointerValue ptr;
181 Ptr<QosTxop> edca;
182 wifi_dev->GetMac()->GetAttribute("BE_Txop", ptr);
183 edca = ptr.Get<QosTxop>();
184 edca->SetTxopLimit(MicroSeconds(txopLimit));
185
186 // Trace TXOP duration for BE on AP A
188 edca->TraceConnectWithoutContext("TxopTrace", MakeCallback(&TxopDurationTracer::Trace, &netA));
189
190 // Network B
191 ssid = Ssid("network-B");
192 phy.Set("ChannelSettings", StringValue("{40, 0, BAND_5GHZ, 0}"));
193 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
194
195 staDeviceB = wifi.Install(phy, mac, wifiStaNodes.Get(1));
196
197 // Disable A-MPDU
198 dev = wifiStaNodes.Get(1)->GetDevice(0);
199 wifi_dev = DynamicCast<WifiNetDevice>(dev);
200 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
201
202 mac.SetType("ns3::ApWifiMac",
203 "Ssid",
204 SsidValue(ssid),
205 "EnableBeaconJitter",
206 BooleanValue(false));
207 apDeviceB = wifi.Install(phy, mac, wifiApNodes.Get(1));
208
209 // Disable A-MPDU
210 dev = wifiApNodes.Get(1)->GetDevice(0);
211 wifi_dev = DynamicCast<WifiNetDevice>(dev);
212 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
213
214 // Modify EDCA configuration (TXOP limit) for AC_BE
215 wifi_dev->GetMac()->GetAttribute("BE_Txop", ptr);
216 edca = ptr.Get<QosTxop>();
217 edca->SetTxopLimit(MicroSeconds(txopLimit));
218
219 // Trace TXOP duration for BE on AP B
221 edca->TraceConnectWithoutContext("TxopTrace", MakeCallback(&TxopDurationTracer::Trace, &netB));
222
223 // Network C
224 ssid = Ssid("network-C");
225 phy.Set("ChannelSettings", StringValue("{44, 0, BAND_5GHZ, 0}"));
226 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
227
228 staDeviceC = wifi.Install(phy, mac, wifiStaNodes.Get(2));
229
230 // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935
231 // bytes)
232 dev = wifiStaNodes.Get(2)->GetDevice(0);
233 wifi_dev = DynamicCast<WifiNetDevice>(dev);
234 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
235 wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(7935));
236
237 mac.SetType("ns3::ApWifiMac",
238 "Ssid",
239 SsidValue(ssid),
240 "EnableBeaconJitter",
241 BooleanValue(false));
242 apDeviceC = wifi.Install(phy, mac, wifiApNodes.Get(2));
243
244 // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935
245 // bytes)
246 dev = wifiApNodes.Get(2)->GetDevice(0);
247 wifi_dev = DynamicCast<WifiNetDevice>(dev);
248 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
249 wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(7935));
250
251 // Modify EDCA configuration (TXOP limit) for AC_BE
252 wifi_dev->GetMac()->GetAttribute("BE_Txop", ptr);
253 edca = ptr.Get<QosTxop>();
254 edca->SetTxopLimit(MicroSeconds(txopLimit));
255
256 // Trace TXOP duration for BE on AP C
258 edca->TraceConnectWithoutContext("TxopTrace", MakeCallback(&TxopDurationTracer::Trace, &netC));
259
260 // Network D
261 ssid = Ssid("network-D");
262 phy.Set("ChannelSettings", StringValue("{48, 0, BAND_5GHZ, 0}"));
263 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
264
265 staDeviceD = wifi.Install(phy, mac, wifiStaNodes.Get(3));
266
267 // Enable A-MPDU with a smaller size than the default one and
268 // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes)
269 dev = wifiStaNodes.Get(3)->GetDevice(0);
270 wifi_dev = DynamicCast<WifiNetDevice>(dev);
271 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(32768));
272 wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(3839));
273
274 mac.SetType("ns3::ApWifiMac",
275 "Ssid",
276 SsidValue(ssid),
277 "EnableBeaconJitter",
278 BooleanValue(false));
279 apDeviceD = wifi.Install(phy, mac, wifiApNodes.Get(3));
280
281 // Enable A-MPDU with a smaller size than the default one and
282 // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes)
283 dev = wifiApNodes.Get(3)->GetDevice(0);
284 wifi_dev = DynamicCast<WifiNetDevice>(dev);
285 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(32768));
286 wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(3839));
287
288 // Modify EDCA configuration (TXOP limit) for AC_BE
289 wifi_dev->GetMac()->GetAttribute("BE_Txop", ptr);
290 edca = ptr.Get<QosTxop>();
291 edca->SetTxopLimit(MicroSeconds(txopLimit));
292
293 // Trace TXOP duration for BE on AP D
295 edca->TraceConnectWithoutContext("TxopTrace", MakeCallback(&TxopDurationTracer::Trace, &netD));
296
297 // Setting mobility model
299 Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
300 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
301
302 // Set position for APs
303 positionAlloc->Add(Vector(0.0, 0.0, 0.0));
304 positionAlloc->Add(Vector(10.0, 0.0, 0.0));
305 positionAlloc->Add(Vector(20.0, 0.0, 0.0));
306 positionAlloc->Add(Vector(30.0, 0.0, 0.0));
307 // Set position for STAs
308 positionAlloc->Add(Vector(distance, 0.0, 0.0));
309 positionAlloc->Add(Vector(10 + distance, 0.0, 0.0));
310 positionAlloc->Add(Vector(20 + distance, 0.0, 0.0));
311 positionAlloc->Add(Vector(30 + distance, 0.0, 0.0));
312
313 mobility.SetPositionAllocator(positionAlloc);
314 mobility.Install(wifiApNodes);
315 mobility.Install(wifiStaNodes);
316
317 // Internet stack
319 stack.Install(wifiApNodes);
320 stack.Install(wifiStaNodes);
321
323 address.SetBase("192.168.1.0", "255.255.255.0");
324 Ipv4InterfaceContainer StaInterfaceA;
325 StaInterfaceA = address.Assign(staDeviceA);
326 Ipv4InterfaceContainer ApInterfaceA;
327 ApInterfaceA = address.Assign(apDeviceA);
328
329 address.SetBase("192.168.2.0", "255.255.255.0");
330 Ipv4InterfaceContainer StaInterfaceB;
331 StaInterfaceB = address.Assign(staDeviceB);
332 Ipv4InterfaceContainer ApInterfaceB;
333 ApInterfaceB = address.Assign(apDeviceB);
334
335 address.SetBase("192.168.3.0", "255.255.255.0");
336 Ipv4InterfaceContainer StaInterfaceC;
337 StaInterfaceC = address.Assign(staDeviceC);
338 Ipv4InterfaceContainer ApInterfaceC;
339 ApInterfaceC = address.Assign(apDeviceC);
340
341 address.SetBase("192.168.4.0", "255.255.255.0");
342 Ipv4InterfaceContainer StaInterfaceD;
343 StaInterfaceD = address.Assign(staDeviceD);
344 Ipv4InterfaceContainer ApInterfaceD;
345 ApInterfaceD = address.Assign(apDeviceD);
346
347 // Setting applications
348 uint16_t port = 9;
349 UdpServerHelper serverA(port);
350 ApplicationContainer serverAppA = serverA.Install(wifiStaNodes.Get(0));
351 serverAppA.Start(Seconds(0.0));
352 serverAppA.Stop(Seconds(simulationTime + 1));
353
354 UdpClientHelper clientA(StaInterfaceA.GetAddress(0), port);
355 clientA.SetAttribute("MaxPackets", UintegerValue(4294967295U));
356 clientA.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
357 clientA.SetAttribute("PacketSize", UintegerValue(payloadSize));
358
359 ApplicationContainer clientAppA = clientA.Install(wifiApNodes.Get(0));
360 clientAppA.Start(Seconds(1.0));
361 clientAppA.Stop(Seconds(simulationTime + 1));
362
363 UdpServerHelper serverB(port);
364 ApplicationContainer serverAppB = serverB.Install(wifiStaNodes.Get(1));
365 serverAppB.Start(Seconds(0.0));
366 serverAppB.Stop(Seconds(simulationTime + 1));
367
368 UdpClientHelper clientB(StaInterfaceB.GetAddress(0), port);
369 clientB.SetAttribute("MaxPackets", UintegerValue(4294967295U));
370 clientB.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
371 clientB.SetAttribute("PacketSize", UintegerValue(payloadSize));
372
373 ApplicationContainer clientAppB = clientB.Install(wifiApNodes.Get(1));
374 clientAppB.Start(Seconds(1.0));
375 clientAppB.Stop(Seconds(simulationTime + 1));
376
377 UdpServerHelper serverC(port);
378 ApplicationContainer serverAppC = serverC.Install(wifiStaNodes.Get(2));
379 serverAppC.Start(Seconds(0.0));
380 serverAppC.Stop(Seconds(simulationTime + 1));
381
382 UdpClientHelper clientC(StaInterfaceC.GetAddress(0), port);
383 clientC.SetAttribute("MaxPackets", UintegerValue(4294967295U));
384 clientC.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
385 clientC.SetAttribute("PacketSize", UintegerValue(payloadSize));
386
387 ApplicationContainer clientAppC = clientC.Install(wifiApNodes.Get(2));
388 clientAppC.Start(Seconds(1.0));
389 clientAppC.Stop(Seconds(simulationTime + 1));
390
391 UdpServerHelper serverD(port);
392 ApplicationContainer serverAppD = serverD.Install(wifiStaNodes.Get(3));
393 serverAppD.Start(Seconds(0.0));
394 serverAppD.Stop(Seconds(simulationTime + 1));
395
396 UdpClientHelper clientD(StaInterfaceD.GetAddress(0), port);
397 clientD.SetAttribute("MaxPackets", UintegerValue(4294967295U));
398 clientD.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
399 clientD.SetAttribute("PacketSize", UintegerValue(payloadSize));
400
401 ApplicationContainer clientAppD = clientD.Install(wifiApNodes.Get(3));
402 clientAppD.Start(Seconds(1.0));
403 clientAppD.Stop(Seconds(simulationTime + 1));
404
405 if (enablePcap)
406 {
407 phy.EnablePcap("AP_A", apDeviceA.Get(0));
408 phy.EnablePcap("STA_A", staDeviceA.Get(0));
409 phy.EnablePcap("AP_B", apDeviceB.Get(0));
410 phy.EnablePcap("STA_B", staDeviceB.Get(0));
411 phy.EnablePcap("AP_C", apDeviceC.Get(0));
412 phy.EnablePcap("STA_C", staDeviceC.Get(0));
413 phy.EnablePcap("AP_D", apDeviceD.Get(0));
414 phy.EnablePcap("STA_D", staDeviceD.Get(0));
415 }
416
417 Simulator::Stop(Seconds(simulationTime + 1));
419
420 // Show results
421 uint64_t totalPacketsThroughA = DynamicCast<UdpServer>(serverAppA.Get(0))->GetReceived();
422 uint64_t totalPacketsThroughB = DynamicCast<UdpServer>(serverAppB.Get(0))->GetReceived();
423 uint64_t totalPacketsThroughC = DynamicCast<UdpServer>(serverAppC.Get(0))->GetReceived();
424 uint64_t totalPacketsThroughD = DynamicCast<UdpServer>(serverAppD.Get(0))->GetReceived();
425
427
428 double throughput = totalPacketsThroughA * payloadSize * 8 / (simulationTime * 1000000.0);
429 std::cout << "Default configuration (A-MPDU aggregation enabled, 65kB): " << '\n'
430 << " Throughput = " << throughput << " Mbit/s" << '\n';
431 if (verifyResults && (throughput < 57.5 || throughput > 58.5))
432 {
433 NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
434 exit(1);
435 }
436 if (txopLimit)
437 {
438 std::cout << " Maximum TXOP duration (TXOP limit = " << txopLimit
439 << "us): " << netA.m_max.GetMicroSeconds() << " us" << '\n';
440 if (verifyResults && txopLimit &&
441 (netA.m_max < MicroSeconds(3350) || netA.m_max > MicroSeconds(3520)))
442 {
443 NS_LOG_ERROR("Maximum TXOP duration " << netA.m_max
444 << " is not in the expected boundaries!");
445 exit(1);
446 }
447 }
448
449 throughput = totalPacketsThroughB * payloadSize * 8 / (simulationTime * 1000000.0);
450 std::cout << "Aggregation disabled: " << '\n'
451 << " Throughput = " << throughput << " Mbit/s" << '\n';
452 if (verifyResults && (throughput < 38 || throughput > 39))
453 {
454 NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
455 exit(1);
456 }
457 if (txopLimit)
458 {
459 std::cout << " Maximum TXOP duration (TXOP limit = " << txopLimit
460 << "us): " << netB.m_max.GetMicroSeconds() << " us" << '\n';
461 if (verifyResults && (netB.m_max < MicroSeconds(3350) || netB.m_max > MicroSeconds(3520)))
462 {
463 NS_LOG_ERROR("Maximum TXOP duration " << netB.m_max
464 << " is not in the expected boundaries!");
465 exit(1);
466 }
467 }
468
469 throughput = totalPacketsThroughC * payloadSize * 8 / (simulationTime * 1000000.0);
470 std::cout << "A-MPDU disabled and A-MSDU enabled (8kB): " << '\n'
471 << " Throughput = " << throughput << " Mbit/s" << '\n';
472 if (verifyResults && (throughput < 52 || throughput > 53))
473 {
474 NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
475 exit(1);
476 }
477 if (txopLimit)
478 {
479 std::cout << " Maximum TXOP duration (TXOP limit = " << txopLimit
480 << "us): " << netC.m_max.GetMicroSeconds() << " us" << '\n';
481 if (verifyResults && (netC.m_max < MicroSeconds(3350) || netC.m_max > MicroSeconds(3520)))
482 {
483 NS_LOG_ERROR("Maximum TXOP duration " << netC.m_max
484 << " is not in the expected boundaries!");
485 exit(1);
486 }
487 }
488
489 throughput = totalPacketsThroughD * payloadSize * 8 / (simulationTime * 1000000.0);
490 std::cout << "A-MPDU enabled (32kB) and A-MSDU enabled (4kB): " << '\n'
491 << " Throughput = " << throughput << " Mbit/s" << '\n';
492 if (verifyResults && (throughput < 58 || throughput > 59))
493 {
494 NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
495 exit(1);
496 }
497 if (txopLimit)
498 {
499 std::cout << " Maximum TXOP duration (TXOP limit = " << txopLimit
500 << "us): " << netD.m_max.GetMicroSeconds() << " us" << '\n';
501 if (verifyResults && txopLimit &&
502 (netD.m_max < MicroSeconds(3350) || netD.m_max > MicroSeconds(3520)))
503 {
504 NS_LOG_ERROR("Maximum TXOP duration " << netD.m_max
505 << " is not in the expected boundaries!");
506 exit(1);
507 }
508 }
509
510 return 0;
511}
holds a vector of ns3::Application pointers.
void Start(Time start) const
Start all of the Applications in this container at the start time given as a parameter.
Ptr< Application > Get(uint32_t i) const
Get the Ptr<Application> stored in this container at a given index.
void Stop(Time stop) const
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter.
AttributeValue implementation for Boolean.
Definition: boolean.h:37
Parse command-line arguments.
Definition: command-line.h:232
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
holds a vector of std::pair of Ptr<Ipv4> and interface index.
Ipv4Address GetAddress(uint32_t i, uint32_t j=0) const
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
Ptr< NetDevice > Get(uint32_t i) const
Get the Ptr<NetDevice> stored in this container at a given index.
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
Ptr< NetDevice > GetDevice(uint32_t index) const
Retrieve the index-th NetDevice associated to this node.
Definition: node.cc:152
Hold objects of type Ptr<T>.
Definition: pointer.h:37
Ptr< T > Get() const
Definition: pointer.h:202
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:78
Handle packet fragmentation and retransmissions for QoS data frames as well as MSDU aggregation (A-MS...
Definition: qos-txop.h:72
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:140
static void Run()
Run the simulation.
Definition: simulator.cc:176
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:184
The IEEE 802.11 SSID Information Element.
Definition: ssid.h:36
AttributeValue implementation for Ssid.
Hold variables of type string.
Definition: string.h:56
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
int64_t GetMicroSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:412
AttributeValue implementation for Time.
Definition: nstime.h:1423
Create a client application which sends UDP packets carrying a 32bit sequence number and a 64 bit tim...
Create a server application which waits for input UDP packets and uses the information carried into t...
Hold an unsigned integer type.
Definition: uinteger.h:45
helps to create WifiNetDevice objects
Definition: wifi-helper.h:324
create MAC layers for a ns3::WifiNetDevice.
@ DLT_IEEE802_11_RADIO
Include Radiotap link layer information.
Definition: wifi-helper.h:178
manage and create wifi channel objects for the YANS model.
static YansWifiChannelHelper Default()
Create a channel helper in a default working state.
Make it easy to create and manage PHY objects for the YANS model.
uint16_t port
Definition: dsdv-manet.cc:44
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:891
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
Time MicroSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1360
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1336
@ WIFI_STANDARD_80211n
ns address
Definition: first.py:40
ns stack
Definition: first.py:37
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Callback< R, Args... > MakeCallback(R(T::*memPtr)(Args...), OBJ objPtr)
Build Callbacks for class method members which take varying numbers of arguments and potentially retu...
Definition: callback.h:702
ns cmd
Definition: second.py:33
ns wifi
Definition: third.py:88
ns ssid
Definition: third.py:86
ns mac
Definition: third.py:85
ns channel
Definition: third.py:81
ns mobility
Definition: third.py:96
ns wifiStaNodes
Definition: third.py:77
ns phy
Definition: third.py:82
Keeps the maximum duration among all TXOPs.
void Trace(Time startTime, Time duration, uint8_t linkId)
Callback connected to TXOP duration trace source.
Time m_max
maximum TXOP duration