A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
three-gpp-channel-model.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2019 SIGNET Lab, Department of Information Engineering,
3 * University of Padova
4 * Copyright (c) 2015, NYU WIRELESS, Tandon School of Engineering,
5 * New York University
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation;
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
23
24#include "ns3/double.h"
25#include "ns3/integer.h"
26#include "ns3/log.h"
27#include "ns3/mobility-model.h"
28#include "ns3/node.h"
29#include "ns3/phased-array-model.h"
30#include "ns3/pointer.h"
31#include "ns3/string.h"
32#include <ns3/simulator.h>
33
34#include <algorithm>
35#include <map>
36#include <random>
37
38namespace ns3
39{
40
41NS_LOG_COMPONENT_DEFINE("ThreeGppChannelModel");
42
43NS_OBJECT_ENSURE_REGISTERED(ThreeGppChannelModel);
44
47static const double offSetAlpha[20] = {
48 0.0447, -0.0447, 0.1413, -0.1413, 0.2492, -0.2492, 0.3715, -0.3715, 0.5129, -0.5129,
49 0.6797, -0.6797, 0.8844, -0.8844, 1.1481, -1.1481, 1.5195, -1.5195, 2.1551, -2.1551,
50};
51
60static const double sqrtC_RMa_LOS[7][7] = {
61 {1, 0, 0, 0, 0, 0, 0},
62 {0, 1, 0, 0, 0, 0, 0},
63 {-0.5, 0, 0.866025, 0, 0, 0, 0},
64 {0, 0, 0, 1, 0, 0, 0},
65 {0, 0, 0, 0, 1, 0, 0},
66 {0.01, 0, -0.0519615, 0.73, -0.2, 0.651383, 0},
67 {-0.17, -0.02, 0.21362, -0.14, 0.24, 0.142773, 0.909661},
68};
69
79static const double sqrtC_RMa_NLOS[6][6] = {
80 {1, 0, 0, 0, 0, 0},
81 {-0.5, 0.866025, 0, 0, 0, 0},
82 {0.6, -0.11547, 0.791623, 0, 0, 0},
83 {0, 0, 0, 1, 0, 0},
84 {-0.04, -0.138564, 0.540662, -0.18, 0.809003, 0},
85 {-0.25, -0.606218, -0.240013, 0.26, -0.231685, 0.625392},
86};
87
96static const double sqrtC_RMa_O2I[6][6] = {
97 {1, 0, 0, 0, 0, 0},
98 {0, 1, 0, 0, 0, 0},
99 {0, 0, 1, 0, 0, 0},
100 {0, 0, -0.7, 0.714143, 0, 0},
101 {0, 0, 0.66, -0.123225, 0.741091, 0},
102 {0, 0, 0.47, 0.152631, -0.393194, 0.775373},
103};
104
113static const double sqrtC_UMa_LOS[7][7] = {
114 {1, 0, 0, 0, 0, 0, 0},
115 {0, 1, 0, 0, 0, 0, 0},
116 {-0.4, -0.4, 0.824621, 0, 0, 0, 0},
117 {-0.5, 0, 0.242536, 0.83137, 0, 0, 0},
118 {-0.5, -0.2, 0.630593, -0.484671, 0.278293, 0, 0},
119 {0, 0, -0.242536, 0.672172, 0.642214, 0.27735, 0},
120 {-0.8, 0, -0.388057, -0.367926, 0.238537, -3.58949e-15, 0.130931},
121};
122
132static const double sqrtC_UMa_NLOS[6][6] = {
133 {1, 0, 0, 0, 0, 0},
134 {-0.4, 0.916515, 0, 0, 0, 0},
135 {-0.6, 0.174574, 0.78072, 0, 0, 0},
136 {0, 0.654654, 0.365963, 0.661438, 0, 0},
137 {0, -0.545545, 0.762422, 0.118114, 0.327327, 0},
138 {-0.4, -0.174574, -0.396459, 0.392138, 0.49099, 0.507445},
139};
140
149static const double sqrtC_UMa_O2I[6][6] = {
150 {1, 0, 0, 0, 0, 0},
151 {-0.5, 0.866025, 0, 0, 0, 0},
152 {0.2, 0.57735, 0.791623, 0, 0, 0},
153 {0, 0.46188, -0.336861, 0.820482, 0, 0},
154 {0, -0.69282, 0.252646, 0.493742, 0.460857, 0},
155 {0, -0.23094, 0.16843, 0.808554, -0.220827, 0.464515},
156
157};
158
167static const double sqrtC_UMi_LOS[7][7] = {
168 {1, 0, 0, 0, 0, 0, 0},
169 {0.5, 0.866025, 0, 0, 0, 0, 0},
170 {-0.4, -0.57735, 0.711805, 0, 0, 0, 0},
171 {-0.5, 0.057735, 0.468293, 0.726201, 0, 0, 0},
172 {-0.4, -0.11547, 0.805464, -0.23482, 0.350363, 0, 0},
173 {0, 0, 0, 0.688514, 0.461454, 0.559471, 0},
174 {0, 0, 0.280976, 0.231921, -0.490509, 0.11916, 0.782603},
175};
176
186static const double sqrtC_UMi_NLOS[6][6] = {
187 {1, 0, 0, 0, 0, 0},
188 {-0.7, 0.714143, 0, 0, 0, 0},
189 {0, 0, 1, 0, 0, 0},
190 {-0.4, 0.168034, 0, 0.90098, 0, 0},
191 {0, -0.70014, 0.5, 0.130577, 0.4927, 0},
192 {0, 0, 0.5, 0.221981, -0.566238, 0.616522},
193};
194
203static const double sqrtC_UMi_O2I[6][6] = {
204 {1, 0, 0, 0, 0, 0},
205 {-0.5, 0.866025, 0, 0, 0, 0},
206 {0.2, 0.57735, 0.791623, 0, 0, 0},
207 {0, 0.46188, -0.336861, 0.820482, 0, 0},
208 {0, -0.69282, 0.252646, 0.493742, 0.460857, 0},
209 {0, -0.23094, 0.16843, 0.808554, -0.220827, 0.464515},
210};
211
220static const double sqrtC_office_LOS[7][7] = {
221 {1, 0, 0, 0, 0, 0, 0},
222 {0.5, 0.866025, 0, 0, 0, 0, 0},
223 {-0.8, -0.11547, 0.588784, 0, 0, 0, 0},
224 {-0.4, 0.23094, 0.520847, 0.717903, 0, 0, 0},
225 {-0.5, 0.288675, 0.73598, -0.348236, 0.0610847, 0, 0},
226 {0.2, -0.11547, 0.418943, 0.541106, 0.219905, 0.655744, 0},
227 {0.3, -0.057735, 0.73598, -0.348236, 0.0610847, -0.304997, 0.383375},
228};
229
239static const double sqrtC_office_NLOS[6][6] = {
240 {1, 0, 0, 0, 0, 0},
241 {-0.5, 0.866025, 0, 0, 0, 0},
242 {0, 0.46188, 0.886942, 0, 0, 0},
243 {-0.4, -0.23094, 0.120263, 0.878751, 0, 0},
244 {0, -0.311769, 0.55697, -0.249198, 0.728344, 0},
245 {0, -0.069282, 0.295397, 0.430696, 0.468462, 0.709214},
246};
247
249{
250 NS_LOG_FUNCTION(this);
251 m_uniformRv = CreateObject<UniformRandomVariable>();
252 m_uniformRvShuffle = CreateObject<UniformRandomVariable>();
253 m_uniformRvDoppler = CreateObject<UniformRandomVariable>();
254
255 m_normalRv = CreateObject<NormalRandomVariable>();
256 m_normalRv->SetAttribute("Mean", DoubleValue(0.0));
257 m_normalRv->SetAttribute("Variance", DoubleValue(1.0));
258}
259
261{
262 NS_LOG_FUNCTION(this);
263}
264
265void
267{
268 NS_LOG_FUNCTION(this);
270 {
271 m_channelConditionModel->Dispose();
272 }
273 m_channelMatrixMap.clear();
274 m_channelParamsMap.clear();
275 m_channelConditionModel = nullptr;
276}
277
278TypeId
280{
281 static TypeId tid =
282 TypeId("ns3::ThreeGppChannelModel")
283 .SetGroupName("Spectrum")
285 .AddConstructor<ThreeGppChannelModel>()
286 .AddAttribute("Frequency",
287 "The operating Frequency in Hz",
288 DoubleValue(500.0e6),
291 MakeDoubleChecker<double>())
292 .AddAttribute(
293 "Scenario",
294 "The 3GPP scenario (RMa, UMa, UMi-StreetCanyon, InH-OfficeOpen, InH-OfficeMixed)",
295 StringValue("UMa"),
299 .AddAttribute("ChannelConditionModel",
300 "Pointer to the channel condition model",
301 PointerValue(),
304 MakePointerChecker<ChannelConditionModel>())
305 .AddAttribute("UpdatePeriod",
306 "Specify the channel coherence time",
310 // attributes for the blockage model
311 .AddAttribute("Blockage",
312 "Enable blockage model A (sec 7.6.4.1)",
313 BooleanValue(false),
316 .AddAttribute("NumNonselfBlocking",
317 "number of non-self-blocking regions",
318 IntegerValue(4),
320 MakeIntegerChecker<uint16_t>())
321 .AddAttribute("PortraitMode",
322 "true for portrait mode, false for landscape mode",
323 BooleanValue(true),
326 .AddAttribute("BlockerSpeed",
327 "The speed of moving blockers, the unit is m/s",
328 DoubleValue(1),
330 MakeDoubleChecker<double>())
331 .AddAttribute("vScatt",
332 "Maximum speed of the vehicle in the layout (see 3GPP TR 37.885 v15.3.0, "
333 "Sec. 6.2.3)."
334 "Used to compute the additional contribution for the Doppler of"
335 "delayed (reflected) paths",
336 DoubleValue(0.0),
338 MakeDoubleChecker<double>(0.0))
339
340 ;
341 return tid;
342}
343
344void
346{
347 NS_LOG_FUNCTION(this);
349}
350
353{
354 NS_LOG_FUNCTION(this);
356}
357
358void
360{
361 NS_LOG_FUNCTION(this);
362 NS_ASSERT_MSG(f >= 500.0e6 && f <= 100.0e9,
363 "Frequency should be between 0.5 and 100 GHz but is " << f);
364 m_frequency = f;
365}
366
367double
369{
370 NS_LOG_FUNCTION(this);
371 return m_frequency;
372}
373
374void
375ThreeGppChannelModel::SetScenario(const std::string& scenario)
376{
377 NS_LOG_FUNCTION(this);
378 NS_ASSERT_MSG(scenario == "RMa" || scenario == "UMa" || scenario == "UMi-StreetCanyon" ||
379 scenario == "InH-OfficeOpen" || scenario == "InH-OfficeMixed" ||
380 scenario == "V2V-Urban" || scenario == "V2V-Highway",
381 "Unknown scenario, choose between: RMa, UMa, UMi-StreetCanyon, "
382 "InH-OfficeOpen, InH-OfficeMixed, V2V-Urban or V2V-Highway");
383 m_scenario = scenario;
384}
385
386std::string
388{
389 NS_LOG_FUNCTION(this);
390 return m_scenario;
391}
392
395 double hBS,
396 double hUT,
397 double distance2D) const
398{
399 NS_LOG_FUNCTION(this);
400
401 double fcGHz = m_frequency / 1.0e9;
402 Ptr<ParamsTable> table3gpp = Create<ParamsTable>();
403 // table3gpp includes the following parameters:
404 // numOfCluster, raysPerCluster, uLgDS, sigLgDS, uLgASD, sigLgASD,
405 // uLgASA, sigLgASA, uLgZSA, sigLgZSA, uLgZSD, sigLgZSD, offsetZOD,
406 // cDS, cASD, cASA, cZSA, uK, sigK, rTau, uXpr, sigXpr, shadowingStd
407
408 bool los = channelCondition->IsLos();
409 bool o2i = channelCondition->IsO2i();
410
411 // In NLOS case, parameter uK and sigK are not used and they are set to 0
412 if (m_scenario == "RMa")
413 {
414 if (los && !o2i)
415 {
416 // 3GPP mentioned that 3.91 ns should be used when the Cluster DS (cDS)
417 // entry is N/A.
418 table3gpp->m_numOfCluster = 11;
419 table3gpp->m_raysPerCluster = 20;
420 table3gpp->m_uLgDS = -7.49;
421 table3gpp->m_sigLgDS = 0.55;
422 table3gpp->m_uLgASD = 0.90;
423 table3gpp->m_sigLgASD = 0.38;
424 table3gpp->m_uLgASA = 1.52;
425 table3gpp->m_sigLgASA = 0.24;
426 table3gpp->m_uLgZSA = 0.47;
427 table3gpp->m_sigLgZSA = 0.40;
428 table3gpp->m_uLgZSD = 0.34;
429 table3gpp->m_sigLgZSD =
430 std::max(-1.0, -0.17 * (distance2D / 1000.0) - 0.01 * (hUT - 1.5) + 0.22);
431 table3gpp->m_offsetZOD = 0;
432 table3gpp->m_cDS = 3.91e-9;
433 table3gpp->m_cASD = 2;
434 table3gpp->m_cASA = 3;
435 table3gpp->m_cZSA = 3;
436 table3gpp->m_uK = 7;
437 table3gpp->m_sigK = 4;
438 table3gpp->m_rTau = 3.8;
439 table3gpp->m_uXpr = 12;
440 table3gpp->m_sigXpr = 4;
441 table3gpp->m_perClusterShadowingStd = 3;
442
443 for (uint8_t row = 0; row < 7; row++)
444 {
445 for (uint8_t column = 0; column < 7; column++)
446 {
447 table3gpp->m_sqrtC[row][column] = sqrtC_RMa_LOS[row][column];
448 }
449 }
450 }
451 else if (!los && !o2i)
452 {
453 table3gpp->m_numOfCluster = 10;
454 table3gpp->m_raysPerCluster = 20;
455 table3gpp->m_uLgDS = -7.43;
456 table3gpp->m_sigLgDS = 0.48;
457 table3gpp->m_uLgASD = 0.95;
458 table3gpp->m_sigLgASD = 0.45;
459 table3gpp->m_uLgASA = 1.52;
460 table3gpp->m_sigLgASA = 0.13;
461 table3gpp->m_uLgZSA = 0.58;
462 table3gpp->m_sigLgZSA = 0.37;
463 table3gpp->m_uLgZSD =
464 std::max(-1.0, -0.19 * (distance2D / 1000.0) - 0.01 * (hUT - 1.5) + 0.28);
465 table3gpp->m_sigLgZSD = 0.30;
466 table3gpp->m_offsetZOD = atan((35 - 3.5) / distance2D) - atan((35 - 1.5) / distance2D);
467 table3gpp->m_cDS = 3.91e-9;
468 table3gpp->m_cASD = 2;
469 table3gpp->m_cASA = 3;
470 table3gpp->m_cZSA = 3;
471 table3gpp->m_uK = 0;
472 table3gpp->m_sigK = 0;
473 table3gpp->m_rTau = 1.7;
474 table3gpp->m_uXpr = 7;
475 table3gpp->m_sigXpr = 3;
476 table3gpp->m_perClusterShadowingStd = 3;
477
478 for (uint8_t row = 0; row < 6; row++)
479 {
480 for (uint8_t column = 0; column < 6; column++)
481 {
482 table3gpp->m_sqrtC[row][column] = sqrtC_RMa_NLOS[row][column];
483 }
484 }
485 }
486 else // o2i
487 {
488 table3gpp->m_numOfCluster = 10;
489 table3gpp->m_raysPerCluster = 20;
490 table3gpp->m_uLgDS = -7.47;
491 table3gpp->m_sigLgDS = 0.24;
492 table3gpp->m_uLgASD = 0.67;
493 table3gpp->m_sigLgASD = 0.18;
494 table3gpp->m_uLgASA = 1.66;
495 table3gpp->m_sigLgASA = 0.21;
496 table3gpp->m_uLgZSA = 0.93;
497 table3gpp->m_sigLgZSA = 0.22;
498 table3gpp->m_uLgZSD =
499 std::max(-1.0, -0.19 * (distance2D / 1000.0) - 0.01 * (hUT - 1.5) + 0.28);
500 table3gpp->m_sigLgZSD = 0.30;
501 table3gpp->m_offsetZOD = atan((35 - 3.5) / distance2D) - atan((35 - 1.5) / distance2D);
502 table3gpp->m_cDS = 3.91e-9;
503 table3gpp->m_cASD = 2;
504 table3gpp->m_cASA = 3;
505 table3gpp->m_cZSA = 3;
506 table3gpp->m_uK = 0;
507 table3gpp->m_sigK = 0;
508 table3gpp->m_rTau = 1.7;
509 table3gpp->m_uXpr = 7;
510 table3gpp->m_sigXpr = 3;
511 table3gpp->m_perClusterShadowingStd = 3;
512
513 for (uint8_t row = 0; row < 6; row++)
514 {
515 for (uint8_t column = 0; column < 6; column++)
516 {
517 table3gpp->m_sqrtC[row][column] = sqrtC_RMa_O2I[row][column];
518 }
519 }
520 }
521 }
522 else if (m_scenario == "UMa")
523 {
524 if (los && !o2i)
525 {
526 table3gpp->m_numOfCluster = 12;
527 table3gpp->m_raysPerCluster = 20;
528 table3gpp->m_uLgDS = -6.955 - 0.0963 * log10(fcGHz);
529 table3gpp->m_sigLgDS = 0.66;
530 table3gpp->m_uLgASD = 1.06 + 0.1114 * log10(fcGHz);
531 table3gpp->m_sigLgASD = 0.28;
532 table3gpp->m_uLgASA = 1.81;
533 table3gpp->m_sigLgASA = 0.20;
534 table3gpp->m_uLgZSA = 0.95;
535 table3gpp->m_sigLgZSA = 0.16;
536 table3gpp->m_uLgZSD =
537 std::max(-0.5, -2.1 * distance2D / 1000.0 - 0.01 * (hUT - 1.5) + 0.75);
538 table3gpp->m_sigLgZSD = 0.40;
539 table3gpp->m_offsetZOD = 0;
540 table3gpp->m_cDS = std::max(0.25, -3.4084 * log10(fcGHz) + 6.5622) * 1e-9;
541 table3gpp->m_cASD = 5;
542 table3gpp->m_cASA = 11;
543 table3gpp->m_cZSA = 7;
544 table3gpp->m_uK = 9;
545 table3gpp->m_sigK = 3.5;
546 table3gpp->m_rTau = 2.5;
547 table3gpp->m_uXpr = 8;
548 table3gpp->m_sigXpr = 4;
549 table3gpp->m_perClusterShadowingStd = 3;
550
551 for (uint8_t row = 0; row < 7; row++)
552 {
553 for (uint8_t column = 0; column < 7; column++)
554 {
555 table3gpp->m_sqrtC[row][column] = sqrtC_UMa_LOS[row][column];
556 }
557 }
558 }
559 else
560 {
561 double uLgZSD = std::max(-0.5, -2.1 * distance2D / 1000.0 - 0.01 * (hUT - 1.5) + 0.9);
562
563 double afc = 0.208 * log10(fcGHz) - 0.782;
564 double bfc = 25;
565 double cfc = -0.13 * log10(fcGHz) + 2.03;
566 double efc = 7.66 * log10(fcGHz) - 5.96;
567
568 double offsetZOD = efc - std::pow(10, afc * log10(std::max(bfc, distance2D)) + cfc);
569
570 if (!los && !o2i)
571 {
572 table3gpp->m_numOfCluster = 20;
573 table3gpp->m_raysPerCluster = 20;
574 table3gpp->m_uLgDS = -6.28 - 0.204 * log10(fcGHz);
575 table3gpp->m_sigLgDS = 0.39;
576 table3gpp->m_uLgASD = 1.5 - 0.1144 * log10(fcGHz);
577 table3gpp->m_sigLgASD = 0.28;
578 table3gpp->m_uLgASA = 2.08 - 0.27 * log10(fcGHz);
579 table3gpp->m_sigLgASA = 0.11;
580 table3gpp->m_uLgZSA = -0.3236 * log10(fcGHz) + 1.512;
581 table3gpp->m_sigLgZSA = 0.16;
582 table3gpp->m_uLgZSD = uLgZSD;
583 table3gpp->m_sigLgZSD = 0.49;
584 table3gpp->m_offsetZOD = offsetZOD;
585 table3gpp->m_cDS = std::max(0.25, -3.4084 * log10(fcGHz) + 6.5622) * 1e-9;
586 table3gpp->m_cASD = 2;
587 table3gpp->m_cASA = 15;
588 table3gpp->m_cZSA = 7;
589 table3gpp->m_uK = 0;
590 table3gpp->m_sigK = 0;
591 table3gpp->m_rTau = 2.3;
592 table3gpp->m_uXpr = 7;
593 table3gpp->m_sigXpr = 3;
594 table3gpp->m_perClusterShadowingStd = 3;
595
596 for (uint8_t row = 0; row < 6; row++)
597 {
598 for (uint8_t column = 0; column < 6; column++)
599 {
600 table3gpp->m_sqrtC[row][column] = sqrtC_UMa_NLOS[row][column];
601 }
602 }
603 }
604 else //(o2i)
605 {
606 table3gpp->m_numOfCluster = 12;
607 table3gpp->m_raysPerCluster = 20;
608 table3gpp->m_uLgDS = -6.62;
609 table3gpp->m_sigLgDS = 0.32;
610 table3gpp->m_uLgASD = 1.25;
611 table3gpp->m_sigLgASD = 0.42;
612 table3gpp->m_uLgASA = 1.76;
613 table3gpp->m_sigLgASA = 0.16;
614 table3gpp->m_uLgZSA = 1.01;
615 table3gpp->m_sigLgZSA = 0.43;
616 table3gpp->m_uLgZSD = uLgZSD;
617 table3gpp->m_sigLgZSD = 0.49;
618 table3gpp->m_offsetZOD = offsetZOD;
619 table3gpp->m_cDS = 11e-9;
620 table3gpp->m_cASD = 5;
621 table3gpp->m_cASA = 8;
622 table3gpp->m_cZSA = 3;
623 table3gpp->m_uK = 0;
624 table3gpp->m_sigK = 0;
625 table3gpp->m_rTau = 2.2;
626 table3gpp->m_uXpr = 9;
627 table3gpp->m_sigXpr = 5;
628 table3gpp->m_perClusterShadowingStd = 4;
629
630 for (uint8_t row = 0; row < 6; row++)
631 {
632 for (uint8_t column = 0; column < 6; column++)
633 {
634 table3gpp->m_sqrtC[row][column] = sqrtC_UMa_O2I[row][column];
635 }
636 }
637 }
638 }
639 }
640 else if (m_scenario == "UMi-StreetCanyon")
641 {
642 if (los && !o2i)
643 {
644 table3gpp->m_numOfCluster = 12;
645 table3gpp->m_raysPerCluster = 20;
646 table3gpp->m_uLgDS = -0.24 * log10(1 + fcGHz) - 7.14;
647 table3gpp->m_sigLgDS = 0.38;
648 table3gpp->m_uLgASD = -0.05 * log10(1 + fcGHz) + 1.21;
649 table3gpp->m_sigLgASD = 0.41;
650 table3gpp->m_uLgASA = -0.08 * log10(1 + fcGHz) + 1.73;
651 table3gpp->m_sigLgASA = 0.014 * log10(1 + fcGHz) + 0.28;
652 table3gpp->m_uLgZSA = -0.1 * log10(1 + fcGHz) + 0.73;
653 table3gpp->m_sigLgZSA = -0.04 * log10(1 + fcGHz) + 0.34;
654 table3gpp->m_uLgZSD =
655 std::max(-0.21, -14.8 * distance2D / 1000.0 + 0.01 * std::abs(hUT - hBS) + 0.83);
656 table3gpp->m_sigLgZSD = 0.35;
657 table3gpp->m_offsetZOD = 0;
658 table3gpp->m_cDS = 5e-9;
659 table3gpp->m_cASD = 3;
660 table3gpp->m_cASA = 17;
661 table3gpp->m_cZSA = 7;
662 table3gpp->m_uK = 9;
663 table3gpp->m_sigK = 5;
664 table3gpp->m_rTau = 3;
665 table3gpp->m_uXpr = 9;
666 table3gpp->m_sigXpr = 3;
667 table3gpp->m_perClusterShadowingStd = 3;
668
669 for (uint8_t row = 0; row < 7; row++)
670 {
671 for (uint8_t column = 0; column < 7; column++)
672 {
673 table3gpp->m_sqrtC[row][column] = sqrtC_UMi_LOS[row][column];
674 }
675 }
676 }
677 else
678 {
679 double uLgZSD =
680 std::max(-0.5, -3.1 * distance2D / 1000.0 + 0.01 * std::max(hUT - hBS, 0.0) + 0.2);
681 double offsetZOD = -1 * std::pow(10, -1.5 * log10(std::max(10.0, distance2D)) + 3.3);
682 if (!los && !o2i)
683 {
684 table3gpp->m_numOfCluster = 19;
685 table3gpp->m_raysPerCluster = 20;
686 table3gpp->m_uLgDS = -0.24 * log10(1 + fcGHz) - 6.83;
687 table3gpp->m_sigLgDS = 0.16 * log10(1 + fcGHz) + 0.28;
688 table3gpp->m_uLgASD = -0.23 * log10(1 + fcGHz) + 1.53;
689 table3gpp->m_sigLgASD = 0.11 * log10(1 + fcGHz) + 0.33;
690 table3gpp->m_uLgASA = -0.08 * log10(1 + fcGHz) + 1.81;
691 table3gpp->m_sigLgASA = 0.05 * log10(1 + fcGHz) + 0.3;
692 table3gpp->m_uLgZSA = -0.04 * log10(1 + fcGHz) + 0.92;
693 table3gpp->m_sigLgZSA = -0.07 * log10(1 + fcGHz) + 0.41;
694 table3gpp->m_uLgZSD = uLgZSD;
695 table3gpp->m_sigLgZSD = 0.35;
696 table3gpp->m_offsetZOD = offsetZOD;
697 table3gpp->m_cDS = 11e-9;
698 table3gpp->m_cASD = 10;
699 table3gpp->m_cASA = 22;
700 table3gpp->m_cZSA = 7;
701 table3gpp->m_uK = 0;
702 table3gpp->m_sigK = 0;
703 table3gpp->m_rTau = 2.1;
704 table3gpp->m_uXpr = 8;
705 table3gpp->m_sigXpr = 3;
706 table3gpp->m_perClusterShadowingStd = 3;
707
708 for (uint8_t row = 0; row < 6; row++)
709 {
710 for (uint8_t column = 0; column < 6; column++)
711 {
712 table3gpp->m_sqrtC[row][column] = sqrtC_UMi_NLOS[row][column];
713 }
714 }
715 }
716 else //(o2i)
717 {
718 table3gpp->m_numOfCluster = 12;
719 table3gpp->m_raysPerCluster = 20;
720 table3gpp->m_uLgDS = -6.62;
721 table3gpp->m_sigLgDS = 0.32;
722 table3gpp->m_uLgASD = 1.25;
723 table3gpp->m_sigLgASD = 0.42;
724 table3gpp->m_uLgASA = 1.76;
725 table3gpp->m_sigLgASA = 0.16;
726 table3gpp->m_uLgZSA = 1.01;
727 table3gpp->m_sigLgZSA = 0.43;
728 table3gpp->m_uLgZSD = uLgZSD;
729 table3gpp->m_sigLgZSD = 0.35;
730 table3gpp->m_offsetZOD = offsetZOD;
731 table3gpp->m_cDS = 11e-9;
732 table3gpp->m_cASD = 5;
733 table3gpp->m_cASA = 8;
734 table3gpp->m_cZSA = 3;
735 table3gpp->m_uK = 0;
736 table3gpp->m_sigK = 0;
737 table3gpp->m_rTau = 2.2;
738 table3gpp->m_uXpr = 9;
739 table3gpp->m_sigXpr = 5;
740 table3gpp->m_perClusterShadowingStd = 4;
741
742 for (uint8_t row = 0; row < 6; row++)
743 {
744 for (uint8_t column = 0; column < 6; column++)
745 {
746 table3gpp->m_sqrtC[row][column] = sqrtC_UMi_O2I[row][column];
747 }
748 }
749 }
750 }
751 }
752 else if (m_scenario == "InH-OfficeMixed" || m_scenario == "InH-OfficeOpen")
753 {
754 NS_ASSERT_MSG(!o2i, "The indoor scenario does out support outdoor to indoor");
755 if (los)
756 {
757 table3gpp->m_numOfCluster = 15;
758 table3gpp->m_raysPerCluster = 20;
759 table3gpp->m_uLgDS = -0.01 * log10(1 + fcGHz) - 7.692;
760 table3gpp->m_sigLgDS = 0.18;
761 table3gpp->m_uLgASD = 1.60;
762 table3gpp->m_sigLgASD = 0.18;
763 table3gpp->m_uLgASA = -0.19 * log10(1 + fcGHz) + 1.781;
764 table3gpp->m_sigLgASA = 0.12 * log10(1 + fcGHz) + 0.119;
765 table3gpp->m_uLgZSA = -0.26 * log10(1 + fcGHz) + 1.44;
766 table3gpp->m_sigLgZSA = -0.04 * log10(1 + fcGHz) + 0.264;
767 table3gpp->m_uLgZSD = -1.43 * log10(1 + fcGHz) + 2.228;
768 table3gpp->m_sigLgZSD = 0.13 * log10(1 + fcGHz) + 0.30;
769 table3gpp->m_offsetZOD = 0;
770 table3gpp->m_cDS = 3.91e-9;
771 table3gpp->m_cASD = 5;
772 table3gpp->m_cASA = 8;
773 table3gpp->m_cZSA = 9;
774 table3gpp->m_uK = 7;
775 table3gpp->m_sigK = 4;
776 table3gpp->m_rTau = 3.6;
777 table3gpp->m_uXpr = 11;
778 table3gpp->m_sigXpr = 4;
779 table3gpp->m_perClusterShadowingStd = 6;
780
781 for (uint8_t row = 0; row < 7; row++)
782 {
783 for (uint8_t column = 0; column < 7; column++)
784 {
785 table3gpp->m_sqrtC[row][column] = sqrtC_office_LOS[row][column];
786 }
787 }
788 }
789 else
790 {
791 table3gpp->m_numOfCluster = 19;
792 table3gpp->m_raysPerCluster = 20;
793 table3gpp->m_uLgDS = -0.28 * log10(1 + fcGHz) - 7.173;
794 table3gpp->m_sigLgDS = 0.1 * log10(1 + fcGHz) + 0.055;
795 table3gpp->m_uLgASD = 1.62;
796 table3gpp->m_sigLgASD = 0.25;
797 table3gpp->m_uLgASA = -0.11 * log10(1 + fcGHz) + 1.863;
798 table3gpp->m_sigLgASA = 0.12 * log10(1 + fcGHz) + 0.059;
799 table3gpp->m_uLgZSA = -0.15 * log10(1 + fcGHz) + 1.387;
800 table3gpp->m_sigLgZSA = -0.09 * log10(1 + fcGHz) + 0.746;
801 table3gpp->m_uLgZSD = 1.08;
802 table3gpp->m_sigLgZSD = 0.36;
803 table3gpp->m_offsetZOD = 0;
804 table3gpp->m_cDS = 3.91e-9;
805 table3gpp->m_cASD = 5;
806 table3gpp->m_cASA = 11;
807 table3gpp->m_cZSA = 9;
808 table3gpp->m_uK = 0;
809 table3gpp->m_sigK = 0;
810 table3gpp->m_rTau = 3;
811 table3gpp->m_uXpr = 10;
812 table3gpp->m_sigXpr = 4;
813 table3gpp->m_perClusterShadowingStd = 3;
814
815 for (uint8_t row = 0; row < 6; row++)
816 {
817 for (uint8_t column = 0; column < 6; column++)
818 {
819 table3gpp->m_sqrtC[row][column] = sqrtC_office_NLOS[row][column];
820 }
821 }
822 }
823 }
824 else if (m_scenario == "V2V-Urban")
825 {
826 if (channelCondition->IsLos())
827 {
828 // 3GPP mentioned that 3.91 ns should be used when the Cluster DS (cDS)
829 // entry is N/A.
830 table3gpp->m_numOfCluster = 12;
831 table3gpp->m_raysPerCluster = 20;
832 table3gpp->m_uLgDS = -0.2 * log10(1 + fcGHz) - 7.5;
833 table3gpp->m_sigLgDS = 0.1;
834 table3gpp->m_uLgASD = -0.1 * log10(1 + fcGHz) + 1.6;
835 table3gpp->m_sigLgASD = 0.1;
836 table3gpp->m_uLgASA = -0.1 * log10(1 + fcGHz) + 1.6;
837 table3gpp->m_sigLgASA = 0.1;
838 table3gpp->m_uLgZSA = -0.1 * log10(1 + fcGHz) + 0.73;
839 table3gpp->m_sigLgZSA = -0.04 * log10(1 + fcGHz) + 0.34;
840 table3gpp->m_uLgZSD = -0.1 * log10(1 + fcGHz) + 0.73;
841 table3gpp->m_sigLgZSD = -0.04 * log10(1 + fcGHz) + 0.34;
842 table3gpp->m_offsetZOD = 0;
843 table3gpp->m_cDS = 5;
844 table3gpp->m_cASD = 17;
845 table3gpp->m_cASA = 17;
846 table3gpp->m_cZSA = 7;
847 table3gpp->m_uK = 3.48;
848 table3gpp->m_sigK = 2;
849 table3gpp->m_rTau = 3;
850 table3gpp->m_uXpr = 9;
851 table3gpp->m_sigXpr = 3;
852 table3gpp->m_perClusterShadowingStd = 4;
853
854 for (uint8_t row = 0; row < 7; row++)
855 {
856 for (uint8_t column = 0; column < 7; column++)
857 {
858 table3gpp->m_sqrtC[row][column] = sqrtC_UMi_LOS[row][column];
859 }
860 }
861 }
862 else if (channelCondition->IsNlos())
863 {
864 table3gpp->m_numOfCluster = 19;
865 table3gpp->m_raysPerCluster = 20;
866 table3gpp->m_uLgDS = -0.3 * log10(1 + fcGHz) - 7;
867 table3gpp->m_sigLgDS = 0.28;
868 table3gpp->m_uLgASD = -0.08 * log10(1 + fcGHz) + 1.81;
869 table3gpp->m_sigLgASD = 0.05 * log10(1 + fcGHz) + 0.3;
870 table3gpp->m_uLgASA = -0.08 * log10(1 + fcGHz) + 1.81;
871 table3gpp->m_sigLgASA = 0.05 * log10(1 + fcGHz) + 0.3;
872 table3gpp->m_uLgZSA = -0.04 * log10(1 + fcGHz) + 0.92;
873 table3gpp->m_sigLgZSA = -0.07 * log10(1 + fcGHz) + 0.41;
874 table3gpp->m_uLgZSD = -0.04 * log10(1 + fcGHz) + 0.92;
875 table3gpp->m_sigLgZSD = -0.07 * log10(1 + fcGHz) + 0.41;
876 table3gpp->m_offsetZOD = 0;
877 table3gpp->m_cDS = 11;
878 table3gpp->m_cASD = 22;
879 table3gpp->m_cASA = 22;
880 table3gpp->m_cZSA = 7;
881 table3gpp->m_uK = 0; // N/A
882 table3gpp->m_sigK = 0; // N/A
883 table3gpp->m_rTau = 2.1;
884 table3gpp->m_uXpr = 8;
885 table3gpp->m_sigXpr = 3;
886 table3gpp->m_perClusterShadowingStd = 4;
887
888 for (uint8_t row = 0; row < 6; row++)
889 {
890 for (uint8_t column = 0; column < 6; column++)
891 {
892 table3gpp->m_sqrtC[row][column] = sqrtC_UMi_NLOS[row][column];
893 }
894 }
895 }
896 else if (channelCondition->IsNlosv())
897 {
898 table3gpp->m_numOfCluster = 19;
899 table3gpp->m_raysPerCluster = 20;
900 table3gpp->m_uLgDS = -0.4 * log10(1 + fcGHz) - 7;
901 table3gpp->m_sigLgDS = 0.1;
902 table3gpp->m_uLgASD = -0.1 * log10(1 + fcGHz) + 1.7;
903 table3gpp->m_sigLgASD = 0.1;
904 table3gpp->m_uLgASA = -0.1 * log10(1 + fcGHz) + 1.7;
905 table3gpp->m_sigLgASA = 0.1;
906 table3gpp->m_uLgZSA = -0.04 * log10(1 + fcGHz) + 0.92;
907 table3gpp->m_sigLgZSA = -0.07 * log10(1 + fcGHz) + 0.41;
908 table3gpp->m_uLgZSD = -0.04 * log10(1 + fcGHz) + 0.92;
909 table3gpp->m_sigLgZSD = -0.07 * log10(1 + fcGHz) + 0.41;
910 table3gpp->m_offsetZOD = 0;
911 table3gpp->m_cDS = 11;
912 table3gpp->m_cASD = 22;
913 table3gpp->m_cASA = 22;
914 table3gpp->m_cZSA = 7;
915 table3gpp->m_uK = 0;
916 table3gpp->m_sigK = 4.5;
917 table3gpp->m_rTau = 2.1;
918 table3gpp->m_uXpr = 8;
919 table3gpp->m_sigXpr = 3;
920 table3gpp->m_perClusterShadowingStd = 4;
921
922 for (uint8_t row = 0; row < 6; row++)
923 {
924 for (uint8_t column = 0; column < 6; column++)
925 {
926 table3gpp->m_sqrtC[row][column] = sqrtC_UMi_LOS[row][column];
927 }
928 }
929 }
930 else
931 {
932 NS_FATAL_ERROR("Unknown channel condition");
933 }
934 }
935 else if (m_scenario == "V2V-Highway")
936 {
937 if (channelCondition->IsLos())
938 {
939 table3gpp->m_numOfCluster = 12;
940 table3gpp->m_raysPerCluster = 20;
941 table3gpp->m_uLgDS = -8.3;
942 table3gpp->m_sigLgDS = 0.2;
943 table3gpp->m_uLgASD = 1.4;
944 table3gpp->m_sigLgASD = 0.1;
945 table3gpp->m_uLgASA = 1.4;
946 table3gpp->m_sigLgASA = 0.1;
947 table3gpp->m_uLgZSA = -0.1 * log10(1 + fcGHz) + 0.73;
948 table3gpp->m_sigLgZSA = -0.04 * log10(1 + fcGHz) + 0.34;
949 table3gpp->m_uLgZSD = -0.1 * log10(1 + fcGHz) + 0.73;
950 table3gpp->m_sigLgZSD = -0.04 * log10(1 + fcGHz) + 0.34;
951 table3gpp->m_offsetZOD = 0;
952 table3gpp->m_cDS = 5;
953 table3gpp->m_cASD = 17;
954 table3gpp->m_cASA = 17;
955 table3gpp->m_cZSA = 7;
956 table3gpp->m_uK = 9;
957 table3gpp->m_sigK = 3.5;
958 table3gpp->m_rTau = 3;
959 table3gpp->m_uXpr = 9;
960 table3gpp->m_sigXpr = 3;
961 table3gpp->m_perClusterShadowingStd = 4;
962
963 for (uint8_t row = 0; row < 7; row++)
964 {
965 for (uint8_t column = 0; column < 7; column++)
966 {
967 table3gpp->m_sqrtC[row][column] = sqrtC_UMi_LOS[row][column];
968 }
969 }
970 }
971 else if (channelCondition->IsNlosv())
972 {
973 table3gpp->m_numOfCluster = 19;
974 table3gpp->m_raysPerCluster = 20;
975 table3gpp->m_uLgDS = -8.3;
976 table3gpp->m_sigLgDS = 0.3;
977 table3gpp->m_uLgASD = 1.5;
978 table3gpp->m_sigLgASD = 0.1;
979 table3gpp->m_uLgASA = 1.5;
980 table3gpp->m_sigLgASA = 0.1;
981 table3gpp->m_uLgZSA = -0.04 * log10(1 + fcGHz) + 0.92;
982 table3gpp->m_sigLgZSA = -0.07 * log10(1 + fcGHz) + 0.41;
983 table3gpp->m_uLgZSD = -0.04 * log10(1 + fcGHz) + 0.92;
984 table3gpp->m_sigLgZSD = -0.07 * log10(1 + fcGHz) + 0.41;
985 table3gpp->m_offsetZOD = 0;
986 table3gpp->m_cDS = 11;
987 table3gpp->m_cASD = 22;
988 table3gpp->m_cASA = 22;
989 table3gpp->m_cZSA = 7;
990 table3gpp->m_uK = 0;
991 table3gpp->m_sigK = 4.5;
992 table3gpp->m_rTau = 2.1;
993 table3gpp->m_uXpr = 8.0;
994 table3gpp->m_sigXpr = 3;
995 table3gpp->m_perClusterShadowingStd = 4;
996
997 for (uint8_t row = 0; row < 6; row++)
998 {
999 for (uint8_t column = 0; column < 6; column++)
1000 {
1001 table3gpp->m_sqrtC[row][column] = sqrtC_UMi_LOS[row][column];
1002 }
1003 }
1004 }
1005 else if (channelCondition->IsNlos())
1006 {
1008 "The fast fading parameters for the NLOS condition in the Highway scenario are not "
1009 "defined in TR 37.885, use the ones defined in TDoc R1-1803671 instead");
1010
1011 table3gpp->m_numOfCluster = 19;
1012 table3gpp->m_raysPerCluster = 20;
1013 table3gpp->m_uLgDS = -0.3 * log10(1 + fcGHz) - 7;
1014 table3gpp->m_sigLgDS = 0.28;
1015 table3gpp->m_uLgASD = -0.08 * log10(1 + fcGHz) + 1.81;
1016 table3gpp->m_sigLgASD = 0.05 * log10(1 + fcGHz) + 0.3;
1017 table3gpp->m_uLgASA = -0.08 * log10(1 + fcGHz) + 1.81;
1018 table3gpp->m_sigLgASA = 0.05 * log10(1 + fcGHz) + 0.3;
1019 table3gpp->m_uLgZSA = -0.04 * log10(1 + fcGHz) + 0.92;
1020 table3gpp->m_sigLgZSA = -0.07 * log10(1 + fcGHz) + 0.41;
1021 table3gpp->m_uLgZSD = -0.04 * log10(1 + fcGHz) + 0.92;
1022 table3gpp->m_sigLgZSD = -0.07 * log10(1 + fcGHz) + 0.41;
1023 table3gpp->m_offsetZOD = 0;
1024 table3gpp->m_cDS = 11;
1025 table3gpp->m_cASD = 22;
1026 table3gpp->m_cASA = 22;
1027 table3gpp->m_cZSA = 7;
1028 table3gpp->m_uK = 0; // N/A
1029 table3gpp->m_sigK = 0; // N/A
1030 table3gpp->m_rTau = 2.1;
1031 table3gpp->m_uXpr = 8;
1032 table3gpp->m_sigXpr = 3;
1033 table3gpp->m_perClusterShadowingStd = 4;
1034
1035 for (uint8_t row = 0; row < 6; row++)
1036 {
1037 for (uint8_t column = 0; column < 6; column++)
1038 {
1039 table3gpp->m_sqrtC[row][column] = sqrtC_UMi_NLOS[row][column];
1040 }
1041 }
1042 }
1043 else
1044 {
1045 NS_FATAL_ERROR("Unknown channel condition");
1046 }
1047 }
1048 else
1049 {
1050 NS_FATAL_ERROR("unknown scenarios");
1051 }
1052
1053 return table3gpp;
1054}
1055
1056bool
1058 Ptr<const ChannelCondition> channelCondition) const
1059{
1060 NS_LOG_FUNCTION(this);
1061
1062 bool update = false;
1063
1064 // if the channel condition is different the channel has to be updated
1065 if (!channelCondition->IsEqual(channelParams->m_losCondition, channelParams->m_o2iCondition))
1066 {
1067 NS_LOG_DEBUG("Update the channel condition");
1068 update = true;
1069 }
1070
1071 // if the coherence time is over the channel has to be updated
1072 if (!m_updatePeriod.IsZero() &&
1073 Simulator::Now() - channelParams->m_generatedTime > m_updatePeriod)
1074 {
1075 NS_LOG_DEBUG("Generation time " << channelParams->m_generatedTime.As(Time::NS) << " now "
1076 << Now().As(Time::NS));
1077 update = true;
1078 }
1079
1080 return update;
1081}
1082
1083bool
1085 Ptr<const ChannelMatrix> channelMatrix)
1086{
1087 return channelParams->m_generatedTime > channelMatrix->m_generatedTime;
1088}
1089
1095{
1096 NS_LOG_FUNCTION(this);
1097
1098 // Compute the channel params key. The key is reciprocal, i.e., key (a, b) = key (b, a)
1099 uint64_t channelParamsKey =
1100 GetKey(aMob->GetObject<Node>()->GetId(), bMob->GetObject<Node>()->GetId());
1101 // Compute the channel matrix key. The key is reciprocal, i.e., key (a, b) = key (b, a)
1102 uint64_t channelMatrixKey = GetKey(aAntenna->GetId(), bAntenna->GetId());
1103
1104 // retrieve the channel condition
1105 Ptr<const ChannelCondition> condition =
1106 m_channelConditionModel->GetChannelCondition(aMob, bMob);
1107
1108 // Check if the channel is present in the map and return it, otherwise
1109 // generate a new channel
1110 bool updateParams = false;
1111 bool updateMatrix = false;
1112 bool notFoundParams = false;
1113 bool notFoundMatrix = false;
1114 Ptr<ChannelMatrix> channelMatrix;
1115 Ptr<ThreeGppChannelParams> channelParams;
1116
1117 if (m_channelParamsMap.find(channelParamsKey) != m_channelParamsMap.end())
1118 {
1119 channelParams = m_channelParamsMap[channelParamsKey];
1120 // check if it has to be updated
1121 updateParams = ChannelParamsNeedsUpdate(channelParams, condition);
1122 }
1123 else
1124 {
1125 NS_LOG_DEBUG("channel params not found");
1126 notFoundParams = true;
1127 }
1128
1129 double x = aMob->GetPosition().x - bMob->GetPosition().x;
1130 double y = aMob->GetPosition().y - bMob->GetPosition().y;
1131 double distance2D = sqrt(x * x + y * y);
1132
1133 // NOTE we assume hUT = min (height(a), height(b)) and
1134 // hBS = max (height (a), height (b))
1135 double hUt = std::min(aMob->GetPosition().z, bMob->GetPosition().z);
1136 double hBs = std::max(aMob->GetPosition().z, bMob->GetPosition().z);
1137
1138 // get the 3GPP parameters
1139 Ptr<const ParamsTable> table3gpp = GetThreeGppTable(condition, hBs, hUt, distance2D);
1140
1141 if (notFoundParams || updateParams)
1142 {
1143 // Step 4: Generate large scale parameters. All LSPS are uncorrelated.
1144 // Step 5: Generate Delays.
1145 // Step 6: Generate cluster powers.
1146 // Step 7: Generate arrival and departure angles for both azimuth and elevation.
1147 // Step 8: Coupling of rays within a cluster for both azimuth and elevation
1148 // shuffle all the arrays to perform random coupling
1149 // Step 9: Generate the cross polarization power ratios
1150 // Step 10: Draw initial phases
1151 channelParams = GenerateChannelParameters(condition, table3gpp, aMob, bMob);
1152 // store or replace the channel parameters
1153 m_channelParamsMap[channelParamsKey] = channelParams;
1154 }
1155
1156 if (m_channelMatrixMap.find(channelMatrixKey) != m_channelMatrixMap.end())
1157 {
1158 // channel matrix present in the map
1159 NS_LOG_DEBUG("channel matrix present in the map");
1160 channelMatrix = m_channelMatrixMap[channelMatrixKey];
1161 updateMatrix = ChannelMatrixNeedsUpdate(channelParams, channelMatrix);
1162 }
1163 else
1164 {
1165 NS_LOG_DEBUG("channel matrix not found");
1166 notFoundMatrix = true;
1167 }
1168
1169 // If the channel is not present in the map or if it has to be updated
1170 // generate a new realization
1171 if (notFoundMatrix || updateMatrix)
1172 {
1173 // channel matrix not found or has to be updated, generate a new one
1174 channelMatrix = GetNewChannel(channelParams, table3gpp, aMob, bMob, aAntenna, bAntenna);
1175 channelMatrix->m_antennaPair =
1176 std::make_pair(aAntenna->GetId(),
1177 bAntenna->GetId()); // save antenna pair, with the exact order of s and u
1178 // antennas at the moment of the channel generation
1179
1180 // store or replace the channel matrix in the channel map
1181 m_channelMatrixMap[channelMatrixKey] = channelMatrix;
1182 }
1183
1184 return channelMatrix;
1185}
1186
1189{
1190 NS_LOG_FUNCTION(this);
1191
1192 // Compute the channel key. The key is reciprocal, i.e., key (a, b) = key (b, a)
1193 uint64_t channelParamsKey =
1194 GetKey(aMob->GetObject<Node>()->GetId(), bMob->GetObject<Node>()->GetId());
1195
1196 if (m_channelParamsMap.find(channelParamsKey) != m_channelParamsMap.end())
1197 {
1198 return m_channelParamsMap.find(channelParamsKey)->second;
1199 }
1200 else
1201 {
1202 NS_LOG_WARN("Channel params map not found. Returning a nullptr.");
1203 return nullptr;
1204 }
1205}
1206
1209 const Ptr<const ParamsTable> table3gpp,
1210 const Ptr<const MobilityModel> aMob,
1211 const Ptr<const MobilityModel> bMob) const
1212{
1213 NS_LOG_FUNCTION(this);
1214 // create a channel matrix instance
1215 Ptr<ThreeGppChannelParams> channelParams = Create<ThreeGppChannelParams>();
1216 channelParams->m_generatedTime = Simulator::Now();
1217 channelParams->m_nodeIds =
1218 std::make_pair(aMob->GetObject<Node>()->GetId(), bMob->GetObject<Node>()->GetId());
1219 channelParams->m_losCondition = channelCondition->GetLosCondition();
1220 channelParams->m_o2iCondition = channelCondition->GetO2iCondition();
1221
1222 // Step 4: Generate large scale parameters. All LSPS are uncorrelated.
1223 DoubleVector LSPsIndep;
1224 DoubleVector LSPs;
1225 uint8_t paramNum = 6;
1226 if (channelParams->m_losCondition == ChannelCondition::LOS)
1227 {
1228 paramNum = 7;
1229 }
1230
1231 // Generate paramNum independent LSPs.
1232 for (uint8_t iter = 0; iter < paramNum; iter++)
1233 {
1234 LSPsIndep.push_back(m_normalRv->GetValue());
1235 }
1236 for (uint8_t row = 0; row < paramNum; row++)
1237 {
1238 double temp = 0;
1239 for (uint8_t column = 0; column < paramNum; column++)
1240 {
1241 temp += table3gpp->m_sqrtC[row][column] * LSPsIndep[column];
1242 }
1243 LSPs.push_back(temp);
1244 }
1245
1246 // NOTE the shadowing is generated in the propagation loss model
1247 double DS;
1248 double ASD;
1249 double ASA;
1250 double ZSA;
1251 double ZSD;
1252 double kFactor = 0;
1253 if (channelParams->m_losCondition == ChannelCondition::LOS)
1254 {
1255 kFactor = LSPs[1] * table3gpp->m_sigK + table3gpp->m_uK;
1256 DS = pow(10, LSPs[2] * table3gpp->m_sigLgDS + table3gpp->m_uLgDS);
1257 ASD = pow(10, LSPs[3] * table3gpp->m_sigLgASD + table3gpp->m_uLgASD);
1258 ASA = pow(10, LSPs[4] * table3gpp->m_sigLgASA + table3gpp->m_uLgASA);
1259 ZSD = pow(10, LSPs[5] * table3gpp->m_sigLgZSD + table3gpp->m_uLgZSD);
1260 ZSA = pow(10, LSPs[6] * table3gpp->m_sigLgZSA + table3gpp->m_uLgZSA);
1261 }
1262 else
1263 {
1264 DS = pow(10, LSPs[1] * table3gpp->m_sigLgDS + table3gpp->m_uLgDS);
1265 ASD = pow(10, LSPs[2] * table3gpp->m_sigLgASD + table3gpp->m_uLgASD);
1266 ASA = pow(10, LSPs[3] * table3gpp->m_sigLgASA + table3gpp->m_uLgASA);
1267 ZSD = pow(10, LSPs[4] * table3gpp->m_sigLgZSD + table3gpp->m_uLgZSD);
1268 ZSA = pow(10, LSPs[5] * table3gpp->m_sigLgZSA + table3gpp->m_uLgZSA);
1269 }
1270 ASD = std::min(ASD, 104.0);
1271 ASA = std::min(ASA, 104.0);
1272 ZSD = std::min(ZSD, 52.0);
1273 ZSA = std::min(ZSA, 52.0);
1274
1275 // save DS and K_factor parameters in the structure
1276 channelParams->m_DS = DS;
1277 channelParams->m_K_factor = kFactor;
1278
1279 NS_LOG_INFO("K-factor=" << kFactor << ", DS=" << DS << ", ASD=" << ASD << ", ASA=" << ASA
1280 << ", ZSD=" << ZSD << ", ZSA=" << ZSA);
1281
1282 // Step 5: Generate Delays.
1283 DoubleVector clusterDelay;
1284 double minTau = 100.0;
1285 for (uint8_t cIndex = 0; cIndex < table3gpp->m_numOfCluster; cIndex++)
1286 {
1287 double tau = -1 * table3gpp->m_rTau * DS * log(m_uniformRv->GetValue(0, 1)); //(7.5-1)
1288 if (minTau > tau)
1289 {
1290 minTau = tau;
1291 }
1292 clusterDelay.push_back(tau);
1293 }
1294
1295 for (uint8_t cIndex = 0; cIndex < table3gpp->m_numOfCluster; cIndex++)
1296 {
1297 clusterDelay[cIndex] -= minTau;
1298 }
1299 std::sort(clusterDelay.begin(), clusterDelay.end()); //(7.5-2)
1300
1301 /* since the scaled Los delays are not to be used in cluster power generation,
1302 * we will generate cluster power first and resume to compute Los cluster delay later.*/
1303
1304 // Step 6: Generate cluster powers.
1305 DoubleVector clusterPower;
1306 double powerSum = 0;
1307 for (uint8_t cIndex = 0; cIndex < table3gpp->m_numOfCluster; cIndex++)
1308 {
1309 double power =
1310 exp(-1 * clusterDelay[cIndex] * (table3gpp->m_rTau - 1) / table3gpp->m_rTau / DS) *
1311 pow(10,
1312 -1 * m_normalRv->GetValue() * table3gpp->m_perClusterShadowingStd / 10.0); //(7.5-5)
1313 powerSum += power;
1314 clusterPower.push_back(power);
1315 }
1316 channelParams->m_clusterPower = clusterPower;
1317
1318 double powerMax = 0;
1319
1320 for (uint8_t cIndex = 0; cIndex < table3gpp->m_numOfCluster; cIndex++)
1321 {
1322 channelParams->m_clusterPower[cIndex] =
1323 channelParams->m_clusterPower[cIndex] / powerSum; //(7.5-6)
1324 }
1325
1326 DoubleVector clusterPowerForAngles; // this power is only for equation (7.5-9) and (7.5-14), not
1327 // for (7.5-22)
1328 if (channelParams->m_losCondition == ChannelCondition::LOS)
1329 {
1330 double kLinear = pow(10, kFactor / 10.0);
1331
1332 for (uint8_t cIndex = 0; cIndex < table3gpp->m_numOfCluster; cIndex++)
1333 {
1334 if (cIndex == 0)
1335 {
1336 clusterPowerForAngles.push_back(channelParams->m_clusterPower[cIndex] /
1337 (1 + kLinear) +
1338 kLinear / (1 + kLinear)); //(7.5-8)
1339 }
1340 else
1341 {
1342 clusterPowerForAngles.push_back(channelParams->m_clusterPower[cIndex] /
1343 (1 + kLinear)); //(7.5-8)
1344 }
1345 if (powerMax < clusterPowerForAngles[cIndex])
1346 {
1347 powerMax = clusterPowerForAngles[cIndex];
1348 }
1349 }
1350 }
1351 else
1352 {
1353 for (uint8_t cIndex = 0; cIndex < table3gpp->m_numOfCluster; cIndex++)
1354 {
1355 clusterPowerForAngles.push_back(channelParams->m_clusterPower[cIndex]); //(7.5-6)
1356 if (powerMax < clusterPowerForAngles[cIndex])
1357 {
1358 powerMax = clusterPowerForAngles[cIndex];
1359 }
1360 }
1361 }
1362
1363 // remove clusters with less than -25 dB power compared to the maxim cluster power;
1364 // double thresh = pow(10, -2.5);
1365 double thresh = 0.0032;
1366 for (uint8_t cIndex = table3gpp->m_numOfCluster; cIndex > 0; cIndex--)
1367 {
1368 if (clusterPowerForAngles[cIndex - 1] < thresh * powerMax)
1369 {
1370 clusterPowerForAngles.erase(clusterPowerForAngles.begin() + cIndex - 1);
1371 channelParams->m_clusterPower.erase(channelParams->m_clusterPower.begin() + cIndex - 1);
1372 clusterDelay.erase(clusterDelay.begin() + cIndex - 1);
1373 }
1374 }
1375
1376 NS_ASSERT(channelParams->m_clusterPower.size() < UINT8_MAX);
1377 channelParams->m_reducedClusterNumber = channelParams->m_clusterPower.size();
1378 // Resume step 5 to compute the delay for LoS condition.
1379 if (channelParams->m_losCondition == ChannelCondition::LOS)
1380 {
1381 double cTau =
1382 0.7705 - 0.0433 * kFactor + 2e-4 * pow(kFactor, 2) + 17e-6 * pow(kFactor, 3); //(7.5-3)
1383 for (uint8_t cIndex = 0; cIndex < channelParams->m_reducedClusterNumber; cIndex++)
1384 {
1385 clusterDelay[cIndex] = clusterDelay[cIndex] / cTau; //(7.5-4)
1386 }
1387 }
1388
1389 // Step 7: Generate arrival and departure angles for both azimuth and elevation.
1390
1391 double cNlos;
1392 // According to table 7.5-6, only cluster number equals to 8, 10, 11, 12, 19 and 20 is valid.
1393 // Not sure why the other cases are in Table 7.5-2.
1394 switch (table3gpp->m_numOfCluster) // Table 7.5-2
1395 {
1396 case 4:
1397 cNlos = 0.779;
1398 break;
1399 case 5:
1400 cNlos = 0.860;
1401 break;
1402 case 8:
1403 cNlos = 1.018;
1404 break;
1405 case 10:
1406 cNlos = 1.090;
1407 break;
1408 case 11:
1409 cNlos = 1.123;
1410 break;
1411 case 12:
1412 cNlos = 1.146;
1413 break;
1414 case 14:
1415 cNlos = 1.190;
1416 break;
1417 case 15:
1418 cNlos = 1.221;
1419 break;
1420 case 16:
1421 cNlos = 1.226;
1422 break;
1423 case 19:
1424 cNlos = 1.273;
1425 break;
1426 case 20:
1427 cNlos = 1.289;
1428 break;
1429 default:
1430 NS_FATAL_ERROR("Invalid cluster number");
1431 }
1432
1433 double cPhi = cNlos;
1434
1435 if (channelParams->m_losCondition == ChannelCondition::LOS)
1436 {
1437 cPhi *= (1.1035 - 0.028 * kFactor - 2e-3 * pow(kFactor, 2) +
1438 1e-4 * pow(kFactor, 3)); //(7.5-10))
1439 }
1440
1441 switch (table3gpp->m_numOfCluster) // Table 7.5-4
1442 {
1443 case 8:
1444 cNlos = 0.889;
1445 break;
1446 case 10:
1447 cNlos = 0.957;
1448 break;
1449 case 11:
1450 cNlos = 1.031;
1451 break;
1452 case 12:
1453 cNlos = 1.104;
1454 break;
1455 case 15:
1456 cNlos = 1.1088;
1457 break;
1458 case 19:
1459 cNlos = 1.184;
1460 break;
1461 case 20:
1462 cNlos = 1.178;
1463 break;
1464 default:
1465 NS_FATAL_ERROR("Invalid cluster number");
1466 }
1467
1468 double cTheta = cNlos;
1469 if (channelCondition->IsLos())
1470 {
1471 cTheta *= (1.3086 + 0.0339 * kFactor - 0.0077 * pow(kFactor, 2) +
1472 2e-4 * pow(kFactor, 3)); //(7.5-15)
1473 }
1474
1475 DoubleVector clusterAoa;
1476 DoubleVector clusterAod;
1477 DoubleVector clusterZoa;
1478 DoubleVector clusterZod;
1479 for (uint8_t cIndex = 0; cIndex < channelParams->m_reducedClusterNumber; cIndex++)
1480 {
1481 double logCalc = -1 * log(clusterPowerForAngles[cIndex] / powerMax);
1482 double angle = 2 * sqrt(logCalc) / 1.4 / cPhi; //(7.5-9)
1483 clusterAoa.push_back(ASA * angle);
1484 clusterAod.push_back(ASD * angle);
1485 angle = logCalc / cTheta; //(7.5-14)
1486 clusterZoa.push_back(ZSA * angle);
1487 clusterZod.push_back(ZSD * angle);
1488 }
1489
1490 Angles sAngle(bMob->GetPosition(), aMob->GetPosition());
1491 Angles uAngle(aMob->GetPosition(), bMob->GetPosition());
1492
1493 for (uint8_t cIndex = 0; cIndex < channelParams->m_reducedClusterNumber; cIndex++)
1494 {
1495 int Xn = 1;
1496 if (m_uniformRv->GetValue(0, 1) < 0.5)
1497 {
1498 Xn = -1;
1499 }
1500 clusterAoa[cIndex] = clusterAoa[cIndex] * Xn + (m_normalRv->GetValue() * ASA / 7.0) +
1501 RadiansToDegrees(uAngle.GetAzimuth()); //(7.5-11)
1502 clusterAod[cIndex] = clusterAod[cIndex] * Xn + (m_normalRv->GetValue() * ASD / 7.0) +
1503 RadiansToDegrees(sAngle.GetAzimuth());
1504 if (channelCondition->IsO2i())
1505 {
1506 clusterZoa[cIndex] =
1507 clusterZoa[cIndex] * Xn + (m_normalRv->GetValue() * ZSA / 7.0) + 90; //(7.5-16)
1508 }
1509 else
1510 {
1511 clusterZoa[cIndex] = clusterZoa[cIndex] * Xn + (m_normalRv->GetValue() * ZSA / 7.0) +
1512 RadiansToDegrees(uAngle.GetInclination()); //(7.5-16)
1513 }
1514 clusterZod[cIndex] = clusterZod[cIndex] * Xn + (m_normalRv->GetValue() * ZSD / 7.0) +
1516 table3gpp->m_offsetZOD; //(7.5-19)
1517 }
1518
1519 if (channelParams->m_losCondition == ChannelCondition::LOS)
1520 {
1521 // The 7.5-12 can be rewrite as Theta_n,ZOA = Theta_n,ZOA - (Theta_1,ZOA - Theta_LOS,ZOA) =
1522 // Theta_n,ZOA - diffZOA, Similar as AOD, ZSA and ZSD.
1523 double diffAoa = clusterAoa[0] - RadiansToDegrees(uAngle.GetAzimuth());
1524 double diffAod = clusterAod[0] - RadiansToDegrees(sAngle.GetAzimuth());
1525 double diffZsa = clusterZoa[0] - RadiansToDegrees(uAngle.GetInclination());
1526 double diffZsd = clusterZod[0] - RadiansToDegrees(sAngle.GetInclination());
1527
1528 for (uint8_t cIndex = 0; cIndex < channelParams->m_reducedClusterNumber; cIndex++)
1529 {
1530 clusterAoa[cIndex] -= diffAoa; //(7.5-12)
1531 clusterAod[cIndex] -= diffAod;
1532 clusterZoa[cIndex] -= diffZsa; //(7.5-17)
1533 clusterZod[cIndex] -= diffZsd;
1534 }
1535 }
1536
1537 double sizeTemp = clusterZoa.size();
1538 for (uint8_t ind = 0; ind < 4; ind++)
1539 {
1540 DoubleVector angleDegree;
1541 switch (ind)
1542 {
1543 case 0:
1544 angleDegree = clusterAoa;
1545 break;
1546 case 1:
1547 angleDegree = clusterZoa;
1548 break;
1549 case 2:
1550 angleDegree = clusterAod;
1551 break;
1552 case 3:
1553 angleDegree = clusterZod;
1554 break;
1555 default:
1556 NS_FATAL_ERROR("Programming Error");
1557 }
1558 for (uint8_t nIndex = 0; nIndex < sizeTemp; nIndex++)
1559 {
1560 while (angleDegree[nIndex] > 360)
1561 {
1562 angleDegree[nIndex] -= 360;
1563 }
1564
1565 while (angleDegree[nIndex] < 0)
1566 {
1567 angleDegree[nIndex] += 360;
1568 }
1569
1570 if (ind == 1 || ind == 3)
1571 {
1572 if (angleDegree[nIndex] > 180)
1573 {
1574 angleDegree[nIndex] = 360 - angleDegree[nIndex];
1575 }
1576 }
1577 }
1578 switch (ind)
1579 {
1580 case 0:
1581 clusterAoa = angleDegree;
1582 break;
1583 case 1:
1584 clusterZoa = angleDegree;
1585 break;
1586 case 2:
1587 clusterAod = angleDegree;
1588 break;
1589 case 3:
1590 clusterZod = angleDegree;
1591 break;
1592 default:
1593 NS_FATAL_ERROR("Programming Error");
1594 }
1595 }
1596
1597 DoubleVector attenuationDb;
1598 if (m_blockage)
1599 {
1600 attenuationDb = CalcAttenuationOfBlockage(channelParams, clusterAoa, clusterZoa);
1601 for (uint8_t cInd = 0; cInd < channelParams->m_reducedClusterNumber; cInd++)
1602 {
1603 channelParams->m_clusterPower[cInd] =
1604 channelParams->m_clusterPower[cInd] / pow(10, attenuationDb[cInd] / 10.0);
1605 }
1606 }
1607 else
1608 {
1609 attenuationDb.push_back(0);
1610 }
1611
1612 // store attenuation
1613 channelParams->m_attenuation_dB = attenuationDb;
1614
1615 // Step 8: Coupling of rays within a cluster for both azimuth and elevation
1616 // shuffle all the arrays to perform random coupling
1618 channelParams->m_reducedClusterNumber,
1619 DoubleVector(table3gpp->m_raysPerCluster,
1620 0)); // rayAoaRadian[n][m], where n is cluster index, m is ray index
1622 channelParams->m_reducedClusterNumber,
1623 DoubleVector(table3gpp->m_raysPerCluster,
1624 0)); // rayAodRadian[n][m], where n is cluster index, m is ray index
1626 channelParams->m_reducedClusterNumber,
1627 DoubleVector(table3gpp->m_raysPerCluster,
1628 0)); // rayZoaRadian[n][m], where n is cluster index, m is ray index
1630 channelParams->m_reducedClusterNumber,
1631 DoubleVector(table3gpp->m_raysPerCluster,
1632 0)); // rayZodRadian[n][m], where n is cluster index, m is ray index
1633
1634 for (uint8_t nInd = 0; nInd < channelParams->m_reducedClusterNumber; nInd++)
1635 {
1636 for (uint8_t mInd = 0; mInd < table3gpp->m_raysPerCluster; mInd++)
1637 {
1638 double tempAoa = clusterAoa[nInd] + table3gpp->m_cASA * offSetAlpha[mInd]; //(7.5-13)
1639 double tempZoa = clusterZoa[nInd] + table3gpp->m_cZSA * offSetAlpha[mInd]; //(7.5-18)
1640 std::tie(rayAoaRadian[nInd][mInd], rayZoaRadian[nInd][mInd]) =
1641 WrapAngles(DegreesToRadians(tempAoa), DegreesToRadians(tempZoa));
1642
1643 double tempAod = clusterAod[nInd] + table3gpp->m_cASD * offSetAlpha[mInd]; //(7.5-13)
1644 double tempZod = clusterZod[nInd] +
1645 0.375 * pow(10, table3gpp->m_uLgZSD) * offSetAlpha[mInd]; //(7.5-20)
1646 std::tie(rayAodRadian[nInd][mInd], rayZodRadian[nInd][mInd]) =
1647 WrapAngles(DegreesToRadians(tempAod), DegreesToRadians(tempZod));
1648 }
1649 }
1650
1651 for (uint8_t cIndex = 0; cIndex < channelParams->m_reducedClusterNumber; cIndex++)
1652 {
1653 Shuffle(&rayAodRadian[cIndex][0], &rayAodRadian[cIndex][table3gpp->m_raysPerCluster]);
1654 Shuffle(&rayAoaRadian[cIndex][0], &rayAoaRadian[cIndex][table3gpp->m_raysPerCluster]);
1655 Shuffle(&rayZodRadian[cIndex][0], &rayZodRadian[cIndex][table3gpp->m_raysPerCluster]);
1656 Shuffle(&rayZoaRadian[cIndex][0], &rayZoaRadian[cIndex][table3gpp->m_raysPerCluster]);
1657 }
1658
1659 // store values
1660 channelParams->m_rayAodRadian = rayAodRadian;
1661 channelParams->m_rayAoaRadian = rayAoaRadian;
1662 channelParams->m_rayZodRadian = rayZodRadian;
1663 channelParams->m_rayZoaRadian = rayZoaRadian;
1664
1665 // Step 9: Generate the cross polarization power ratios
1666 // Step 10: Draw initial phases
1667 Double2DVector crossPolarizationPowerRatios; // vector containing the cross polarization power
1668 // ratios, as defined by 7.5-21
1669 Double3DVector clusterPhase; // rayAoaRadian[n][m], where n is cluster index, m is ray index
1670 for (uint8_t nInd = 0; nInd < channelParams->m_reducedClusterNumber; nInd++)
1671 {
1672 DoubleVector temp; // used to store the XPR values
1674 temp2; // used to store the PHI values for all the possible combination of polarization
1675 for (uint8_t mInd = 0; mInd < table3gpp->m_raysPerCluster; mInd++)
1676 {
1677 double uXprLinear = pow(10, table3gpp->m_uXpr / 10.0); // convert to linear
1678 double sigXprLinear = pow(10, table3gpp->m_sigXpr / 10.0); // convert to linear
1679
1680 temp.push_back(
1681 std::pow(10, (m_normalRv->GetValue() * sigXprLinear + uXprLinear) / 10.0));
1682 DoubleVector temp3; // used to store the PHI values
1683 for (uint8_t pInd = 0; pInd < 4; pInd++)
1684 {
1685 temp3.push_back(m_uniformRv->GetValue(-1 * M_PI, M_PI));
1686 }
1687 temp2.push_back(temp3);
1688 }
1689 crossPolarizationPowerRatios.push_back(temp);
1690 clusterPhase.push_back(temp2);
1691 }
1692 // store the cluster phase
1693 channelParams->m_clusterPhase = clusterPhase;
1694 channelParams->m_crossPolarizationPowerRatios = crossPolarizationPowerRatios;
1695
1696 uint8_t cluster1st = 0;
1697 uint8_t cluster2nd = 0; // first and second strongest cluster;
1698 double maxPower = 0;
1699 for (uint8_t cIndex = 0; cIndex < channelParams->m_reducedClusterNumber; cIndex++)
1700 {
1701 if (maxPower < channelParams->m_clusterPower[cIndex])
1702 {
1703 maxPower = channelParams->m_clusterPower[cIndex];
1704 cluster1st = cIndex;
1705 }
1706 }
1707 channelParams->m_cluster1st = cluster1st;
1708 maxPower = 0;
1709 for (uint8_t cIndex = 0; cIndex < channelParams->m_reducedClusterNumber; cIndex++)
1710 {
1711 if (maxPower < channelParams->m_clusterPower[cIndex] && cluster1st != cIndex)
1712 {
1713 maxPower = channelParams->m_clusterPower[cIndex];
1714 cluster2nd = cIndex;
1715 }
1716 }
1717 channelParams->m_cluster2nd = cluster2nd;
1718
1719 NS_LOG_INFO("1st strongest cluster:" << +cluster1st
1720 << ", 2nd strongest cluster:" << +cluster2nd);
1721
1722 // store the delays and the angles for the subclusters
1723 if (cluster1st == cluster2nd)
1724 {
1725 clusterDelay.push_back(clusterDelay[cluster1st] + 1.28 * table3gpp->m_cDS);
1726 clusterDelay.push_back(clusterDelay[cluster1st] + 2.56 * table3gpp->m_cDS);
1727
1728 clusterAoa.push_back(clusterAoa[cluster1st]);
1729 clusterAoa.push_back(clusterAoa[cluster1st]);
1730
1731 clusterZoa.push_back(clusterZoa[cluster1st]);
1732 clusterZoa.push_back(clusterZoa[cluster1st]);
1733
1734 clusterAod.push_back(clusterAod[cluster1st]);
1735 clusterAod.push_back(clusterAod[cluster1st]);
1736
1737 clusterZod.push_back(clusterZod[cluster1st]);
1738 clusterZod.push_back(clusterZod[cluster1st]);
1739 }
1740 else
1741 {
1742 double min;
1743 double max;
1744 if (cluster1st < cluster2nd)
1745 {
1746 min = cluster1st;
1747 max = cluster2nd;
1748 }
1749 else
1750 {
1751 min = cluster2nd;
1752 max = cluster1st;
1753 }
1754 clusterDelay.push_back(clusterDelay[min] + 1.28 * table3gpp->m_cDS);
1755 clusterDelay.push_back(clusterDelay[min] + 2.56 * table3gpp->m_cDS);
1756 clusterDelay.push_back(clusterDelay[max] + 1.28 * table3gpp->m_cDS);
1757 clusterDelay.push_back(clusterDelay[max] + 2.56 * table3gpp->m_cDS);
1758
1759 clusterAoa.push_back(clusterAoa[min]);
1760 clusterAoa.push_back(clusterAoa[min]);
1761 clusterAoa.push_back(clusterAoa[max]);
1762 clusterAoa.push_back(clusterAoa[max]);
1763
1764 clusterZoa.push_back(clusterZoa[min]);
1765 clusterZoa.push_back(clusterZoa[min]);
1766 clusterZoa.push_back(clusterZoa[max]);
1767 clusterZoa.push_back(clusterZoa[max]);
1768
1769 clusterAod.push_back(clusterAod[min]);
1770 clusterAod.push_back(clusterAod[min]);
1771 clusterAod.push_back(clusterAod[max]);
1772 clusterAod.push_back(clusterAod[max]);
1773
1774 clusterZod.push_back(clusterZod[min]);
1775 clusterZod.push_back(clusterZod[min]);
1776 clusterZod.push_back(clusterZod[max]);
1777 clusterZod.push_back(clusterZod[max]);
1778 }
1779
1780 channelParams->m_delay = clusterDelay;
1781 channelParams->m_angle.clear();
1782 channelParams->m_angle.push_back(clusterAoa);
1783 channelParams->m_angle.push_back(clusterZoa);
1784 channelParams->m_angle.push_back(clusterAod);
1785 channelParams->m_angle.push_back(clusterZod);
1786
1787 // Compute alpha and D as described in 3GPP TR 37.885 v15.3.0, Sec. 6.2.3
1788 // These terms account for an additional Doppler contribution due to the
1789 // presence of moving objects in the surrounding environment, such as in
1790 // vehicular scenarios.
1791 // This contribution is applied only to the delayed (reflected) paths and
1792 // must be properly configured by setting the value of
1793 // m_vScatt, which is defined as "maximum speed of the vehicle in the
1794 // layout".
1795 // By default, m_vScatt is set to 0, so there is no additional Doppler
1796 // contribution.
1797
1798 DoubleVector dopplerTermAlpha;
1799 DoubleVector dopplerTermD;
1800
1801 // 2 or 4 is added to account for additional subrays for the 1st and 2nd clusters, if there is
1802 // only one cluster then would be added 2 more subrays (see creation of Husn channel matrix)
1803 uint8_t updatedClusterNumber = (channelParams->m_reducedClusterNumber == 1)
1804 ? channelParams->m_reducedClusterNumber + 2
1805 : channelParams->m_reducedClusterNumber + 4;
1806
1807 for (uint8_t cIndex = 0; cIndex < updatedClusterNumber; cIndex++)
1808 {
1809 double alpha = 0;
1810 double D = 0;
1811 if (cIndex != 0)
1812 {
1813 alpha = m_uniformRvDoppler->GetValue(-1, 1);
1815 }
1816 dopplerTermAlpha.push_back(alpha);
1817 dopplerTermD.push_back(D);
1818 }
1819 channelParams->m_alpha = dopplerTermAlpha;
1820 channelParams->m_D = dopplerTermD;
1821
1822 return channelParams;
1823}
1824
1827 Ptr<const ParamsTable> table3gpp,
1828 const Ptr<const MobilityModel> sMob,
1829 const Ptr<const MobilityModel> uMob,
1831 Ptr<const PhasedArrayModel> uAntenna) const
1832{
1833 NS_LOG_FUNCTION(this);
1834
1835 NS_ASSERT_MSG(m_frequency > 0.0, "Set the operating frequency first!");
1836
1837 // create a channel matrix instance
1838 Ptr<ChannelMatrix> channelMatrix = Create<ChannelMatrix>();
1839 channelMatrix->m_generatedTime = Simulator::Now();
1840 // save in which order is generated this matrix
1841 channelMatrix->m_nodeIds =
1842 std::make_pair(sMob->GetObject<Node>()->GetId(), uMob->GetObject<Node>()->GetId());
1843 // check if channelParams structure is generated in direction s-to-u or u-to-s
1844 bool isSameDirection = (channelParams->m_nodeIds == channelMatrix->m_nodeIds);
1845
1850
1851 // if channel params is generated in the same direction in which we
1852 // generate the channel matrix, angles and zenith od departure and arrival are ok,
1853 // just set them to corresponding variable that will be used for the generation
1854 // of channel matrix, otherwise we need to flip angles and zeniths of departure and arrival
1855 if (isSameDirection)
1856 {
1857 rayAodRadian = channelParams->m_rayAodRadian;
1858 rayAoaRadian = channelParams->m_rayAoaRadian;
1859 rayZodRadian = channelParams->m_rayZodRadian;
1860 rayZoaRadian = channelParams->m_rayZoaRadian;
1861 }
1862 else
1863 {
1864 rayAodRadian = channelParams->m_rayAoaRadian;
1865 rayAoaRadian = channelParams->m_rayAodRadian;
1866 rayZodRadian = channelParams->m_rayZoaRadian;
1867 rayZoaRadian = channelParams->m_rayZodRadian;
1868 }
1869
1870 // Step 11: Generate channel coefficients for each cluster n and each receiver
1871 // and transmitter element pair u,s.
1872 // where n is cluster index, u and s are receive and transmit antenna element.
1873 size_t uSize = uAntenna->GetNumElems();
1874 size_t sSize = sAntenna->GetNumElems();
1875
1876 // NOTE: Since each of the strongest 2 clusters are divided into 3 sub-clusters,
1877 // the total cluster will generally be numReducedCLuster + 4.
1878 // However, it might be that m_cluster1st = m_cluster2nd. In this case the
1879 // total number of clusters will be numReducedCLuster + 2.
1880 uint16_t numOverallCluster = (channelParams->m_cluster1st != channelParams->m_cluster2nd)
1881 ? channelParams->m_reducedClusterNumber + 4
1882 : channelParams->m_reducedClusterNumber + 2;
1883 Complex3DVector hUsn(uSize, sSize, numOverallCluster); // channel coefficient hUsn (u, s, n);
1884 NS_ASSERT(channelParams->m_reducedClusterNumber <= channelParams->m_clusterPhase.size());
1885 NS_ASSERT(channelParams->m_reducedClusterNumber <= channelParams->m_clusterPower.size());
1886 NS_ASSERT(channelParams->m_reducedClusterNumber <=
1887 channelParams->m_crossPolarizationPowerRatios.size());
1888 NS_ASSERT(channelParams->m_reducedClusterNumber <= rayZoaRadian.size());
1889 NS_ASSERT(channelParams->m_reducedClusterNumber <= rayZodRadian.size());
1890 NS_ASSERT(channelParams->m_reducedClusterNumber <= rayAoaRadian.size());
1891 NS_ASSERT(channelParams->m_reducedClusterNumber <= rayAodRadian.size());
1892 NS_ASSERT(table3gpp->m_raysPerCluster <= channelParams->m_clusterPhase[0].size());
1893 NS_ASSERT(table3gpp->m_raysPerCluster <=
1894 channelParams->m_crossPolarizationPowerRatios[0].size());
1895 NS_ASSERT(table3gpp->m_raysPerCluster <= rayZoaRadian[0].size());
1896 NS_ASSERT(table3gpp->m_raysPerCluster <= rayZodRadian[0].size());
1897 NS_ASSERT(table3gpp->m_raysPerCluster <= rayAoaRadian[0].size());
1898 NS_ASSERT(table3gpp->m_raysPerCluster <= rayAodRadian[0].size());
1899
1900 double x = sMob->GetPosition().x - uMob->GetPosition().x;
1901 double y = sMob->GetPosition().y - uMob->GetPosition().y;
1902 double distance2D = sqrt(x * x + y * y);
1903 // NOTE we assume hUT = min (height(a), height(b)) and
1904 // hBS = max (height (a), height (b))
1905 double hUt = std::min(sMob->GetPosition().z, uMob->GetPosition().z);
1906 double hBs = std::max(sMob->GetPosition().z, uMob->GetPosition().z);
1907 // compute the 3D distance using eq. 7.4-1
1908 double distance3D = std::sqrt(distance2D * distance2D + (hBs - hUt) * (hBs - hUt));
1909
1910 Angles sAngle(uMob->GetPosition(), sMob->GetPosition());
1911 Angles uAngle(sMob->GetPosition(), uMob->GetPosition());
1912
1913 Double2DVector sinCosA; // cached multiplications of sin and cos of the ZoA and AoA angles
1914 Double2DVector sinSinA; // cached multiplications of sines of the ZoA and AoA angles
1915 Double2DVector cosZoA; // cached cos of the ZoA angle
1916 Double2DVector sinCosD; // cached multiplications of sin and cos of the ZoD and AoD angles
1917 Double2DVector sinSinD; // cached multiplications of the cosines of the ZoA and AoA angles
1918 Double2DVector cosZoD; // cached cos of the ZoD angle
1919
1920 // contains part of the ray expression, cached as independent from the u- and s-indexes,
1921 // but calculate it for different polarization angles of s and u
1922 std::map<std::pair<uint8_t, uint8_t>, Complex2DVector> raysPreComp;
1923 for (size_t polSa = 0; polSa < sAntenna->GetNumPols(); ++polSa)
1924 {
1925 for (size_t polUa = 0; polUa < uAntenna->GetNumPols(); ++polUa)
1926 {
1927 raysPreComp[std::make_pair(polSa, polUa)] =
1928 Complex2DVector(channelParams->m_reducedClusterNumber, table3gpp->m_raysPerCluster);
1929 }
1930 }
1931
1932 // resize to appropriate dimensions
1933 sinCosA.resize(channelParams->m_reducedClusterNumber);
1934 sinSinA.resize(channelParams->m_reducedClusterNumber);
1935 cosZoA.resize(channelParams->m_reducedClusterNumber);
1936 sinCosD.resize(channelParams->m_reducedClusterNumber);
1937 sinSinD.resize(channelParams->m_reducedClusterNumber);
1938 cosZoD.resize(channelParams->m_reducedClusterNumber);
1939 for (uint8_t nIndex = 0; nIndex < channelParams->m_reducedClusterNumber; nIndex++)
1940 {
1941 sinCosA[nIndex].resize(table3gpp->m_raysPerCluster);
1942 sinSinA[nIndex].resize(table3gpp->m_raysPerCluster);
1943 cosZoA[nIndex].resize(table3gpp->m_raysPerCluster);
1944 sinCosD[nIndex].resize(table3gpp->m_raysPerCluster);
1945 sinSinD[nIndex].resize(table3gpp->m_raysPerCluster);
1946 cosZoD[nIndex].resize(table3gpp->m_raysPerCluster);
1947 }
1948 // pre-compute the terms which are independent from uIndex and sIndex
1949 for (uint8_t nIndex = 0; nIndex < channelParams->m_reducedClusterNumber; nIndex++)
1950 {
1951 for (uint8_t mIndex = 0; mIndex < table3gpp->m_raysPerCluster; mIndex++)
1952 {
1953 DoubleVector initialPhase = channelParams->m_clusterPhase[nIndex][mIndex];
1954 NS_ASSERT(4 <= initialPhase.size());
1955 double k = channelParams->m_crossPolarizationPowerRatios[nIndex][mIndex];
1956
1957 // cache the component of the "rays" terms which depend on the random angle of arrivals
1958 // and departures and initial phases only
1959 for (uint8_t polUa = 0; polUa < uAntenna->GetNumPols(); ++polUa)
1960 {
1961 auto [rxFieldPatternPhi, rxFieldPatternTheta] = uAntenna->GetElementFieldPattern(
1962 Angles(channelParams->m_rayAoaRadian[nIndex][mIndex],
1963 channelParams->m_rayZoaRadian[nIndex][mIndex]),
1964 polUa);
1965 for (uint8_t polSa = 0; polSa < sAntenna->GetNumPols(); ++polSa)
1966 {
1967 auto [txFieldPatternPhi, txFieldPatternTheta] =
1968 sAntenna->GetElementFieldPattern(
1969 Angles(channelParams->m_rayAodRadian[nIndex][mIndex],
1970 channelParams->m_rayZodRadian[nIndex][mIndex]),
1971 polSa);
1972 raysPreComp[std::make_pair(polSa, polUa)](nIndex, mIndex) =
1973 std::complex<double>(cos(initialPhase[0]), sin(initialPhase[0])) *
1974 rxFieldPatternTheta * txFieldPatternTheta +
1975 std::complex<double>(cos(initialPhase[1]), sin(initialPhase[1])) *
1976 std::sqrt(1.0 / k) * rxFieldPatternTheta * txFieldPatternPhi +
1977 std::complex<double>(cos(initialPhase[2]), sin(initialPhase[2])) *
1978 std::sqrt(1.0 / k) * rxFieldPatternPhi * txFieldPatternTheta +
1979 std::complex<double>(cos(initialPhase[3]), sin(initialPhase[3])) *
1980 rxFieldPatternPhi * txFieldPatternPhi;
1981 }
1982 }
1983
1984 // cache the component of the "rxPhaseDiff" terms which depend on the random angle of
1985 // arrivals only
1986 double sinRayZoa = sin(rayZoaRadian[nIndex][mIndex]);
1987 double sinRayAoa = sin(rayAoaRadian[nIndex][mIndex]);
1988 double cosRayAoa = cos(rayAoaRadian[nIndex][mIndex]);
1989 sinCosA[nIndex][mIndex] = sinRayZoa * cosRayAoa;
1990 sinSinA[nIndex][mIndex] = sinRayZoa * sinRayAoa;
1991 cosZoA[nIndex][mIndex] = cos(rayZoaRadian[nIndex][mIndex]);
1992
1993 // cache the component of the "txPhaseDiff" terms which depend on the random angle of
1994 // departure only
1995 double sinRayZod = sin(rayZodRadian[nIndex][mIndex]);
1996 double sinRayAod = sin(rayAodRadian[nIndex][mIndex]);
1997 double cosRayAod = cos(rayAodRadian[nIndex][mIndex]);
1998 sinCosD[nIndex][mIndex] = sinRayZod * cosRayAod;
1999 sinSinD[nIndex][mIndex] = sinRayZod * sinRayAod;
2000 cosZoD[nIndex][mIndex] = cos(rayZodRadian[nIndex][mIndex]);
2001 }
2002 }
2003
2004 // The following for loops computes the channel coefficients
2005 // Keeps track of how many sub-clusters have been added up to now
2006 uint8_t numSubClustersAdded = 0;
2007 for (uint8_t nIndex = 0; nIndex < channelParams->m_reducedClusterNumber; nIndex++)
2008 {
2009 for (size_t uIndex = 0; uIndex < uSize; uIndex++)
2010 {
2011 Vector uLoc = uAntenna->GetElementLocation(uIndex);
2012
2013 for (size_t sIndex = 0; sIndex < sSize; sIndex++)
2014 {
2015 Vector sLoc = sAntenna->GetElementLocation(sIndex);
2016 // Compute the N-2 weakest cluster, assuming 0 slant angle and a
2017 // polarization slant angle configured in the array (7.5-22)
2018 if (nIndex != channelParams->m_cluster1st && nIndex != channelParams->m_cluster2nd)
2019 {
2020 std::complex<double> rays(0, 0);
2021 for (uint8_t mIndex = 0; mIndex < table3gpp->m_raysPerCluster; mIndex++)
2022 {
2023 // lambda_0 is accounted in the antenna spacing uLoc and sLoc.
2024 double rxPhaseDiff =
2025 2 * M_PI *
2026 (sinCosA[nIndex][mIndex] * uLoc.x + sinSinA[nIndex][mIndex] * uLoc.y +
2027 cosZoA[nIndex][mIndex] * uLoc.z);
2028
2029 double txPhaseDiff =
2030 2 * M_PI *
2031 (sinCosD[nIndex][mIndex] * sLoc.x + sinSinD[nIndex][mIndex] * sLoc.y +
2032 cosZoD[nIndex][mIndex] * sLoc.z);
2033 // NOTE Doppler is computed in the CalcBeamformingGain function and is
2034 // simplified to only account for the center angle of each cluster.
2035 rays += raysPreComp[std::make_pair(sAntenna->GetElemPol(sIndex),
2036 uAntenna->GetElemPol(uIndex))](nIndex,
2037 mIndex) *
2038 std::complex<double>(cos(rxPhaseDiff), sin(rxPhaseDiff)) *
2039 std::complex<double>(cos(txPhaseDiff), sin(txPhaseDiff));
2040 }
2041 rays *=
2042 sqrt(channelParams->m_clusterPower[nIndex] / table3gpp->m_raysPerCluster);
2043 hUsn(uIndex, sIndex, nIndex) = rays;
2044 }
2045 else //(7.5-28)
2046 {
2047 std::complex<double> raysSub1(0, 0);
2048 std::complex<double> raysSub2(0, 0);
2049 std::complex<double> raysSub3(0, 0);
2050
2051 for (uint8_t mIndex = 0; mIndex < table3gpp->m_raysPerCluster; mIndex++)
2052 {
2053 // ZML:Just remind me that the angle offsets for the 3 subclusters were not
2054 // generated correctly.
2055 double rxPhaseDiff =
2056 2 * M_PI *
2057 (sinCosA[nIndex][mIndex] * uLoc.x + sinSinA[nIndex][mIndex] * uLoc.y +
2058 cosZoA[nIndex][mIndex] * uLoc.z);
2059
2060 double txPhaseDiff =
2061 2 * M_PI *
2062 (sinCosD[nIndex][mIndex] * sLoc.x + sinSinD[nIndex][mIndex] * sLoc.y +
2063 cosZoD[nIndex][mIndex] * sLoc.z);
2064
2065 std::complex<double> raySub =
2066 raysPreComp[std::make_pair(sAntenna->GetElemPol(sIndex),
2067 uAntenna->GetElemPol(uIndex))](nIndex,
2068 mIndex) *
2069 std::complex<double>(cos(rxPhaseDiff), sin(rxPhaseDiff)) *
2070 std::complex<double>(cos(txPhaseDiff), sin(txPhaseDiff));
2071
2072 switch (mIndex)
2073 {
2074 case 9:
2075 case 10:
2076 case 11:
2077 case 12:
2078 case 17:
2079 case 18:
2080 raysSub2 += raySub;
2081 break;
2082 case 13:
2083 case 14:
2084 case 15:
2085 case 16:
2086 raysSub3 += raySub;
2087 break;
2088 default: // case 1,2,3,4,5,6,7,8,19,20
2089 raysSub1 += raySub;
2090 break;
2091 }
2092 }
2093 raysSub1 *=
2094 sqrt(channelParams->m_clusterPower[nIndex] / table3gpp->m_raysPerCluster);
2095 raysSub2 *=
2096 sqrt(channelParams->m_clusterPower[nIndex] / table3gpp->m_raysPerCluster);
2097 raysSub3 *=
2098 sqrt(channelParams->m_clusterPower[nIndex] / table3gpp->m_raysPerCluster);
2099 hUsn(uIndex, sIndex, nIndex) = raysSub1;
2100 hUsn(uIndex,
2101 sIndex,
2102 channelParams->m_reducedClusterNumber + numSubClustersAdded) = raysSub2;
2103 hUsn(uIndex,
2104 sIndex,
2105 channelParams->m_reducedClusterNumber + numSubClustersAdded + 1) =
2106 raysSub3;
2107 }
2108 }
2109 }
2110 if (nIndex == channelParams->m_cluster1st || nIndex == channelParams->m_cluster2nd)
2111 {
2112 numSubClustersAdded += 2;
2113 }
2114 }
2115
2116 if (channelParams->m_losCondition == ChannelCondition::LOS) //(7.5-29) && (7.5-30)
2117 {
2118 double lambda = 3.0e8 / m_frequency; // the wavelength of the carrier frequency
2119 std::complex<double> phaseDiffDueToDistance(cos(-2 * M_PI * distance3D / lambda),
2120 sin(-2 * M_PI * distance3D / lambda));
2121
2122 const double sinUAngleIncl = sin(uAngle.GetInclination());
2123 const double cosUAngleIncl = cos(uAngle.GetInclination());
2124 const double sinUAngleAz = sin(uAngle.GetAzimuth());
2125 const double cosUAngleAz = cos(uAngle.GetAzimuth());
2126 const double sinSAngleIncl = sin(sAngle.GetInclination());
2127 const double cosSAngleIncl = cos(sAngle.GetInclination());
2128 const double sinSAngleAz = sin(sAngle.GetAzimuth());
2129 const double cosSAngleAz = cos(sAngle.GetAzimuth());
2130
2131 for (size_t uIndex = 0; uIndex < uSize; uIndex++)
2132 {
2133 Vector uLoc = uAntenna->GetElementLocation(uIndex);
2134 double rxPhaseDiff = 2 * M_PI *
2135 (sinUAngleIncl * cosUAngleAz * uLoc.x +
2136 sinUAngleIncl * sinUAngleAz * uLoc.y + cosUAngleIncl * uLoc.z);
2137
2138 for (size_t sIndex = 0; sIndex < sSize; sIndex++)
2139 {
2140 Vector sLoc = sAntenna->GetElementLocation(sIndex);
2141 std::complex<double> ray(0, 0);
2142 double txPhaseDiff =
2143 2 * M_PI *
2144 (sinSAngleIncl * cosSAngleAz * sLoc.x + sinSAngleIncl * sinSAngleAz * sLoc.y +
2145 cosSAngleIncl * sLoc.z);
2146
2147 auto [rxFieldPatternPhi, rxFieldPatternTheta] = uAntenna->GetElementFieldPattern(
2148 Angles(uAngle.GetAzimuth(), uAngle.GetInclination()),
2149 uAntenna->GetElemPol(uIndex));
2150 auto [txFieldPatternPhi, txFieldPatternTheta] = sAntenna->GetElementFieldPattern(
2151 Angles(sAngle.GetAzimuth(), sAngle.GetInclination()),
2152 sAntenna->GetElemPol(sIndex));
2153
2154 ray = (rxFieldPatternTheta * txFieldPatternTheta -
2155 rxFieldPatternPhi * txFieldPatternPhi) *
2156 phaseDiffDueToDistance *
2157 std::complex<double>(cos(rxPhaseDiff), sin(rxPhaseDiff)) *
2158 std::complex<double>(cos(txPhaseDiff), sin(txPhaseDiff));
2159
2160 double kLinear = pow(10, channelParams->m_K_factor / 10.0);
2161 // the LOS path should be attenuated if blockage is enabled.
2162 hUsn(uIndex, sIndex, 0) =
2163 sqrt(1.0 / (kLinear + 1)) * hUsn(uIndex, sIndex, 0) +
2164 sqrt(kLinear / (1 + kLinear)) * ray /
2165 pow(10,
2166 channelParams->m_attenuation_dB[0] / 10.0); //(7.5-30) for tau = tau1
2167 for (size_t nIndex = 1; nIndex < hUsn.GetNumPages(); nIndex++)
2168 {
2169 hUsn(uIndex, sIndex, nIndex) *=
2170 sqrt(1.0 / (kLinear + 1)); //(7.5-30) for tau = tau2...tauN
2171 }
2172 }
2173 }
2174 }
2175
2176 NS_LOG_DEBUG("Husn (sAntenna, uAntenna):" << sAntenna->GetId() << ", " << uAntenna->GetId());
2177 for (size_t cIndex = 0; cIndex < hUsn.GetNumPages(); cIndex++)
2178 {
2179 for (size_t rowIdx = 0; rowIdx < hUsn.GetNumRows(); rowIdx++)
2180 {
2181 for (size_t colIdx = 0; colIdx < hUsn.GetNumCols(); colIdx++)
2182 {
2183 NS_LOG_DEBUG(" " << hUsn(rowIdx, colIdx, cIndex) << ",");
2184 }
2185 }
2186 }
2187
2188 NS_LOG_INFO("size of coefficient matrix (rows, columns, clusters) = ("
2189 << hUsn.GetNumRows() << ", " << hUsn.GetNumCols() << ", " << hUsn.GetNumPages()
2190 << ")");
2191 channelMatrix->m_channel = hUsn;
2192 return channelMatrix;
2193}
2194
2195std::pair<double, double>
2196ThreeGppChannelModel::WrapAngles(double azimuthRad, double inclinationRad)
2197{
2198 inclinationRad = WrapTo2Pi(inclinationRad);
2199 if (inclinationRad > M_PI)
2200 {
2201 // inclination must be in [0, M_PI]
2202 inclinationRad -= M_PI;
2203 azimuthRad += M_PI;
2204 }
2205
2206 azimuthRad = WrapTo2Pi(azimuthRad);
2207
2208 NS_ASSERT_MSG(0 <= inclinationRad && inclinationRad <= M_PI,
2209 "inclinationRad=" << inclinationRad << " not valid, should be in [0, pi]");
2210 NS_ASSERT_MSG(0 <= azimuthRad && azimuthRad <= 2 * M_PI,
2211 "azimuthRad=" << azimuthRad << " not valid, should be in [0, 2*pi]");
2212
2213 return std::make_pair(azimuthRad, inclinationRad);
2214}
2215
2219 const DoubleVector& clusterAOA,
2220 const DoubleVector& clusterZOA) const
2221{
2222 NS_LOG_FUNCTION(this);
2223
2224 auto clusterNum = clusterAOA.size();
2225
2226 // Initial power attenuation for all clusters to be 0 dB
2227 DoubleVector powerAttenuation(clusterNum, 0);
2228
2229 // step a: the number of non-self blocking blockers is stored in m_numNonSelfBlocking.
2230
2231 // step b:Generate the size and location of each blocker
2232 // generate self blocking (i.e., for blockage from the human body)
2233 // table 7.6.4.1-1 Self-blocking region parameters.
2234 // Defaults: landscape mode
2235 double phiSb = 40;
2236 double xSb = 160;
2237 double thetaSb = 110;
2238 double ySb = 75;
2239 if (m_portraitMode)
2240 {
2241 phiSb = 260;
2242 xSb = 120;
2243 thetaSb = 100;
2244 ySb = 80;
2245 }
2246
2247 // generate or update non-self blocking
2248 if (channelParams->m_nonSelfBlocking.empty()) // generate new blocking regions
2249 {
2250 for (uint16_t blockInd = 0; blockInd < m_numNonSelfBlocking; blockInd++)
2251 {
2252 // draw value from table 7.6.4.1-2 Blocking region parameters
2253 DoubleVector table;
2254 table.push_back(m_normalRv->GetValue()); // phi_k: store the normal RV that will be
2255 // mapped to uniform (0,360) later.
2256 if (m_scenario == "InH-OfficeMixed" || m_scenario == "InH-OfficeOpen")
2257 {
2258 table.push_back(m_uniformRv->GetValue(15, 45)); // x_k
2259 table.push_back(90); // Theta_k
2260 table.push_back(m_uniformRv->GetValue(5, 15)); // y_k
2261 table.push_back(2); // r
2262 }
2263 else
2264 {
2265 table.push_back(m_uniformRv->GetValue(5, 15)); // x_k
2266 table.push_back(90); // Theta_k
2267 table.push_back(5); // y_k
2268 table.push_back(10); // r
2269 }
2270 channelParams->m_nonSelfBlocking.push_back(table);
2271 }
2272 }
2273 else
2274 {
2275 double deltaX = sqrt(pow(channelParams->m_preLocUT.x - channelParams->m_locUT.x, 2) +
2276 pow(channelParams->m_preLocUT.y - channelParams->m_locUT.y, 2));
2277 // if deltaX and speed are both 0, the autocorrelation is 1, skip updating
2278 if (deltaX > 1e-6 || m_blockerSpeed > 1e-6)
2279 {
2280 double corrDis;
2281 // draw value from table 7.6.4.1-4: Spatial correlation distance for different
2282 // m_scenarios.
2283 if (m_scenario == "InH-OfficeMixed" || m_scenario == "InH-OfficeOpen")
2284 {
2285 // InH, correlation distance = 5;
2286 corrDis = 5;
2287 }
2288 else
2289 {
2290 if (channelParams->m_o2iCondition == ChannelCondition::O2I) // outdoor to indoor
2291 {
2292 corrDis = 5;
2293 }
2294 else // LOS or NLOS
2295 {
2296 corrDis = 10;
2297 }
2298 }
2299 double R;
2300 if (m_blockerSpeed > 1e-6) // speed not equal to 0
2301 {
2302 double corrT = corrDis / m_blockerSpeed;
2303 R = exp(-1 * (deltaX / corrDis +
2304 (Now().GetSeconds() - channelParams->m_generatedTime.GetSeconds()) /
2305 corrT));
2306 }
2307 else
2308 {
2309 R = exp(-1 * (deltaX / corrDis));
2310 }
2311
2312 NS_LOG_INFO("Distance change:"
2313 << deltaX << " Speed:" << m_blockerSpeed << " Time difference:"
2314 << Now().GetSeconds() - channelParams->m_generatedTime.GetSeconds()
2315 << " correlation:" << R);
2316
2317 // In order to generate correlated uniform random variables, we first generate
2318 // correlated normal random variables and map the normal RV to uniform RV. Notice the
2319 // correlation will change if the RV is transformed from normal to uniform. To
2320 // compensate the distortion, the correlation of the normal RV is computed such that the
2321 // uniform RV would have the desired correlation when transformed from normal RV.
2322
2323 // The following formula was obtained from MATLAB numerical simulation.
2324
2325 if (R * R * (-0.069) + R * 1.074 - 0.002 <
2326 1) // transform only when the correlation of normal RV is smaller than 1
2327 {
2328 R = R * R * (-0.069) + R * 1.074 - 0.002;
2329 }
2330 for (uint16_t blockInd = 0; blockInd < m_numNonSelfBlocking; blockInd++)
2331 {
2332 // Generate a new correlated normal RV with the following formula
2333 channelParams->m_nonSelfBlocking[blockInd][PHI_INDEX] =
2334 R * channelParams->m_nonSelfBlocking[blockInd][PHI_INDEX] +
2335 sqrt(1 - R * R) * m_normalRv->GetValue();
2336 }
2337 }
2338 }
2339
2340 // step c: Determine the attenuation of each blocker due to blockers
2341 for (std::size_t cInd = 0; cInd < clusterNum; cInd++)
2342 {
2343 NS_ASSERT_MSG(clusterAOA[cInd] >= 0 && clusterAOA[cInd] <= 360,
2344 "the AOA should be the range of [0,360]");
2345 NS_ASSERT_MSG(clusterZOA[cInd] >= 0 && clusterZOA[cInd] <= 180,
2346 "the ZOA should be the range of [0,180]");
2347
2348 // check self blocking
2349 NS_LOG_INFO("AOA=" << clusterAOA[cInd] << " Block Region[" << phiSb - xSb / 2.0 << ","
2350 << phiSb + xSb / 2.0 << "]");
2351 NS_LOG_INFO("ZOA=" << clusterZOA[cInd] << " Block Region[" << thetaSb - ySb / 2.0 << ","
2352 << thetaSb + ySb / 2.0 << "]");
2353 if (std::abs(clusterAOA[cInd] - phiSb) < (xSb / 2.0) &&
2354 std::abs(clusterZOA[cInd] - thetaSb) < (ySb / 2.0))
2355 {
2356 powerAttenuation[cInd] += 30; // attenuate by 30 dB.
2357 NS_LOG_INFO("Cluster[" << +cInd
2358 << "] is blocked by self blocking region and reduce 30 dB power,"
2359 "the attenuation is ["
2360 << powerAttenuation[cInd] << " dB]");
2361 }
2362
2363 // check non-self blocking
2364 for (uint16_t blockInd = 0; blockInd < m_numNonSelfBlocking; blockInd++)
2365 {
2366 // The normal RV is transformed to uniform RV with the desired correlation.
2367 double phiK =
2368 (0.5 * erfc(-1 * channelParams->m_nonSelfBlocking[blockInd][PHI_INDEX] / sqrt(2))) *
2369 360;
2370 while (phiK > 360)
2371 {
2372 phiK -= 360;
2373 }
2374
2375 while (phiK < 0)
2376 {
2377 phiK += 360;
2378 }
2379
2380 double xK = channelParams->m_nonSelfBlocking[blockInd][X_INDEX];
2381 double thetaK = channelParams->m_nonSelfBlocking[blockInd][THETA_INDEX];
2382 double yK = channelParams->m_nonSelfBlocking[blockInd][Y_INDEX];
2383
2384 NS_LOG_INFO("AOA=" << clusterAOA[cInd] << " Block Region[" << phiK - xK << ","
2385 << phiK + xK << "]");
2386 NS_LOG_INFO("ZOA=" << clusterZOA[cInd] << " Block Region[" << thetaK - yK << ","
2387 << thetaK + yK << "]");
2388
2389 if (std::abs(clusterAOA[cInd] - phiK) < (xK) &&
2390 std::abs(clusterZOA[cInd] - thetaK) < (yK))
2391 {
2392 double A1 = clusterAOA[cInd] - (phiK + xK / 2.0); //(7.6-24)
2393 double A2 = clusterAOA[cInd] - (phiK - xK / 2.0); //(7.6-25)
2394 double Z1 = clusterZOA[cInd] - (thetaK + yK / 2.0); //(7.6-26)
2395 double Z2 = clusterZOA[cInd] - (thetaK - yK / 2.0); //(7.6-27)
2396 int signA1;
2397 int signA2;
2398 int signZ1;
2399 int signZ2;
2400 // draw sign for the above parameters according to table 7.6.4.1-3 Description of
2401 // signs
2402 if (xK / 2.0 < clusterAOA[cInd] - phiK && clusterAOA[cInd] - phiK <= xK)
2403 {
2404 signA1 = -1;
2405 }
2406 else
2407 {
2408 signA1 = 1;
2409 }
2410 if (-1 * xK < clusterAOA[cInd] - phiK && clusterAOA[cInd] - phiK <= -1 * xK / 2.0)
2411 {
2412 signA2 = -1;
2413 }
2414 else
2415 {
2416 signA2 = 1;
2417 }
2418
2419 if (yK / 2.0 < clusterZOA[cInd] - thetaK && clusterZOA[cInd] - thetaK <= yK)
2420 {
2421 signZ1 = -1;
2422 }
2423 else
2424 {
2425 signZ1 = 1;
2426 }
2427 if (-1 * yK < clusterZOA[cInd] - thetaK &&
2428 clusterZOA[cInd] - thetaK <= -1 * yK / 2.0)
2429 {
2430 signZ2 = -1;
2431 }
2432 else
2433 {
2434 signZ2 = 1;
2435 }
2436 double lambda = 3e8 / m_frequency;
2437 double fA1 =
2438 atan(signA1 * M_PI / 2.0 *
2439 sqrt(M_PI / lambda * channelParams->m_nonSelfBlocking[blockInd][R_INDEX] *
2440 (1.0 / cos(DegreesToRadians(A1)) - 1))) /
2441 M_PI; //(7.6-23)
2442 double fA2 =
2443 atan(signA2 * M_PI / 2.0 *
2444 sqrt(M_PI / lambda * channelParams->m_nonSelfBlocking[blockInd][R_INDEX] *
2445 (1.0 / cos(DegreesToRadians(A2)) - 1))) /
2446 M_PI;
2447 double fZ1 =
2448 atan(signZ1 * M_PI / 2.0 *
2449 sqrt(M_PI / lambda * channelParams->m_nonSelfBlocking[blockInd][R_INDEX] *
2450 (1.0 / cos(DegreesToRadians(Z1)) - 1))) /
2451 M_PI;
2452 double fZ2 =
2453 atan(signZ2 * M_PI / 2.0 *
2454 sqrt(M_PI / lambda * channelParams->m_nonSelfBlocking[blockInd][R_INDEX] *
2455 (1.0 / cos(DegreesToRadians(Z2)) - 1))) /
2456 M_PI;
2457 double lDb = -20 * log10(1 - (fA1 + fA2) * (fZ1 + fZ2)); //(7.6-22)
2458 powerAttenuation[cInd] += lDb;
2459 NS_LOG_INFO("Cluster[" << +cInd << "] is blocked by no-self blocking, the loss is ["
2460 << lDb << "] dB");
2461 }
2462 }
2463 }
2464 return powerAttenuation;
2465}
2466
2467void
2468ThreeGppChannelModel::Shuffle(double* first, double* last) const
2469{
2470 for (auto i = (last - first) - 1; i > 0; --i)
2471 {
2472 std::swap(first[i], first[m_uniformRvShuffle->GetInteger(0, i)]);
2473 }
2474}
2475
2476int64_t
2478{
2479 NS_LOG_FUNCTION(this << stream);
2480 m_normalRv->SetStream(stream);
2481 m_uniformRv->SetStream(stream + 1);
2482 m_uniformRvShuffle->SetStream(stream + 2);
2483 m_uniformRvDoppler->SetStream(stream + 3);
2484 return 4;
2485}
2486
2487} // namespace ns3
#define min(a, b)
Definition: 80211b.c:41
double f(double x, void *params)
Definition: 80211b.c:70
#define max(a, b)
Definition: 80211b.c:42
Class holding the azimuth and inclination angles of spherical coordinates.
Definition: angles.h:118
double GetInclination() const
Getter for inclination angle.
Definition: angles.cc:246
double GetAzimuth() const
Getter for azimuth angle.
Definition: angles.cc:240
AttributeValue implementation for Boolean.
Definition: boolean.h:37
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
Hold a signed integer type.
Definition: integer.h:45
MatrixArray class inherits ValArray class and provides additional interfaces to ValArray which enable...
Definition: matrix-array.h:83
This is an interface for a channel model that can be described by a channel matrix,...
std::vector< double > DoubleVector
Type definition for vectors of doubles.
ComplexMatrixArray Complex2DVector
Create an alias for 2D complex vectors.
std::vector< Double2DVector > Double3DVector
Type definition for 3D matrices of doubles.
std::vector< DoubleVector > Double2DVector
Type definition for matrices of doubles.
static uint64_t GetKey(uint32_t a, uint32_t b)
Generate a unique value for the pair of unsigned integer of 32 bits, where the order does not matter,...
A network Node.
Definition: node.h:57
uint32_t GetId() const
Definition: node.cc:117
Hold objects of type Ptr<T>.
Definition: pointer.h:37
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
void SetStream(int64_t stream)
Specifies the stream number for the RngStream.
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
Hold variables of type string.
Definition: string.h:56
DoubleVector CalcAttenuationOfBlockage(const Ptr< ThreeGppChannelModel::ThreeGppChannelParams > channelParams, const DoubleVector &clusterAOA, const DoubleVector &clusterZOA) const
Applies the blockage model A described in 3GPP TR 38.901.
int64_t AssignStreams(int64_t stream)
Assign a fixed random variable stream number to the random variables used by this model.
bool m_portraitMode
true if portrait mode, false if landscape
bool ChannelParamsNeedsUpdate(Ptr< const ThreeGppChannelParams > channelParams, Ptr< const ChannelCondition > channelCondition) const
Check if the channel params has to be updated.
virtual Ptr< const ParamsTable > GetThreeGppTable(Ptr< const ChannelCondition > channelCondition, double hBS, double hUT, double distance2D) const
Get the parameters needed to apply the channel generation procedure.
Ptr< NormalRandomVariable > m_normalRv
normal random variable
static const uint8_t Y_INDEX
index of the Y value in the m_nonSelfBlocking array
bool m_blockage
enables the blockage model A
Ptr< const ChannelParams > GetParams(Ptr< const MobilityModel > aMob, Ptr< const MobilityModel > bMob) const override
Looks for the channel params associated to the aMob and bMob pair in m_channelParamsMap.
~ThreeGppChannelModel() override
Destructor.
bool ChannelMatrixNeedsUpdate(Ptr< const ThreeGppChannelParams > channelParams, Ptr< const ChannelMatrix > channelMatrix)
Check if the channel matrix has to be updated (it needs update when the channel params generation tim...
static const uint8_t THETA_INDEX
index of the THETA value in the m_nonSelfBlocking array
std::unordered_map< uint64_t, Ptr< ThreeGppChannelParams > > m_channelParamsMap
map containing the common channel parameters per pair of nodes, the key of this map is reciprocal and...
static std::pair< double, double > WrapAngles(double azimuthRad, double inclinationRad)
Wrap an (azimuth, inclination) angle pair in a valid range.
double m_blockerSpeed
the blocker speed
Ptr< const ChannelMatrix > GetChannel(Ptr< const MobilityModel > aMob, Ptr< const MobilityModel > bMob, Ptr< const PhasedArrayModel > aAntenna, Ptr< const PhasedArrayModel > bAntenna) override
Looks for the channel matrix associated to the aMob and bMob pair in m_channelMatrixMap.
void SetFrequency(double f)
Sets the center frequency of the model.
std::unordered_map< uint64_t, Ptr< ChannelMatrix > > m_channelMatrixMap
map containing the channel realizations per pair of PhasedAntennaArray instances, the key of this map...
Ptr< UniformRandomVariable > m_uniformRv
uniform random variable
void DoDispose() override
Destructor implementation.
void SetScenario(const std::string &scenario)
Sets the propagation scenario.
void SetChannelConditionModel(Ptr< ChannelConditionModel > model)
Set the channel condition model.
Ptr< UniformRandomVariable > m_uniformRvDoppler
uniform random variable, used to compute the additional Doppler contribution
uint16_t m_numNonSelfBlocking
number of non-self-blocking regions
std::string GetScenario() const
Returns the propagation scenario.
virtual Ptr< ChannelMatrix > GetNewChannel(Ptr< const ThreeGppChannelParams > channelParams, Ptr< const ParamsTable > table3gpp, const Ptr< const MobilityModel > sMob, const Ptr< const MobilityModel > uMob, Ptr< const PhasedArrayModel > sAntenna, Ptr< const PhasedArrayModel > uAntenna) const
Compute the channel matrix between two nodes a and b, and their antenna arrays aAntenna and bAntenna ...
static const uint8_t PHI_INDEX
index of the PHI value in the m_nonSelfBlocking array
double m_frequency
the operating frequency
double m_vScatt
value used to compute the additional Doppler contribution for the delayed paths
Ptr< ChannelConditionModel > GetChannelConditionModel() const
Get the associated channel condition model.
Ptr< ChannelConditionModel > m_channelConditionModel
the channel condition model
std::string m_scenario
the 3GPP scenario
static const uint8_t R_INDEX
index of the R value in the m_nonSelfBlocking array
static TypeId GetTypeId()
Get the type ID.
void Shuffle(double *first, double *last) const
Shuffle the elements of a simple sequence container of type double.
Ptr< ThreeGppChannelParams > GenerateChannelParameters(const Ptr< const ChannelCondition > channelCondition, const Ptr< const ParamsTable > table3gpp, const Ptr< const MobilityModel > aMob, const Ptr< const MobilityModel > bMob) const
Prepare 3gpp channel parameters among the nodes a and b.
double GetFrequency() const
Returns the center frequency.
Time m_updatePeriod
the channel update period
static const uint8_t X_INDEX
index of the X value in the m_nonSelfBlocking array
Ptr< UniformRandomVariable > m_uniformRvShuffle
uniform random variable used to shuffle array in GetNewChannel
@ NS
nanosecond
Definition: nstime.h:119
bool IsZero() const
Exactly equivalent to t == 0.
Definition: nstime.h:315
AttributeValue implementation for Time.
Definition: nstime.h:1413
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetGroupName(std::string groupName)
Set the group name.
Definition: type-id.cc:939
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:931
double GetValue(double min, double max)
Get the next random value drawn from the distribution.
uint32_t GetInteger(uint32_t min, uint32_t max)
Get the next random value drawn from the distribution.
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:86
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeDoubleAccessor(T1 a1)
Definition: double.h:43
Ptr< const AttributeAccessor > MakeIntegerAccessor(T1 a1)
Definition: integer.h:46
Ptr< const AttributeAccessor > MakePointerAccessor(T1 a1)
Definition: pointer.h:227
Ptr< const AttributeChecker > MakeStringChecker()
Definition: string.cc:30
Ptr< const AttributeAccessor > MakeStringAccessor(T1 a1)
Definition: string.h:57
Ptr< const AttributeChecker > MakeTimeChecker()
Helper to make an unbounded Time checker.
Definition: nstime.h:1434
Ptr< const AttributeAccessor > MakeTimeAccessor(T1 a1)
Definition: nstime.h:1414
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_WARN(msg)
Use NS_LOG to output a message of level LOG_WARN.
Definition: log.h:261
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
Time Now()
create an ns3::Time instance which contains the current simulation time.
Definition: simulator.cc:305
Time MilliSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1338
Definition: first.py:1
Every class exported by the ns3 library is enclosed in the ns3 namespace.
static const double offSetAlpha[20]
The ray offset angles within a cluster, given for rms angle spread normalized to 1.
static const double sqrtC_RMa_O2I[6][6]
The square root matrix for RMa O2I, which is generated using the Cholesky decomposition according to ...
static const double sqrtC_UMi_LOS[7][7]
The square root matrix for UMi LOS, which is generated using the Cholesky decomposition according to ...
static const double sqrtC_office_LOS[7][7]
The square root matrix for Indoor-Office LOS, which is generated using the Cholesky decomposition acc...
static const double sqrtC_UMa_O2I[6][6]
The square root matrix for UMa O2I, which is generated using the Cholesky decomposition according to ...
static const double sqrtC_RMa_NLOS[6][6]
The square root matrix for RMa NLOS, which is generated using the Cholesky decomposition according to...
static const double sqrtC_UMa_LOS[7][7]
The square root matrix for UMa LOS, which is generated using the Cholesky decomposition according to ...
static const double sqrtC_UMi_NLOS[6][6]
The square root matrix for UMi NLOS, which is generated using the Cholesky decomposition according to...
static const double sqrtC_RMa_LOS[7][7]
The square root matrix for RMa LOS, which is generated using the Cholesky decomposition according to ...
double DegreesToRadians(double degrees)
converts degrees to radians
Definition: angles.cc:39
static const double sqrtC_UMi_O2I[6][6]
The square root matrix for UMi O2I, which is generated using the Cholesky decomposition according to ...
static const double sqrtC_office_NLOS[6][6]
The square root matrix for Indoor-Office NLOS, which is generated using the Cholesky decomposition ac...
static const double sqrtC_UMa_NLOS[6][6]
The square root matrix for UMa NLOS, which is generated using the Cholesky decomposition according to...
double WrapTo2Pi(double a)
Wrap angle in [0, 2*M_PI)
Definition: angles.cc:117
double RadiansToDegrees(double radians)
converts radians to degrees
Definition: angles.cc:45