A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
tap-creator.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2009 University of Washington
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 */
17
18#include "tap-encode-decode.h"
19
20#include <cerrno>
21#include <cstdlib>
22#include <cstring> // for strerror
23#include <fcntl.h>
24#include <iomanip>
25#include <iostream>
26#include <linux/if_tun.h>
27#include <net/if.h>
28#include <net/route.h>
29#include <netinet/in.h>
30#include <sstream>
31#include <stdint.h>
32#include <string>
33#include <sys/ioctl.h>
34#include <sys/socket.h>
35#include <sys/types.h>
36#include <sys/un.h>
37#include <unistd.h>
38
39#define TAP_MAGIC 95549
40
41static bool gVerbose = false; // Set to true to turn on logging messages.
42
43#define LOG(msg) \
44 if (gVerbose) \
45 { \
46 std::cout << __FUNCTION__ << "(): " << msg << std::endl; \
47 }
48
49#define ABORT(msg, printErrno) \
50 std::cout << __FILE__ << ": fatal error at line " << __LINE__ << ": " << __FUNCTION__ \
51 << "(): " << msg << std::endl; \
52 if (printErrno) \
53 { \
54 std::cout << " errno = " << errno << " (" << std::strerror(errno) << ")" << std::endl; \
55 } \
56 std::exit(-1);
57
58#define ABORT_IF(cond, msg, printErrno) \
59 if (cond) \
60 { \
61 ABORT(msg, printErrno); \
62 }
63
64//
65// Lots of the following helper code taken from corresponding functions in src/node.
66//
67#define ASCII_DOT (0x2e)
68#define ASCII_ZERO (0x30)
69#define ASCII_a (0x41)
70#define ASCII_z (0x5a)
71#define ASCII_A (0x61)
72#define ASCII_Z (0x7a)
73#define ASCII_COLON (0x3a)
74
75static char
77{
78 if (c >= ASCII_a && c <= ASCII_z)
79 {
80 return c;
81 }
82 else if (c >= ASCII_A && c <= ASCII_Z)
83 {
84 return c + (ASCII_a - ASCII_A);
85 }
86 else
87 {
88 return c;
89 }
90}
91
92static uint32_t
93AsciiToIpv4(const char* address)
94{
95 uint32_t host = 0;
96 while (true)
97 {
98 uint8_t byte = 0;
99 while (*address != ASCII_DOT && *address != 0)
100 {
101 byte *= 10;
102 byte += *address - ASCII_ZERO;
103 address++;
104 }
105 host <<= 8;
106 host |= byte;
107 if (*address == 0)
108 {
109 break;
110 }
111 address++;
112 }
113 return host;
114}
115
116static void
117AsciiToMac48(const char* str, uint8_t addr[6])
118{
119 int i = 0;
120 while (*str != 0 && i < 6)
121 {
122 uint8_t byte = 0;
123 while (*str != ASCII_COLON && *str != 0)
124 {
125 byte <<= 4;
126 char low = AsciiToLowCase(*str);
127 if (low >= ASCII_a)
128 {
129 byte |= low - ASCII_a + 10;
130 }
131 else
132 {
133 byte |= low - ASCII_ZERO;
134 }
135 str++;
136 }
137 addr[i] = byte;
138 i++;
139 if (*str == 0)
140 {
141 break;
142 }
143 str++;
144 }
145}
146
147static sockaddr
149{
150 union {
151 struct sockaddr any_socket;
152 struct sockaddr_in si;
153 } s;
154
155 s.si.sin_family = AF_INET;
156 s.si.sin_port = 0; // unused
157 s.si.sin_addr.s_addr = htonl(networkOrder);
158 return s.any_socket;
159}
160
161static void
162SendSocket(const char* path, int fd)
163{
164 //
165 // Open a Unix (local interprocess) socket to call back to the tap bridge
166 //
167 LOG("Create Unix socket");
168 int sock = socket(PF_UNIX, SOCK_DGRAM, 0);
169 ABORT_IF(sock == -1, "Unable to open socket", 1);
170
171 //
172 // We have this string called path, which is really a hex representation
173 // of the endpoint that the tap bridge created. It used a forward encoding
174 // method (TapBufferToString) to take the sockaddr_un it made and passed
175 // the resulting string to us. So we need to take the inverse method
176 // (TapStringToBuffer) and build the same sockaddr_un over here.
177 //
178 socklen_t clientAddrLen;
179 struct sockaddr_un clientAddr;
180
181 LOG("Decode address " << path);
182 bool rc = ns3::TapStringToBuffer(path, (uint8_t*)&clientAddr, &clientAddrLen);
183 ABORT_IF(rc == false, "Unable to decode path", 0);
184
185 LOG("Connect");
186 int status = connect(sock, (struct sockaddr*)&clientAddr, clientAddrLen);
187 ABORT_IF(status == -1, "Unable to connect to tap bridge", 1);
188
189 LOG("Connected");
190
191 //
192 // This is arcane enough that a few words are worthwhile to explain what's
193 // going on here.
194 //
195 // The interesting information (the socket FD) is going to go back to the
196 // tap bridge as an integer of ancillary data. Ancillary data is bits
197 // that are not a part a socket payload (out-of-band data). We're also
198 // going to send one integer back. It's just initialized to a magic number
199 // we use to make sure that the tap bridge is talking to the tap socket
200 // creator and not some other creator process (emu, specifically)
201 //
202 // The struct iovec below is part of a scatter-gather list. It describes a
203 // buffer. In this case, it describes a buffer (an integer) containing the
204 // data that we're going to send back to the tap bridge (that magic number).
205 //
206 struct iovec iov;
207 uint32_t magic = TAP_MAGIC;
208 iov.iov_base = &magic;
209 iov.iov_len = sizeof(magic);
210
211 //
212 // The CMSG macros you'll see below are used to create and access control
213 // messages (which is another name for ancillary data). The ancillary
214 // data is made up of pairs of struct cmsghdr structures and associated
215 // data arrays.
216 //
217 // First, we're going to allocate a buffer on the stack to contain our
218 // data array (that contains the socket). Sometimes you'll see this called
219 // an "ancillary element" but the msghdr uses the control message termimology
220 // so we call it "control."
221 //
222 size_t msg_size = sizeof(int);
223 char control[CMSG_SPACE(msg_size)];
224
225 //
226 // There is a msghdr that is used to minimize the number of parameters
227 // passed to sendmsg (which we will use to send our ancillary data). This
228 // structure uses terminology corresponding to control messages, so you'll
229 // see msg_control, which is the pointer to the ancillary data and controllen
230 // which is the size of the ancillary data array.
231 //
232 // So, initialize the message header that describes our ancillary/control data
233 // and point it to the control message/ancillary data we just allocated space
234 // for.
235 //
236 struct msghdr msg;
237 msg.msg_name = nullptr;
238 msg.msg_namelen = 0;
239 msg.msg_iov = &iov;
240 msg.msg_iovlen = 1;
241 msg.msg_control = control;
242 msg.msg_controllen = sizeof(control);
243 msg.msg_flags = 0;
244
245 //
246 // A cmsghdr contains a length field that is the length of the header and
247 // the data. It has a cmsg_level field corresponding to the originating
248 // protocol. This takes values which are legal levels for getsockopt and
249 // setsockopt (here SOL_SOCKET). We're going to use the SCM_RIGHTS type of
250 // cmsg, that indicates that the ancillary data array contains access rights
251 // that we are sending back to the tap bridge.
252 //
253 // We have to put together the first (and only) cmsghdr that will describe
254 // the whole package we're sending.
255 //
256 struct cmsghdr* cmsg;
257 cmsg = CMSG_FIRSTHDR(&msg);
258 cmsg->cmsg_level = SOL_SOCKET;
259 cmsg->cmsg_type = SCM_RIGHTS;
260 cmsg->cmsg_len = CMSG_LEN(msg_size);
261 //
262 // We also have to update the controllen in case other stuff is actually
263 // in there we may not be aware of (due to macros).
264 //
265 msg.msg_controllen = cmsg->cmsg_len;
266
267 //
268 // Finally, we get a pointer to the start of the ancillary data array and
269 // put our file descriptor in.
270 //
271 int* fdptr = (int*)(CMSG_DATA(cmsg));
272 *fdptr = fd; //
273
274 //
275 // Actually send the file descriptor back to the tap bridge.
276 //
277 ssize_t len = sendmsg(sock, &msg, 0);
278 ABORT_IF(len == -1, "Could not send socket back to tap bridge", 1);
279
280 LOG("sendmsg complete");
281}
282
283static int
284CreateTap(const char* dev,
285 const char* gw,
286 const char* ip,
287 const char* mac,
288 const char* mode,
289 const char* netmask)
290{
291 //
292 // Creation and management of Tap devices is done via the tun device
293 //
294 int tap = open("/dev/net/tun", O_RDWR);
295 ABORT_IF(tap == -1, "Could not open /dev/net/tun", true);
296
297 //
298 // Allocate a tap device, making sure that it will not send the tun_pi header.
299 // If we provide a null name to the ifr.ifr_name, we tell the kernel to pick
300 // a name for us (i.e., tapn where n = 0..255.
301 //
302 // If the device does not already exist, the system will create one.
303 //
304 struct ifreq ifr;
305 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
306 strcpy(ifr.ifr_name, dev);
307 int status = ioctl(tap, TUNSETIFF, (void*)&ifr);
308 ABORT_IF(status == -1, "Could not allocate tap device", true);
309
310 std::string tapDeviceName = (char*)ifr.ifr_name;
311 LOG("Allocated TAP device " << tapDeviceName);
312
313 //
314 // Operating mode "2" corresponds to USE_LOCAL and "3" to USE_BRIDGE mode.
315 // This means that we expect that the user will have named, created and
316 // configured a network tap that we are just going to use. So don't mess
317 // up his hard work by changing anything, just return the tap fd.
318 //
319 if (std::string(mode) == "2" || std::string(mode) == "3")
320 {
321 LOG("Returning precreated tap ");
322 return tap;
323 }
324
325 //
326 // Set the hardware (MAC) address of the new device
327 //
328 ifr.ifr_hwaddr.sa_family = 1; // this is ARPHRD_ETHER from if_arp.h
329 AsciiToMac48(mac, (uint8_t*)ifr.ifr_hwaddr.sa_data);
330 status = ioctl(tap, SIOCSIFHWADDR, &ifr);
331 ABORT_IF(status == -1, "Could not set MAC address", true);
332 LOG("Set device MAC address to " << mac);
333
334 int fd = socket(AF_INET, SOCK_DGRAM, 0);
335
336 //
337 // Bring the interface up.
338 //
339 status = ioctl(fd, SIOCGIFFLAGS, &ifr);
340 ABORT_IF(status == -1, "Could not get flags for interface", true);
341 ifr.ifr_flags |= IFF_UP | IFF_RUNNING;
342 status = ioctl(fd, SIOCSIFFLAGS, &ifr);
343 ABORT_IF(status == -1, "Could not bring interface up", true);
344 LOG("Device is up");
345
346 //
347 // Set the IP address of the new interface/device.
348 //
349 ifr.ifr_addr = CreateInetAddress(AsciiToIpv4(ip));
350 status = ioctl(fd, SIOCSIFADDR, &ifr);
351 ABORT_IF(status == -1, "Could not set IP address", true);
352 LOG("Set device IP address to " << ip);
353
354 //
355 // Set the net mask of the new interface/device
356 //
357 ifr.ifr_netmask = CreateInetAddress(AsciiToIpv4(netmask));
358 status = ioctl(fd, SIOCSIFNETMASK, &ifr);
359 ABORT_IF(status == -1, "Could not set net mask", true);
360 LOG("Set device Net Mask to " << netmask);
361
362 return tap;
363}
364
365int
366main(int argc, char* argv[])
367{
368 int c;
369 char* dev = (char*)"";
370 char* gw = nullptr;
371 char* ip = nullptr;
372 char* mac = nullptr;
373 char* netmask = nullptr;
374 char* operatingMode = nullptr;
375 char* path = nullptr;
376
377 opterr = 0;
378
379 while ((c = getopt(argc, argv, "vd:g:i:m:n:o:p:")) != -1)
380 {
381 switch (c)
382 {
383 case 'd':
384 dev = optarg; // name of the new tap device
385 break;
386 case 'g':
387 gw = optarg; // gateway address for the new device
388 break;
389 case 'i':
390 ip = optarg; // ip address of the new device
391 break;
392 case 'm':
393 mac = optarg; // mac address of the new device
394 break;
395 case 'n':
396 netmask = optarg; // net mask for the new device
397 break;
398 case 'o':
399 operatingMode = optarg; // operating mode of tap bridge
400 break;
401 case 'p':
402 path = optarg; // path back to the tap bridge
403 break;
404 case 'v':
405 gVerbose = true;
406 break;
407 }
408 }
409
410 //
411 // We have got to be able to coordinate the name of the tap device we are
412 // going to create and or open with the device that an external Linux host
413 // will use. If this name is provided we use it. If not we let the system
414 // create the device for us. This name is given in dev
415 //
416 LOG("Provided Device Name is \"" << dev << "\"");
417
418 //
419 // We have got to be able to provide a gateway to the external Linux host
420 // so it can talk to the ns-3 network. This ip address is provided in
421 // gw.
422 //
423 ABORT_IF(gw == nullptr, "Gateway Address is a required argument", 0);
424 LOG("Provided Gateway Address is \"" << gw << "\"");
425
426 //
427 // We have got to be able to assign an IP address to the tap device we are
428 // allocating. This address is allocated in the simulation and assigned to
429 // the tap bridge. This address is given in ip.
430 //
431 ABORT_IF(ip == nullptr, "IP Address is a required argument", 0);
432 LOG("Provided IP Address is \"" << ip << "\"");
433
434 //
435 // We have got to be able to assign a Mac address to the tap device we are
436 // allocating. This address is allocated in the simulation and assigned to
437 // the bridged device. This allows packets addressed to the bridged device
438 // to appear in the Linux host as if they were received there.
439 //
440 ABORT_IF(mac == nullptr, "MAC Address is a required argument", 0);
441 LOG("Provided MAC Address is \"" << mac << "\"");
442
443 //
444 // We have got to be able to assign a net mask to the tap device we are
445 // allocating. This mask is allocated in the simulation and given to
446 // the bridged device.
447 //
448 ABORT_IF(netmask == nullptr, "Net Mask is a required argument", 0);
449 LOG("Provided Net Mask is \"" << netmask << "\"");
450
451 //
452 // We have got to know whether or not to create the TAP.
453 //
454 ABORT_IF(operatingMode == nullptr, "Operating Mode is a required argument", 0);
455 LOG("Provided Operating Mode is \"" << operatingMode << "\"");
456
457 //
458 // This program is spawned by a tap bridge running in a simulation. It
459 // wants to create a socket as described below. We are going to do the
460 // work here since we're running suid root. Once we create the socket,
461 // we have to send it back to the tap bridge. We do that over a Unix
462 // (local interprocess) socket. The tap bridge created a socket to
463 // listen for our response on, and it is expected to have encoded the address
464 // information as a string and to have passed that string as an argument to
465 // us. We see it here as the "path" string. We can't do anything useful
466 // unless we have that string.
467 //
468 ABORT_IF(path == nullptr, "path is a required argument", 0);
469 LOG("Provided path is \"" << path << "\"");
470
471 //
472 // The whole reason for all of the hoops we went through to call out to this
473 // program will pay off here. We created this program to run as suid root
474 // in order to keep the main simulation program from having to be run with
475 // root privileges. We need root privileges to be able to futz with the
476 // Tap device underlying all of this. So all of these hoops are to allow
477 // us to execute the following code:
478 //
479 LOG("Creating Tap");
480 int sock = CreateTap(dev, gw, ip, mac, operatingMode, netmask);
481 ABORT_IF(sock == -1, "main(): Unable to create tap socket", 1);
482
483 //
484 // Send the socket back to the tap net device so it can go about its business
485 //
486 SendSocket(path, sock);
487
488 return 0;
489}
bool TapStringToBuffer(std::string s, uint8_t *buffer, uint32_t *len)
Convert string encoded by the inverse function (TapBufferToString) back into a byte buffer.
ns mac
Definition: third.py:85
static void SendSocket(const char *path, int fd)
Definition: tap-creator.cc:162
#define LOG(msg)
Definition: tap-creator.cc:43
#define ASCII_Z
Definition: tap-creator.cc:72
static sockaddr CreateInetAddress(uint32_t networkOrder)
Definition: tap-creator.cc:148
static bool gVerbose
Definition: tap-creator.cc:41
#define ASCII_A
Definition: tap-creator.cc:71
#define ASCII_DOT
Definition: tap-creator.cc:67
#define ASCII_z
Definition: tap-creator.cc:70
#define ABORT_IF(cond, msg, printErrno)
Definition: tap-creator.cc:58
#define ASCII_COLON
Definition: tap-creator.cc:73
#define ASCII_ZERO
Definition: tap-creator.cc:68
static uint32_t AsciiToIpv4(const char *address)
Definition: tap-creator.cc:93
static int CreateTap(const char *dev, const char *gw, const char *ip, const char *mac, const char *mode, const char *netmask)
Definition: tap-creator.cc:284
static char AsciiToLowCase(char c)
Definition: tap-creator.cc:76
#define ASCII_a
Definition: tap-creator.cc:69
static void AsciiToMac48(const char *str, uint8_t addr[6])
Definition: tap-creator.cc:117
#define TAP_MAGIC
Definition: tap-creator.cc:39