A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
wifi-eht-network.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2022
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Sebastien Deronne <sebastien.deronne@gmail.com>
18 */
19
20#include "ns3/boolean.h"
21#include "ns3/command-line.h"
22#include "ns3/config.h"
23#include "ns3/double.h"
24#include "ns3/eht-phy.h"
25#include "ns3/enum.h"
26#include "ns3/internet-stack-helper.h"
27#include "ns3/ipv4-address-helper.h"
28#include "ns3/log.h"
29#include "ns3/mobility-helper.h"
30#include "ns3/multi-model-spectrum-channel.h"
31#include "ns3/on-off-helper.h"
32#include "ns3/packet-sink-helper.h"
33#include "ns3/packet-sink.h"
34#include "ns3/spectrum-wifi-helper.h"
35#include "ns3/ssid.h"
36#include "ns3/string.h"
37#include "ns3/udp-client-server-helper.h"
38#include "ns3/udp-server.h"
39#include "ns3/uinteger.h"
40#include "ns3/wifi-acknowledgment.h"
41#include "ns3/yans-wifi-channel.h"
42#include "ns3/yans-wifi-helper.h"
43
44#include <array>
45#include <functional>
46#include <numeric>
47
48// This is a simple example in order to show how to configure an IEEE 802.11be Wi-Fi network.
49//
50// It outputs the UDP or TCP goodput for every EHT MCS value, which depends on the MCS value (0 to
51// 13), the channel width (20, 40, 80 or 160 MHz) and the guard interval (800ns, 1600ns or 3200ns).
52// The PHY bitrate is constant over all the simulation run. The user can also specify the distance
53// between the access point and the station: the larger the distance the smaller the goodput.
54//
55// The simulation assumes a configurable number of stations in an infrastructure network:
56//
57// STA AP
58// * *
59// | |
60// n1 n2
61//
62// Packets in this simulation belong to BestEffort Access Class (AC_BE).
63// By selecting an acknowledgment sequence for DL MU PPDUs, it is possible to aggregate a
64// Round Robin scheduler to the AP, so that DL MU PPDUs are sent by the AP via DL OFDMA.
65
66using namespace ns3;
67
68NS_LOG_COMPONENT_DEFINE("eht-wifi-network");
69
70/**
71 * \param udp true if UDP is used, false if TCP is used
72 * \param serverApp a container of server applications
73 * \param payloadSize the size in bytes of the packets
74 * \return the bytes received by each server application
75 */
76std::vector<uint64_t>
77GetRxBytes(bool udp, const ApplicationContainer& serverApp, uint32_t payloadSize)
78{
79 std::vector<uint64_t> rxBytes(serverApp.GetN(), 0);
80 if (udp)
81 {
82 for (uint32_t i = 0; i < serverApp.GetN(); i++)
83 {
84 rxBytes[i] = payloadSize * DynamicCast<UdpServer>(serverApp.Get(i))->GetReceived();
85 }
86 }
87 else
88 {
89 for (uint32_t i = 0; i < serverApp.GetN(); i++)
90 {
91 rxBytes[i] = DynamicCast<PacketSink>(serverApp.Get(i))->GetTotalRx();
92 }
93 }
94 return rxBytes;
95}
96
97/**
98 * Print average throughput over an intermediate time interval.
99 * \param rxBytes a vector of the amount of bytes received by each server application
100 * \param udp true if UDP is used, false if TCP is used
101 * \param serverApp a container of server applications
102 * \param payloadSize the size in bytes of the packets
103 * \param tputInterval the duration of an intermediate time interval
104 * \param simulationTime the simulation time in seconds
105 */
106void
107PrintIntermediateTput(std::vector<uint64_t>& rxBytes,
108 bool udp,
109 const ApplicationContainer& serverApp,
110 uint32_t payloadSize,
111 Time tputInterval,
112 Time simulationTime)
113{
114 auto newRxBytes = GetRxBytes(udp, serverApp, payloadSize);
115 Time now = Simulator::Now();
116
117 std::cout << "[" << (now - tputInterval).As(Time::S) << " - " << now.As(Time::S)
118 << "] Per-STA Throughput (Mbit/s):";
119
120 for (std::size_t i = 0; i < newRxBytes.size(); i++)
121 {
122 std::cout << "\t\t(" << i << ") "
123 << (newRxBytes[i] - rxBytes[i]) * 8. / tputInterval.GetMicroSeconds(); // Mbit/s
124 }
125 std::cout << std::endl;
126
127 rxBytes.swap(newRxBytes);
128
129 if (now < (simulationTime - NanoSeconds(1)))
130 {
131 Simulator::Schedule(Min(tputInterval, simulationTime - now - NanoSeconds(1)),
133 rxBytes,
134 udp,
135 serverApp,
136 payloadSize,
137 tputInterval,
138 simulationTime);
139 }
140}
141
142int
143main(int argc, char* argv[])
144{
145 bool udp{true};
146 bool downlink{true};
147 bool useRts{false};
148 uint16_t mpduBufferSize{512};
149 std::string emlsrLinks;
150 uint16_t paddingDelayUsec{32};
151 uint16_t transitionDelayUsec{128};
152 uint16_t channelSwitchDelayUsec{100};
153 bool switchAuxPhy{true};
154 uint16_t auxPhyChWidth{20};
155 bool auxPhyTxCapable{true};
156 Time simulationTime{"10s"};
157 double distance{1.0}; // meters
158 double frequency{5}; // whether the first link operates in the 2.4, 5 or 6 GHz
159 double frequency2{0}; // whether the second link operates in the 2.4, 5 or 6 GHz (0 means no
160 // second link exists)
161 double frequency3{
162 0}; // whether the third link operates in the 2.4, 5 or 6 GHz (0 means no third link exists)
163 std::size_t nStations{1};
164 std::string dlAckSeqType{"NO-OFDMA"};
165 bool enableUlOfdma{false};
166 bool enableBsrp{false};
167 int mcs{-1}; // -1 indicates an unset value
168 uint32_t payloadSize =
169 700; // must fit in the max TX duration when transmitting at MCS 0 over an RU of 26 tones
170 Time tputInterval{0}; // interval for detailed throughput measurement
171 double minExpectedThroughput{0};
172 double maxExpectedThroughput{0};
173 Time accessReqInterval{0};
174
175 CommandLine cmd(__FILE__);
176 cmd.AddValue(
177 "frequency",
178 "Whether the first link operates in the 2.4, 5 or 6 GHz band (other values gets rejected)",
179 frequency);
180 cmd.AddValue(
181 "frequency2",
182 "Whether the second link operates in the 2.4, 5 or 6 GHz band (0 means the device has one "
183 "link, otherwise the band must be different than first link and third link)",
184 frequency2);
185 cmd.AddValue(
186 "frequency3",
187 "Whether the third link operates in the 2.4, 5 or 6 GHz band (0 means the device has up to "
188 "two links, otherwise the band must be different than first link and second link)",
189 frequency3);
190 cmd.AddValue("emlsrLinks",
191 "The comma separated list of IDs of EMLSR links (for MLDs only)",
192 emlsrLinks);
193 cmd.AddValue("emlsrPaddingDelay",
194 "The EMLSR padding delay in microseconds (0, 32, 64, 128 or 256)",
195 paddingDelayUsec);
196 cmd.AddValue("emlsrTransitionDelay",
197 "The EMLSR transition delay in microseconds (0, 16, 32, 64, 128 or 256)",
198 transitionDelayUsec);
199 cmd.AddValue("emlsrAuxSwitch",
200 "Whether Aux PHY should switch channel to operate on the link on which "
201 "the Main PHY was operating before moving to the link of the Aux PHY. ",
202 switchAuxPhy);
203 cmd.AddValue("emlsrAuxChWidth",
204 "The maximum channel width (MHz) supported by Aux PHYs.",
205 auxPhyChWidth);
206 cmd.AddValue("emlsrAuxTxCapable",
207 "Whether Aux PHYs are capable of transmitting.",
208 auxPhyTxCapable);
209 cmd.AddValue("channelSwitchDelay",
210 "The PHY channel switch delay in microseconds",
211 channelSwitchDelayUsec);
212 cmd.AddValue("distance",
213 "Distance in meters between the station and the access point",
214 distance);
215 cmd.AddValue("simulationTime", "Simulation time", simulationTime);
216 cmd.AddValue("udp", "UDP if set to 1, TCP otherwise", udp);
217 cmd.AddValue("downlink",
218 "Generate downlink flows if set to 1, uplink flows otherwise",
219 downlink);
220 cmd.AddValue("useRts", "Enable/disable RTS/CTS", useRts);
221 cmd.AddValue("mpduBufferSize",
222 "Size (in number of MPDUs) of the BlockAck buffer",
223 mpduBufferSize);
224 cmd.AddValue("nStations", "Number of non-AP EHT stations", nStations);
225 cmd.AddValue("dlAckType",
226 "Ack sequence type for DL OFDMA (NO-OFDMA, ACK-SU-FORMAT, MU-BAR, AGGR-MU-BAR)",
227 dlAckSeqType);
228 cmd.AddValue("enableUlOfdma",
229 "Enable UL OFDMA (useful if DL OFDMA is enabled and TCP is used)",
230 enableUlOfdma);
231 cmd.AddValue("enableBsrp",
232 "Enable BSRP (useful if DL and UL OFDMA are enabled and TCP is used)",
233 enableBsrp);
234 cmd.AddValue(
235 "muSchedAccessReqInterval",
236 "Duration of the interval between two requests for channel access made by the MU scheduler",
237 accessReqInterval);
238 cmd.AddValue("mcs", "if set, limit testing to a specific MCS (0-11)", mcs);
239 cmd.AddValue("payloadSize", "The application payload size in bytes", payloadSize);
240 cmd.AddValue("tputInterval", "duration of intervals for throughput measurement", tputInterval);
241 cmd.AddValue("minExpectedThroughput",
242 "if set, simulation fails if the lowest throughput is below this value",
243 minExpectedThroughput);
244 cmd.AddValue("maxExpectedThroughput",
245 "if set, simulation fails if the highest throughput is above this value",
246 maxExpectedThroughput);
247 cmd.Parse(argc, argv);
248
249 if (useRts)
250 {
251 Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue("0"));
252 Config::SetDefault("ns3::WifiDefaultProtectionManager::EnableMuRts", BooleanValue(true));
253 }
254
255 if (dlAckSeqType == "ACK-SU-FORMAT")
256 {
257 Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
259 }
260 else if (dlAckSeqType == "MU-BAR")
261 {
262 Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
264 }
265 else if (dlAckSeqType == "AGGR-MU-BAR")
266 {
267 Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
269 }
270 else if (dlAckSeqType != "NO-OFDMA")
271 {
272 NS_ABORT_MSG("Invalid DL ack sequence type (must be NO-OFDMA, ACK-SU-FORMAT, MU-BAR or "
273 "AGGR-MU-BAR)");
274 }
275
276 double prevThroughput[12] = {0};
277
278 std::cout << "MCS value"
279 << "\t\t"
280 << "Channel width"
281 << "\t\t"
282 << "GI"
283 << "\t\t\t"
284 << "Throughput" << '\n';
285 int minMcs = 0;
286 int maxMcs = 13;
287 if (mcs >= 0 && mcs <= 13)
288 {
289 minMcs = mcs;
290 maxMcs = mcs;
291 }
292 for (int mcs = minMcs; mcs <= maxMcs; mcs++)
293 {
294 uint8_t index = 0;
295 double previous = 0;
296 uint16_t maxChannelWidth =
297 (frequency != 2.4 && frequency2 != 2.4 && frequency3 != 2.4) ? 160 : 40;
298 int minGi = enableUlOfdma ? 1600 : 800;
299 for (int channelWidth = 20; channelWidth <= maxChannelWidth;) // MHz
300 {
301 for (int gi = 3200; gi >= minGi;) // Nanoseconds
302 {
303 if (!udp)
304 {
305 Config::SetDefault("ns3::TcpSocket::SegmentSize", UintegerValue(payloadSize));
306 }
307
309 wifiStaNodes.Create(nStations);
311 wifiApNode.Create(1);
312
313 NetDeviceContainer apDevice;
317
318 wifi.SetStandard(WIFI_STANDARD_80211be);
319 std::array<std::string, 3> channelStr;
320 std::array<FrequencyRange, 3> freqRanges;
321 uint8_t nLinks = 0;
322 std::string dataModeStr = "EhtMcs" + std::to_string(mcs);
323 std::string ctrlRateStr;
324 uint64_t nonHtRefRateMbps = EhtPhy::GetNonHtReferenceRate(mcs) / 1e6;
325
326 if (frequency2 == frequency || frequency3 == frequency ||
327 (frequency3 != 0 && frequency3 == frequency2))
328 {
329 NS_FATAL_ERROR("Frequency values must be unique!");
330 }
331
332 for (auto freq : {frequency, frequency2, frequency3})
333 {
334 if (nLinks > 0 && freq == 0)
335 {
336 break;
337 }
338 channelStr[nLinks] = "{0, " + std::to_string(channelWidth) + ", ";
339 if (freq == 6)
340 {
341 channelStr[nLinks] += "BAND_6GHZ, 0}";
342 freqRanges[nLinks] = WIFI_SPECTRUM_6_GHZ;
343 Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss",
344 DoubleValue(48));
345 wifi.SetRemoteStationManager(nLinks,
346 "ns3::ConstantRateWifiManager",
347 "DataMode",
348 StringValue(dataModeStr),
349 "ControlMode",
350 StringValue(dataModeStr));
351 }
352 else if (freq == 5)
353 {
354 channelStr[nLinks] += "BAND_5GHZ, 0}";
355 freqRanges[nLinks] = WIFI_SPECTRUM_5_GHZ;
356 ctrlRateStr = "OfdmRate" + std::to_string(nonHtRefRateMbps) + "Mbps";
357 wifi.SetRemoteStationManager(nLinks,
358 "ns3::ConstantRateWifiManager",
359 "DataMode",
360 StringValue(dataModeStr),
361 "ControlMode",
362 StringValue(ctrlRateStr));
363 }
364 else if (freq == 2.4)
365 {
366 channelStr[nLinks] += "BAND_2_4GHZ, 0}";
367 freqRanges[nLinks] = WIFI_SPECTRUM_2_4_GHZ;
368 Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss",
369 DoubleValue(40));
370 ctrlRateStr = "ErpOfdmRate" + std::to_string(nonHtRefRateMbps) + "Mbps";
371 wifi.SetRemoteStationManager(nLinks,
372 "ns3::ConstantRateWifiManager",
373 "DataMode",
374 StringValue(dataModeStr),
375 "ControlMode",
376 StringValue(ctrlRateStr));
377 }
378 else
379 {
380 NS_FATAL_ERROR("Wrong frequency value!");
381 }
382 nLinks++;
383 }
384
385 if (nLinks > 1 && !emlsrLinks.empty())
386 {
387 wifi.ConfigEhtOptions("EmlsrActivated", BooleanValue(true));
388 }
389
390 Ssid ssid = Ssid("ns3-80211be");
391
392 /*
393 * SingleModelSpectrumChannel cannot be used with 802.11be because two
394 * spectrum models are required: one with 78.125 kHz bands for HE PPDUs
395 * and one with 312.5 kHz bands for, e.g., non-HT PPDUs (for more details,
396 * see issue #408 (CLOSED))
397 */
399 phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO);
400 phy.Set("ChannelSwitchDelay", TimeValue(MicroSeconds(channelSwitchDelayUsec)));
401
402 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
403 mac.SetEmlsrManager("ns3::DefaultEmlsrManager",
404 "EmlsrLinkSet",
405 StringValue(emlsrLinks),
406 "EmlsrPaddingDelay",
407 TimeValue(MicroSeconds(paddingDelayUsec)),
408 "EmlsrTransitionDelay",
409 TimeValue(MicroSeconds(transitionDelayUsec)),
410 "SwitchAuxPhy",
411 BooleanValue(switchAuxPhy),
412 "AuxPhyTxCapable",
413 BooleanValue(auxPhyTxCapable),
414 "AuxPhyChannelWidth",
415 UintegerValue(auxPhyChWidth));
416 for (uint8_t linkId = 0; linkId < nLinks; linkId++)
417 {
418 phy.Set(linkId, "ChannelSettings", StringValue(channelStr[linkId]));
419
420 auto spectrumChannel = CreateObject<MultiModelSpectrumChannel>();
421 auto lossModel = CreateObject<LogDistancePropagationLossModel>();
422 spectrumChannel->AddPropagationLossModel(lossModel);
423 phy.AddChannel(spectrumChannel, freqRanges[linkId]);
424 }
425 staDevices = wifi.Install(phy, mac, wifiStaNodes);
426
427 if (dlAckSeqType != "NO-OFDMA")
428 {
429 mac.SetMultiUserScheduler("ns3::RrMultiUserScheduler",
430 "EnableUlOfdma",
431 BooleanValue(enableUlOfdma),
432 "EnableBsrp",
433 BooleanValue(enableBsrp),
434 "AccessReqInterval",
435 TimeValue(accessReqInterval));
436 }
437 mac.SetType("ns3::ApWifiMac",
438 "EnableBeaconJitter",
439 BooleanValue(false),
440 "Ssid",
441 SsidValue(ssid));
442 apDevice = wifi.Install(phy, mac, wifiApNode);
443
444 int64_t streamNumber = 100;
445 streamNumber += wifi.AssignStreams(apDevice, streamNumber);
446 streamNumber += wifi.AssignStreams(staDevices, streamNumber);
447
448 // Set guard interval and MPDU buffer size
450 "/NodeList/*/DeviceList/*/$ns3::WifiNetDevice/HeConfiguration/GuardInterval",
452 Config::Set("/NodeList/*/DeviceList/*/$ns3::WifiNetDevice/Mac/MpduBufferSize",
453 UintegerValue(mpduBufferSize));
454
455 // mobility.
457 Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
458
459 positionAlloc->Add(Vector(0.0, 0.0, 0.0));
460 positionAlloc->Add(Vector(distance, 0.0, 0.0));
461 mobility.SetPositionAllocator(positionAlloc);
462
463 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
464
465 mobility.Install(wifiApNode);
466 mobility.Install(wifiStaNodes);
467
468 /* Internet stack*/
470 stack.Install(wifiApNode);
471 stack.Install(wifiStaNodes);
472 streamNumber += stack.AssignStreams(wifiApNode, streamNumber);
473 streamNumber += stack.AssignStreams(wifiStaNodes, streamNumber);
474
476 address.SetBase("192.168.1.0", "255.255.255.0");
477 Ipv4InterfaceContainer staNodeInterfaces;
478 Ipv4InterfaceContainer apNodeInterface;
479
480 staNodeInterfaces = address.Assign(staDevices);
481 apNodeInterface = address.Assign(apDevice);
482
483 /* Setting applications */
484 ApplicationContainer serverApp;
485 auto serverNodes = downlink ? std::ref(wifiStaNodes) : std::ref(wifiApNode);
487 NodeContainer clientNodes;
488 for (std::size_t i = 0; i < nStations; i++)
489 {
490 serverInterfaces.Add(downlink ? staNodeInterfaces.Get(i)
491 : apNodeInterface.Get(0));
492 clientNodes.Add(downlink ? wifiApNode.Get(0) : wifiStaNodes.Get(i));
493 }
494
495 const auto maxLoad =
496 nLinks * EhtPhy::GetDataRate(mcs, channelWidth, gi, 1) / nStations;
497 if (udp)
498 {
499 // UDP flow
500 uint16_t port = 9;
502 serverApp = server.Install(serverNodes.get());
503 streamNumber += server.AssignStreams(serverNodes.get(), streamNumber);
504
505 serverApp.Start(Seconds(0.0));
506 serverApp.Stop(simulationTime + Seconds(1.0));
507 const auto packetInterval = payloadSize * 8.0 / maxLoad;
508
509 for (std::size_t i = 0; i < nStations; i++)
510 {
512 client.SetAttribute("MaxPackets", UintegerValue(4294967295U));
513 client.SetAttribute("Interval", TimeValue(Seconds(packetInterval)));
514 client.SetAttribute("PacketSize", UintegerValue(payloadSize));
515 ApplicationContainer clientApp = client.Install(clientNodes.Get(i));
516 streamNumber += client.AssignStreams(clientNodes.Get(i), streamNumber);
517
518 clientApp.Start(Seconds(1.0));
519 clientApp.Stop(simulationTime + Seconds(1.0));
520 }
521 }
522 else
523 {
524 // TCP flow
525 uint16_t port = 50000;
527 PacketSinkHelper packetSinkHelper("ns3::TcpSocketFactory", localAddress);
528 serverApp = packetSinkHelper.Install(serverNodes.get());
529 streamNumber += packetSinkHelper.AssignStreams(serverNodes.get(), streamNumber);
530
531 serverApp.Start(Seconds(0.0));
532 serverApp.Stop(simulationTime + Seconds(1.0));
533
534 for (std::size_t i = 0; i < nStations; i++)
535 {
536 OnOffHelper onoff("ns3::TcpSocketFactory", Ipv4Address::GetAny());
537 onoff.SetAttribute("OnTime",
538 StringValue("ns3::ConstantRandomVariable[Constant=1]"));
539 onoff.SetAttribute("OffTime",
540 StringValue("ns3::ConstantRandomVariable[Constant=0]"));
541 onoff.SetAttribute("PacketSize", UintegerValue(payloadSize));
542 onoff.SetAttribute("DataRate", DataRateValue(maxLoad));
544 InetSocketAddress(serverInterfaces.GetAddress(i), port));
545 onoff.SetAttribute("Remote", remoteAddress);
546 ApplicationContainer clientApp = onoff.Install(clientNodes.Get(i));
547 streamNumber += onoff.AssignStreams(clientNodes.Get(i), streamNumber);
548
549 clientApp.Start(Seconds(1.0));
550 clientApp.Stop(simulationTime + Seconds(1.0));
551 }
552 }
553
554 // cumulative number of bytes received by each server application
555 std::vector<uint64_t> cumulRxBytes(nStations, 0);
556
557 if (tputInterval.IsStrictlyPositive())
558 {
559 Simulator::Schedule(Seconds(1) + tputInterval,
561 cumulRxBytes,
562 udp,
563 serverApp,
564 payloadSize,
565 tputInterval,
566 simulationTime + Seconds(1.0));
567 }
568
569 Simulator::Stop(simulationTime + Seconds(1.0));
571
572 // When multiple stations are used, there are chances that association requests
573 // collide and hence the throughput may be lower than expected. Therefore, we relax
574 // the check that the throughput cannot decrease by introducing a scaling factor (or
575 // tolerance)
576 auto tolerance = 0.10;
577 cumulRxBytes = GetRxBytes(udp, serverApp, payloadSize);
578 auto rxBytes = std::accumulate(cumulRxBytes.cbegin(), cumulRxBytes.cend(), 0.0);
579 auto throughput = (rxBytes * 8) / simulationTime.GetMicroSeconds(); // Mbit/s
580
582
583 std::cout << mcs << "\t\t\t" << channelWidth << " MHz\t\t\t" << gi << " ns\t\t\t"
584 << throughput << " Mbit/s" << std::endl;
585
586 // test first element
587 if (mcs == minMcs && channelWidth == 20 && gi == 3200)
588 {
589 if (throughput * (1 + tolerance) < minExpectedThroughput)
590 {
591 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
592 exit(1);
593 }
594 }
595 // test last element
596 if (mcs == maxMcs && channelWidth == maxChannelWidth && gi == 800)
597 {
598 if (maxExpectedThroughput > 0 &&
599 throughput > maxExpectedThroughput * (1 + tolerance))
600 {
601 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
602 exit(1);
603 }
604 }
605 // test previous throughput is smaller (for the same mcs)
606 if (throughput * (1 + tolerance) > previous)
607 {
608 previous = throughput;
609 }
610 else if (throughput > 0)
611 {
612 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
613 exit(1);
614 }
615 // test previous throughput is smaller (for the same channel width and GI)
616 if (throughput * (1 + tolerance) > prevThroughput[index])
617 {
618 prevThroughput[index] = throughput;
619 }
620 else if (throughput > 0)
621 {
622 NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
623 exit(1);
624 }
625 index++;
626 gi /= 2;
627 }
628 channelWidth *= 2;
629 }
630 }
631 return 0;
632}
#define Min(a, b)
a polymophic address class
Definition: address.h:101
AttributeValue implementation for Address.
Definition: address.h:286
holds a vector of ns3::Application pointers.
void Start(Time start) const
Start all of the Applications in this container at the start time given as a parameter.
Ptr< Application > Get(uint32_t i) const
Get the Ptr<Application> stored in this container at a given index.
void Stop(Time stop) const
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter.
uint32_t GetN() const
Get the number of Ptr<Application> stored in this container.
AttributeValue implementation for Boolean.
Definition: boolean.h:37
Parse command-line arguments.
Definition: command-line.h:232
AttributeValue implementation for DataRate.
Definition: data-rate.h:296
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
static uint64_t GetNonHtReferenceRate(uint8_t mcsValue)
Calculate the rate in bps of the non-HT Reference Rate corresponding to the supplied HE MCS index.
Definition: eht-phy.cc:388
static uint64_t GetDataRate(uint8_t mcsValue, uint16_t channelWidth, uint16_t guardInterval, uint8_t nss)
Return the data rate corresponding to the supplied EHT MCS index, channel width, guard interval,...
Definition: eht-phy.cc:376
Hold variables of type enum.
Definition: enum.h:62
an Inet address class
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
static Ipv4Address GetAny()
holds a vector of std::pair of Ptr<Ipv4> and interface index.
std::pair< Ptr< Ipv4 >, uint32_t > Get(uint32_t i) const
Get the std::pair of an Ptr<Ipv4> and interface stored at the location specified by the index.
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
keep track of a set of node pointers.
void Add(const NodeContainer &nc)
Append the contents of another NodeContainer to the end of this container.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
A helper to make it easier to instantiate an ns3::OnOffApplication on a set of nodes.
Definition: on-off-helper.h:37
A helper to make it easier to instantiate an ns3::PacketSinkApplication on a set of nodes.
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:571
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:142
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
static void Run()
Run the simulation.
Definition: simulator.cc:178
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:186
Make it easy to create and manage PHY objects for the spectrum model.
The IEEE 802.11 SSID Information Element.
Definition: ssid.h:36
AttributeValue implementation for Ssid.
Definition: ssid.h:96
Hold variables of type string.
Definition: string.h:56
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
TimeWithUnit As(const Unit unit=Time::AUTO) const
Attach a unit to a Time, to facilitate output in a specific unit.
Definition: time.cc:415
@ S
second
Definition: nstime.h:116
int64_t GetMicroSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:413
AttributeValue implementation for Time.
Definition: nstime.h:1406
Create a client application which sends UDP packets carrying a 32bit sequence number and a 64 bit tim...
Create a server application which waits for input UDP packets and uses the information carried into t...
Hold an unsigned integer type.
Definition: uinteger.h:45
helps to create WifiNetDevice objects
Definition: wifi-helper.h:324
create MAC layers for a ns3::WifiNetDevice.
@ DLT_IEEE802_11_RADIO
Include Radiotap link layer information.
Definition: wifi-helper.h:178
uint16_t port
Definition: dsdv-manet.cc:44
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:894
void Set(std::string path, const AttributeValue &value)
Definition: config.cc:880
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG(msg)
Unconditional abnormal program termination with a message.
Definition: abort.h:49
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
Time MicroSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1343
Time NanoSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1355
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1319
@ WIFI_STANDARD_80211be
ns address
Definition: first.py:47
ns stack
Definition: first.py:44
Every class exported by the ns3 library is enclosed in the ns3 namespace.
constexpr FrequencyRange WIFI_SPECTRUM_6_GHZ
Identifier for the frequency range covering the wifi spectrum in the 6 GHz band.
constexpr FrequencyRange WIFI_SPECTRUM_5_GHZ
Identifier for the frequency range covering the wifi spectrum in the 5 GHz band.
constexpr FrequencyRange WIFI_SPECTRUM_2_4_GHZ
Identifier for the frequency range covering the wifi spectrum in the 2.4 GHz band.
ns cmd
Definition: second.py:40
STL namespace.
ns wifi
Definition: third.py:95
ns ssid
Definition: third.py:93
ns staDevices
Definition: third.py:98
ns mac
Definition: third.py:92
ns wifiApNode
Definition: third.py:86
ns mobility
Definition: third.py:103
ns wifiStaNodes
Definition: third.py:84
ns phy
Definition: third.py:89
std::ofstream throughput
void PrintIntermediateTput(std::vector< uint64_t > &rxBytes, bool udp, const ApplicationContainer &serverApp, uint32_t payloadSize, Time tputInterval, Time simulationTime)
Print average throughput over an intermediate time interval.
std::vector< uint64_t > GetRxBytes(bool udp, const ApplicationContainer &serverApp, uint32_t payloadSize)