23#include "ns3/boolean.h"
24#include "ns3/double.h"
25#include "ns3/geocentric-constant-position-mobility-model.h"
27#include "ns3/mobility-model.h"
29#include "ns3/pointer.h"
30#include "ns3/simulator.h"
54 {10, {3.5, 15.5, 34.3, 2.9, 17.1, 44.3}},
55 {20, {3.4, 13.9, 30.9, 2.4, 17.1, 39.9}},
56 {30, {2.9, 12.4, 29.0, 2.7, 15.6, 37.5}},
57 {40, {3.0, 11.7, 27.7, 2.4, 14.6, 35.8}},
58 {50, {3.1, 10.6, 26.8, 2.4, 14.2, 34.6}},
59 {60, {2.7, 10.5, 26.2, 2.7, 12.6, 33.8}},
60 {70, {2.5, 10.1, 25.8, 2.6, 12.1, 33.3}},
61 {80, {2.3, 9.2, 25.5, 2.8, 12.3, 33.0}},
62 {90, {1.2, 9.2, 25.5, 0.6, 12.3, 32.9}},
70 {10, {4, 6, 34.3, 4, 6, 44.3}},
71 {20, {4, 6, 30.9, 4, 6, 39.9}},
72 {30, {4, 6, 29.0, 4, 6, 37.5}},
73 {40, {4, 6, 27.7, 4, 6, 35.8}},
74 {50, {4, 6, 26.8, 4, 6, 34.6}},
75 {60, {4, 6, 26.2, 4, 6, 33.8}},
76 {70, {4, 6, 25.8, 4, 6, 33.3}},
77 {80, {4, 6, 25.5, 4, 6, 33.0}},
78 {90, {4, 6, 25.5, 4, 6, 32.9}},
86 {10, {1.79, 8.93, 19.52, 1.9, 10.7, 29.5}},
87 {20, {1.14, 9.08, 18.17, 1.6, 10.0, 24.6}},
88 {30, {1.14, 8.78, 18.42, 1.9, 11.2, 21.9}},
89 {40, {0.92, 10.25, 18.28, 2.3, 11.6, 20.0}},
90 {50, {1.42, 10.56, 18.63, 2.7, 11.8, 18.7}},
91 {60, {1.56, 10.74, 17.68, 3.1, 10.8, 17.8}},
92 {70, {0.85, 10.17, 16.5, 3.0, 10.8, 17.2}},
93 {80, {0.72, 11.52, 16.3, 3.6, 10.8, 16.9}},
94 {90, {0.72, 11.52, 16.3, 0.4, 10.8, 16.8}},
105 0, 0.0300, 0.0350, 0.0380, 0.0390, 0.0410, 0.0420, 0.0450, 0.0480, 0.0500,
106 0.0530, 0.0587, 0.0674, 0.0789, 0.0935, 0.1113, 0.1322, 0.1565, 0.1841, 0.2153,
107 0.2500, 0.3362, 0.4581, 0.5200, 0.5200, 0.5000, 0.4500, 0.3850, 0.3200, 0.2700,
108 0.2500, 0.2517, 0.2568, 0.2651, 0.2765, 0.2907, 0.3077, 0.3273, 0.3493, 0.3736,
109 0.4000, 0.4375, 0.4966, 0.5795, 0.6881, 0.8247, 0.9912, 1.1900, 1.4229, 1.6922,
110 2.0000, 4.2654, 10.1504, 19.2717, 31.2457, 45.6890, 62.2182, 80.4496, 100.0000, 140.0205,
111 170.0000, 100.0000, 78.1682, 59.3955, 43.5434, 30.4733, 20.0465, 12.1244, 6.5683, 3.2397,
112 2.0000, 1.7708, 1.5660, 1.3858, 1.2298, 1.0981, 0.9905, 0.9070, 0.8475, 0.8119,
113 0.8000, 0.8000, 0.8000, 0.8000, 0.8000, 0.8000, 0.8000, 0.8000, 0.8000, 0.8000,
114 0.8000, 0.8029, 0.8112, 0.8243, 0.8416, 0.8625, 0.8864, 0.9127, 0.9408, 0.9701,
143std::tuple<double, double, double, double>
147 auto aPos = a->GetPosition();
148 auto bPos = b->GetPosition();
151 double hBs = std::max(aPos.z, bPos.z);
152 double hUt = std::min(aPos.z, bPos.z);
153 return std::make_tuple(distance2D, distance3D, hBs, hUt);
164std::tuple<double, double>
167 double hBs = (heightA == 10) ? heightA : heightB;
168 double hUt = (heightA == 10) ? heightB : heightA;
169 return std::make_tuple(hBs, hUt);
184 return 32.45 + 20 * log10(freq / 1e9) + 20 * log10(dist3d);
200 if ((elevAngle < 10 && freq > 1e9) || freq >= 10e9)
202 int roundedFreq = round(freq / 10e8);
225 loss = 6.22 / (pow(freq / 1e9, 1.5));
248 const std::map<
int, std::vector<float>>* sfcl,
249 double elevAngleQuantized)
266constexpr double M_C = 3.0e8;
281 TypeId(
"ns3::ThreeGppPropagationLossModel")
283 .SetGroupName(
"Propagation")
284 .AddAttribute(
"Frequency",
285 "The centre frequency in Hz.",
289 MakeDoubleChecker<double>())
290 .AddAttribute(
"ShadowingEnabled",
291 "Enable/disable shadowing.",
296 "ChannelConditionModel",
297 "Pointer to the channel condition model.",
301 MakePointerChecker<ChannelConditionModel>())
302 .AddAttribute(
"EnforceParameterRanges",
303 "Whether to strictly enforce TR38.901 applicability ranges",
308 "BuildingPenetrationLossesEnabled",
309 "Enable/disable Building Penetration Losses.",
370 "Frequency should be between 0.5 and 100 GHz but is " << f);
401 double rxPow = txPowerDbm;
436 switch (cond->GetLosCondition())
462 double o2iLossValue = 0;
463 double lowLossTw = 0;
465 double lowlossNormalVariate = 0;
467 double lConcrete = 0;
472 bool notFound =
false;
473 bool newCondition =
false;
480 newCondition = (it->second.m_condition != cond);
487 it =
m_o2iLossMap.insert(it, std::make_pair(key, newItem));
490 if (notFound || newCondition)
502 5 - 10 * log10(0.3 * std::pow(10, -lGlass / 10) + 0.7 * std::pow(10, -lConcrete / 10));
505 lossIn = 0.5 * distance2dIn;
510 o2iLossValue = lowLossTw + lossIn + lowlossNormalVariate;
514 o2iLossValue = it->second.m_o2iLoss;
518 it->second.m_o2iLoss = o2iLossValue;
519 it->second.m_condition = cond;
532 double o2iLossValue = 0;
533 double highLossTw = 0;
535 double highlossNormalVariate = 0;
536 double lIIRGlass = 0;
537 double lConcrete = 0;
542 bool notFound =
false;
543 bool newCondition =
false;
550 newCondition = (it->second.m_condition != cond);
557 it =
m_o2iLossMap.insert(it, std::make_pair(key, newItem));
560 if (notFound || newCondition)
573 highLossTw = 5 - 10 * log10(0.7 * std::pow(10, -lIIRGlass / 10) +
574 0.3 * std::pow(10, -lConcrete / 10));
577 lossIn = 0.5 * distance2dIn;
582 o2iLossValue = highLossTw + lossIn + highlossNormalVariate;
586 o2iLossValue = it->second.m_o2iLoss;
590 it->second.m_o2iLoss = o2iLossValue;
591 it->second.m_condition = cond;
609 NS_ABORT_MSG(
"If we have set the O2I condition, we shouldn't be here");
628 double shadowingValue;
633 bool notFound =
false;
634 bool newCondition =
false;
642 newCondition = (it->second.m_condition != cond);
653 if (notFound || newCondition)
661 Vector2D displacement(newDistance.x - it->second.m_distance.x,
662 newDistance.y - it->second.m_distance.y);
664 shadowingValue = R * it->second.m_shadowing + sqrt(1 - R * R) *
670 it->second.m_shadowing = shadowingValue;
671 it->second.m_distance = newDistance;
673 it->second.m_condition = cond;
675 return shadowingValue;
695 double x = a.x - b.x;
696 double y = a.y - b.y;
697 double distance2D = sqrt(x * x + y * y);
711 uint32_t key = (((x1 + x2) * (x1 + x2 + 1)) / 2) + x2;
724 return b->GetPosition() - a->GetPosition();
728 return a->GetPosition() - b->GetPosition();
739 static TypeId tid =
TypeId(
"ns3::ThreeGppRmaPropagationLossModel")
741 .SetGroupName(
"Propagation")
743 .AddAttribute(
"AvgBuildingHeight",
744 "The average building height in meters.",
747 MakeDoubleChecker<double>(5.0, 50.0))
748 .AddAttribute(
"AvgStreetWidth",
749 "The average street width in meters.",
752 MakeDoubleChecker<double>(5.0, 50.0));
780 [[maybe_unused]])
const
792 "RMa scenario is valid for frequencies between 0.5 and 30 GHz.");
794 auto [distance2D, distance3D, hBs, hUt] = GetBsUtDistancesAndHeights(a, b);
797 if (hUt < 1.0 || hUt > 10.0)
801 "The height of the UT should be between 1 and 10 m (see TR 38.901, Table 7.4.1-1)");
804 if (hBs < 10.0 || hBs > 150.0)
808 "The height of the BS should be between 10 and 150 m (see TR 38.901, Table 7.4.1-1)");
822 "Breakpoint distance is zero (divide-by-zero below); are either hBs or hUt = 0?");
825 if (distance2D < 10.0 || distance2D > 10.0e3)
828 NS_LOG_WARN(
"The 2D distance is outside the validity range, the pathloss value may not be "
834 if (distance2D <= distanceBp)
855 "RMa scenario is valid for frequencies between 0.5 and 30 GHz.");
857 auto [distance2D, distance3D, hBs, hUt] = GetBsUtDistancesAndHeights(a, b);
860 if (hUt < 1.0 || hUt > 10.0)
864 "The height of the UT should be between 1 and 10 m (see TR 38.901, Table 7.4.1-1)");
867 if (hBs < 10.0 || hBs > 150.0)
871 "The height of the BS should be between 10 and 150 m (see TR 38.901, Table 7.4.1-1)");
882 if (distance2D < 10.0 || distance2D > 5.0e3)
885 NS_LOG_WARN(
"The 2D distance is outside the validity range, the pathloss value may not be "
890 double plNlos = 161.04 - 7.1 * log10(
m_w) + 7.5 * log10(
m_h) -
891 (24.37 - 3.7 * pow((
m_h / hBs), 2)) * log10(hBs) +
892 (43.42 - 3.1 * log10(hBs)) * (log10(distance3D) - 3.0) +
893 20.0 * log10(
m_frequency / 1e9) - (3.2 * pow(log10(11.75 * hUt), 2) - 4.97);
895 double loss = std::max(
GetLossLos(a, b), plNlos);
918 if (distance2d <= distanceBp)
944 double correlationDistance;
949 correlationDistance = 37;
953 correlationDistance = 120;
960 return correlationDistance;
966 double loss = 20.0 * log10(40.0 * M_PI * distance3D * frequency / 1e9 / 3.0) +
967 std::min(0.03 * pow(h, 1.72), 10.0) * log10(distance3D) -
968 std::min(0.044 * pow(h, 1.72), 14.77) + 0.002 * log10(h) * distance3D;
975 double distanceBp = 2.0 * M_PI * hA * hB * frequency / M_C;
986 static TypeId tid =
TypeId(
"ns3::ThreeGppUmaPropagationLossModel")
988 .SetGroupName(
"Propagation")
1014 if (distance2D > 18.0)
1016 g = 5.0 / 4.0 * pow(distance2D / 100.0, 3) * exp(-distance2D / 150.0);
1023 c = pow((hUt - 13.0) / 10.0, 1.5) * g;
1027 double prob = 1.0 / (1.0 + c);
1036 hE = (
double)floor(random / 3.0) * 3.0;
1040 double distanceBp = 4 * (hBs - hE) * (hUt - hE) *
m_frequency / M_C;
1050 auto [distance2D, distance3D, hBs, hUt] = GetBsUtDistancesAndHeights(a, b);
1053 if (hUt < 1.5 || hUt > 22.5)
1057 "The height of the UT should be between 1.5 and 22.5 m (see TR 38.901, Table 7.4.1-1)");
1063 NS_LOG_WARN(
"The height of the BS should be equal to 25 m (see TR 38.901, Table 7.4.1-1)");
1078 if (distance2D < 10.0 || distance2D > 5.0e3)
1081 NS_LOG_WARN(
"The 2D distance is outside the validity range, the pathloss value may not be "
1087 if (distance2D <= distanceBp)
1090 loss = 28.0 + 22.0 * log10(distance3D) + 20.0 * log10(
m_frequency / 1e9);
1095 loss = 28.0 + 40.0 * log10(distance3D) + 20.0 * log10(
m_frequency / 1e9) -
1096 9.0 * log10(pow(distanceBp, 2) + pow(hBs - hUt, 2));
1117 auto [distance2D, distance3D, hBs, hUt] = GetBsUtDistancesAndHeights(a, b);
1120 if (hUt < 1.5 || hUt > 22.5)
1124 "The height of the UT should be between 1.5 and 22.5 m (see TR 38.901, Table 7.4.1-1)");
1130 NS_LOG_WARN(
"The height of the BS should be equal to 25 m (see TR 38.901, Table 7.4.1-1)");
1141 if (distance2D < 10.0 || distance2D > 5.0e3)
1144 NS_LOG_WARN(
"The 2D distance is outside the validity range, the pathloss value may not be "
1150 13.54 + 39.08 * log10(distance3D) + 20.0 * log10(
m_frequency / 1e9) - 0.6 * (hUt - 1.5);
1151 double loss = std::max(
GetLossLos(a, b), plNlos);
1163 double shadowingStd;
1178 return shadowingStd;
1186 double correlationDistance;
1191 correlationDistance = 37;
1195 correlationDistance = 50;
1202 return correlationDistance;
1222 static TypeId tid =
TypeId(
"ns3::ThreeGppUmiStreetCanyonPropagationLossModel")
1224 .SetGroupName(
"Propagation")
1254 double distanceBp = 4 * (hBs - hE) * (hUt - hE) *
m_frequency / M_C;
1275 auto [hBs, hUt] = GetBsUtHeightsUmiStreetCanyon(a->GetPosition().z, b->GetPosition().z);
1278 if (hUt < 1.5 || hUt >= 10.0)
1282 "The height of the UT should be between 1.5 and 22.5 m (see TR 38.901, Table 7.4.1-1). "
1283 "We further assume hUT < hBS, then hUT is upper bounded by hBS, which should be 10 m");
1289 NS_LOG_WARN(
"The height of the BS should be equal to 10 m (see TR 38.901, Table 7.4.1-1)");
1304 if (distance2D < 10.0 || distance2D > 5.0e3)
1307 NS_LOG_WARN(
"The 2D distance is outside the validity range, the pathloss value may not be "
1313 if (distance2D <= distanceBp)
1316 loss = 32.4 + 21.0 * log10(distance3D) + 20.0 * log10(
m_frequency / 1e9);
1321 loss = 32.4 + 40.0 * log10(distance3D) + 20.0 * log10(
m_frequency / 1e9) -
1322 9.5 * log10(pow(distanceBp, 2) + pow(hBs - hUt, 2));
1338 auto [hBs, hUt] = GetBsUtHeightsUmiStreetCanyon(a->GetPosition().z, b->GetPosition().z);
1341 if (hUt < 1.5 || hUt >= 10.0)
1345 "The height of the UT should be between 1.5 and 22.5 m (see TR 38.901, Table 7.4.1-1). "
1346 "We further assume hUT < hBS, then hUT is upper bounded by hBS, which should be 10 m");
1352 NS_LOG_WARN(
"The height of the BS should be equal to 10 m (see TR 38.901, Table 7.4.1-1)");
1363 if (distance2D < 10.0 || distance2D > 5.0e3)
1366 NS_LOG_WARN(
"The 2D distance is outside the validity range, the pathloss value may not be "
1372 22.4 + 35.3 * log10(distance3D) + 21.3 * log10(
m_frequency / 1e9) - 0.3 * (hUt - 1.5);
1373 double loss = std::max(
GetLossLos(a, b), plNlos);
1386 double shadowingStd;
1394 shadowingStd = 7.82;
1401 return shadowingStd;
1409 double correlationDistance;
1414 correlationDistance = 10;
1418 correlationDistance = 13;
1425 return correlationDistance;
1435 static TypeId tid =
TypeId(
"ns3::ThreeGppIndoorOfficePropagationLossModel")
1437 .SetGroupName(
"Propagation")
1471 if (distance3D < 1.0 || distance3D > 150.0)
1474 NS_LOG_WARN(
"The 3D distance is outside the validity range, the pathloss value may not be "
1479 double loss = 32.4 + 17.3 * log10(distance3D) + 20.0 * log10(
m_frequency / 1e9);
1495 if (distance3D < 1.0 || distance3D > 150.0)
1498 NS_LOG_WARN(
"The 3D distance is outside the validity range, the pathloss value may not be "
1503 double plNlos = 17.3 + 38.3 * log10(distance3D) + 24.9 * log10(
m_frequency / 1e9);
1504 double loss = std::max(
GetLossLos(a, b), plNlos);
1518 double shadowingStd;
1526 shadowingStd = 8.03;
1533 return shadowingStd;
1543 double correlationDistance;
1547 correlationDistance = 10;
1551 correlationDistance = 6;
1558 return correlationDistance;
1566 static TypeId tid =
TypeId(
"ns3::ThreeGppNTNDenseUrbanPropagationLossModel")
1568 .SetGroupName(
"Propagation")
1575 m_SFCL_DenseUrban(&SFCL_DenseUrban)
1598 "NTN communications are valid for frequencies between 0.5 and 100 GHz.");
1601 auto [elevAngle, elevAngleQuantized] =
1605 double loss = ComputeNtnPathloss(
m_frequency, distance3D);
1608 loss += ComputeAtmosphericAbsorptionLoss(
m_frequency, elevAngle);
1611 loss += ComputeIonosphericPlusTroposphericScintillationLoss(
m_frequency, elevAngleQuantized);
1623 "NTN communications are valid for frequencies between 0.5 and 100 GHz.");
1626 auto [elevAngle, elevAngleQuantized] =
1630 double loss = ComputeNtnPathloss(
m_frequency, distance3D);
1636 loss += ComputeAtmosphericAbsorptionLoss(
m_frequency, elevAngle);
1639 loss += ComputeIonosphericPlusTroposphericScintillationLoss(
m_frequency, elevAngleQuantized);
1652 double shadowingStd;
1654 std::string freqBand = (
m_frequency < 13.0e9) ?
"S" :
"Ka";
1655 auto [elevAngle, elevAngleQuantized] =
1661 shadowingStd = (*m_SFCL_DenseUrban).at(elevAngleQuantized)[SFCL_params::S_LOS_sigF];
1665 shadowingStd = (*m_SFCL_DenseUrban).at(elevAngleQuantized)[SFCL_params::Ka_LOS_sigF];
1669 shadowingStd = (*m_SFCL_DenseUrban).at(elevAngleQuantized)[SFCL_params::S_NLOS_sigF];
1673 shadowingStd = (*m_SFCL_DenseUrban).at(elevAngleQuantized)[SFCL_params::Ka_NLOS_sigF];
1680 return shadowingStd;
1688 double correlationDistance;
1693 correlationDistance = 37;
1697 correlationDistance = 50;
1704 return correlationDistance;
1714 static TypeId tid =
TypeId(
"ns3::ThreeGppNTNUrbanPropagationLossModel")
1716 .SetGroupName(
"Propagation")
1723 m_SFCL_Urban(&SFCL_Urban)
1745 "NTN communications are valid for frequencies between 0.5 and 100 GHz.");
1748 auto [elevAngle, elevAngleQuantized] =
1752 double loss = ComputeNtnPathloss(
m_frequency, distance3D);
1755 loss += ComputeAtmosphericAbsorptionLoss(
m_frequency, elevAngle);
1758 loss += ComputeIonosphericPlusTroposphericScintillationLoss(
m_frequency, elevAngleQuantized);
1769 "NTN communications are valid for frequencies between 0.5 and 100 GHz.");
1772 auto [elevAngle, elevAngleQuantized] =
1776 double loss = ComputeNtnPathloss(
m_frequency, distance3D);
1782 loss += ComputeAtmosphericAbsorptionLoss(
m_frequency, elevAngle);
1785 loss += ComputeIonosphericPlusTroposphericScintillationLoss(
m_frequency, elevAngleQuantized);
1798 double shadowingStd;
1800 std::string freqBand = (
m_frequency < 13.0e9) ?
"S" :
"Ka";
1801 auto [elevAngle, elevAngleQuantized] =
1807 shadowingStd = (*m_SFCL_Urban).at(elevAngleQuantized)[SFCL_params::S_LOS_sigF];
1811 shadowingStd = (*m_SFCL_Urban).at(elevAngleQuantized)[SFCL_params::Ka_LOS_sigF];
1815 shadowingStd = (*m_SFCL_Urban).at(elevAngleQuantized)[SFCL_params::S_NLOS_sigF];
1819 shadowingStd = (*m_SFCL_Urban).at(elevAngleQuantized)[SFCL_params::Ka_NLOS_sigF];
1826 return shadowingStd;
1834 double correlationDistance;
1839 correlationDistance = 37;
1843 correlationDistance = 50;
1850 return correlationDistance;
1860 static TypeId tid =
TypeId(
"ns3::ThreeGppNTNSuburbanPropagationLossModel")
1862 .SetGroupName(
"Propagation")
1869 m_SFCL_SuburbanRural(&SFCL_SuburbanRural)
1892 "NTN communications are valid for frequencies between 0.5 and 100 GHz.");
1895 auto [elevAngle, elevAngleQuantized] =
1899 double loss = ComputeNtnPathloss(
m_frequency, distance3D);
1902 loss += ComputeAtmosphericAbsorptionLoss(
m_frequency, elevAngle);
1905 loss += ComputeIonosphericPlusTroposphericScintillationLoss(
m_frequency, elevAngleQuantized);
1918 "NTN communications are valid for frequencies between 0.5 and 100 GHz.");
1921 auto [elevAngle, elevAngleQuantized] =
1925 double loss = ComputeNtnPathloss(
m_frequency, distance3D);
1931 loss += ComputeAtmosphericAbsorptionLoss(
m_frequency, elevAngle);
1934 loss += ComputeIonosphericPlusTroposphericScintillationLoss(
m_frequency, elevAngleQuantized);
1947 double shadowingStd;
1949 std::string freqBand = (
m_frequency < 13.0e9) ?
"S" :
"Ka";
1950 auto [elevAngle, elevAngleQuantized] =
1956 shadowingStd = (*m_SFCL_SuburbanRural).at(elevAngleQuantized)[SFCL_params::S_LOS_sigF];
1960 shadowingStd = (*m_SFCL_SuburbanRural).at(elevAngleQuantized)[SFCL_params::Ka_LOS_sigF];
1964 shadowingStd = (*m_SFCL_SuburbanRural).at(elevAngleQuantized)[SFCL_params::S_NLOS_sigF];
1968 shadowingStd = (*m_SFCL_SuburbanRural).at(elevAngleQuantized)[SFCL_params::Ka_NLOS_sigF];
1975 return shadowingStd;
1983 double correlationDistance;
1988 correlationDistance = 37;
1992 correlationDistance = 50;
1999 return correlationDistance;
2009 static TypeId tid =
TypeId(
"ns3::ThreeGppNTNRuralPropagationLossModel")
2011 .SetGroupName(
"Propagation")
2018 m_SFCL_SuburbanRural(&SFCL_SuburbanRural)
2040 "NTN communications are valid for frequencies between 0.5 and 100 GHz.");
2043 auto [elevAngle, elevAngleQuantized] =
2047 double loss = ComputeNtnPathloss(
m_frequency, distance3D);
2050 loss += ComputeAtmosphericAbsorptionLoss(
m_frequency, elevAngle);
2053 loss += ComputeIonosphericPlusTroposphericScintillationLoss(
m_frequency, elevAngleQuantized);
2064 "NTN communications are valid for frequencies between 0.5 and 100 GHz.");
2067 auto [elevAngle, elevAngleQuantized] =
2071 double loss = ComputeNtnPathloss(
m_frequency, distance3D);
2077 loss += ComputeAtmosphericAbsorptionLoss(
m_frequency, elevAngle);
2080 loss += ComputeIonosphericPlusTroposphericScintillationLoss(
m_frequency, elevAngleQuantized);
2093 double shadowingStd;
2095 std::string freqBand = (
m_frequency < 13.0e9) ?
"S" :
"Ka";
2096 auto [elevAngle, elevAngleQuantized] =
2102 shadowingStd = (*m_SFCL_SuburbanRural).at(elevAngleQuantized)[SFCL_params::S_LOS_sigF];
2106 shadowingStd = (*m_SFCL_SuburbanRural).at(elevAngleQuantized)[SFCL_params::Ka_LOS_sigF];
2110 shadowingStd = (*m_SFCL_SuburbanRural).at(elevAngleQuantized)[SFCL_params::S_NLOS_sigF];
2114 shadowingStd = (*m_SFCL_SuburbanRural).at(elevAngleQuantized)[SFCL_params::Ka_NLOS_sigF];
2121 return shadowingStd;
2129 double correlationDistance;
2134 correlationDistance = 37;
2138 correlationDistance = 120;
2145 return correlationDistance;
AttributeValue implementation for Boolean.
@ LOW
Low Penetration Losses.
@ HIGH
High Penetration Losses.
LosConditionValue
Possible values for Line-of-Sight condition.
@ NLOSv
Non Line of Sight due to a vehicle.
This class can be used to hold variables of floating point type such as 'double' or 'float'.
AttributeValue implementation for Pointer.
Models the propagation loss through a transmission medium.
Smart pointer class similar to boost::intrusive_ptr.
void SetStream(int64_t stream)
Specifies the stream number for the RngStream.
static double Calculate2dDistance(const Vector &a, const Vector &b)
Computes the 2D distance between two 3D vectors.
static std::tuple< double, double > GetQuantizedElevationAngle(Ptr< const MobilityModel > a, Ptr< const MobilityModel > b)
Computes and quantizes the elevation angle to a two-digits integer in [10, 90].
Implements the pathloss model defined in 3GPP TR 38.901, Table 7.4.1-1 for the Indoor Office scenario...
static TypeId GetTypeId()
Get the type ID.
double GetShadowingCorrelationDistance(ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading correlation distance.
double GetShadowingStd(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading standard deviation.
double GetO2iDistance2dIn() const override
Returns the minimum of the two independently generated distances according to the uniform distributio...
double GetLossNlos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is obstructed.
~ThreeGppIndoorOfficePropagationLossModel() override
Destructor.
ThreeGppIndoorOfficePropagationLossModel()
Constructor.
double GetLossLos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is not obstructed.
Implements the pathloss model defined in 3GPP TR 38.811, Table ???? for the NTN Dense Urban scenario.
~ThreeGppNTNDenseUrbanPropagationLossModel() override
Destructor.
double GetShadowingStd(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading standard deviation.
double GetO2iDistance2dIn() const override
Returns the minimum of the two independently generated distances according to the uniform distributio...
double GetLossLos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is not obstructed.
const std::map< int, std::vector< float > > * m_SFCL_DenseUrban
The nested map containing the Shadow Fading and Clutter Loss values for the NTN Dense Urban scenario.
static TypeId GetTypeId()
Get the type ID.
double GetShadowingCorrelationDistance(ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading correlation distance.
double GetLossNlos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is obstructed.
ThreeGppNTNDenseUrbanPropagationLossModel()
Constructor.
Implements the pathloss model defined in 3GPP TR 38.811, Table ???? for the NTN Rural scenario.
const std::map< int, std::vector< float > > * m_SFCL_SuburbanRural
The nested map containing the Shadow Fading and Clutter Loss values for the NTN Suburban and Rural sc...
double GetO2iDistance2dIn() const override
Returns the minimum of the two independently generated distances according to the uniform distributio...
static TypeId GetTypeId()
Get the type ID.
ThreeGppNTNRuralPropagationLossModel()
Constructor.
double GetLossNlos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is obstructed.
double GetShadowingCorrelationDistance(ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading correlation distance.
double GetShadowingStd(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading standard deviation.
~ThreeGppNTNRuralPropagationLossModel() override
Destructor.
double GetLossLos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is not obstructed.
Implements the pathloss model defined in 3GPP TR 38.811, Table ???? for the NTN Suburban scenario.
ThreeGppNTNSuburbanPropagationLossModel()
Constructor.
double GetShadowingCorrelationDistance(ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading correlation distance.
const std::map< int, std::vector< float > > * m_SFCL_SuburbanRural
The nested map containing the Shadow Fading and Clutter Loss values for the NTN Suburban and Rural sc...
static TypeId GetTypeId()
Get the type ID.
double GetO2iDistance2dIn() const override
Returns the minimum of the two independently generated distances according to the uniform distributio...
double GetShadowingStd(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading standard deviation.
double GetLossLos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is not obstructed.
~ThreeGppNTNSuburbanPropagationLossModel() override
Destructor.
double GetLossNlos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is obstructed.
Implements the pathloss model defined in 3GPP TR 38.811, Table ???? for the NTN Urban scenario.
ThreeGppNTNUrbanPropagationLossModel()
Constructor.
double GetLossNlos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is obstructed.
const std::map< int, std::vector< float > > * m_SFCL_Urban
The nested map containing the Shadow Fading and Clutter Loss values for the NTN Urban scenario.
static TypeId GetTypeId()
Get the type ID.
double GetShadowingCorrelationDistance(ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading correlation distance.
double GetLossLos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is not obstructed.
~ThreeGppNTNUrbanPropagationLossModel() override
Destructor.
double GetO2iDistance2dIn() const override
Returns the minimum of the two independently generated distances according to the uniform distributio...
double GetShadowingStd(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading standard deviation.
Base class for the 3GPP propagation models.
Ptr< ChannelConditionModel > GetChannelConditionModel() const
Returns the associated channel condition model.
virtual double GetO2iLowPenetrationLoss(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const
Retrieves the o2i building penetration loss value by looking at m_o2iLossMap.
Ptr< UniformRandomVariable > m_randomO2iVar2
a uniform random variable for the calculation of the indoor loss, see TR38.901 Table 7....
double GetFrequency() const
Return the current central frequency.
double GetLoss(Ptr< ChannelCondition > cond, Ptr< MobilityModel > a, Ptr< MobilityModel > b) const
Computes the pathloss between a and b.
Ptr< UniformRandomVariable > m_randomO2iVar1
a uniform random variable for the calculation of the indoor loss, see TR38.901 Table 7....
double GetShadowing(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const
Retrieves the shadowing value by looking at m_shadowingMap.
static double Calculate2dDistance(Vector a, Vector b)
Computes the 2D distance between two 3D vectors.
void SetChannelConditionModel(Ptr< ChannelConditionModel > model)
Set the channel condition model used to determine the channel state (e.g., the LOS/NLOS condition)
std::unordered_map< uint32_t, ShadowingMapItem > m_shadowingMap
map to store the shadowing values
virtual double GetLossNlos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const =0
Computes the pathloss between a and b considering that the line of sight is obstructed.
virtual bool DoIsO2iLowPenetrationLoss(Ptr< const ChannelCondition > cond) const
Indicates the condition of the o2i building penetration loss (defined in 3GPP TR 38....
int64_t DoAssignStreams(int64_t stream) override
Assign a fixed random variable stream number to the random variables used by this model.
virtual double GetLossNlosv(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const
Computes the pathloss between a and b considering that the line of sight is obstructed by a vehicle.
virtual double GetShadowingCorrelationDistance(ChannelCondition::LosConditionValue cond) const =0
Returns the shadow fading correlation distance.
ThreeGppPropagationLossModel()
Constructor.
Ptr< NormalRandomVariable > m_normRandomVariable
normal random variable
static TypeId GetTypeId()
Get the type ID.
Ptr< ChannelConditionModel > m_channelConditionModel
pointer to the channel condition model
~ThreeGppPropagationLossModel() override
Destructor.
std::unordered_map< uint32_t, O2iLossMapItem > m_o2iLossMap
map to store the o2i Loss values
virtual double GetO2iDistance2dIn() const =0
Returns the minimum of the two independently generated distances according to the uniform distributio...
virtual double GetO2iHighPenetrationLoss(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const
Retrieves the o2i building penetration loss value by looking at m_o2iLossMap.
bool IsO2iLowPenetrationLoss(Ptr< const ChannelCondition > cond) const
Return true if the O2I Building Penetration loss corresponds to a low loss condition.
void SetFrequency(double f)
Set the central frequency of the model.
void DoDispose() override
Destructor implementation.
static uint32_t GetKey(Ptr< MobilityModel > a, Ptr< MobilityModel > b)
Returns an unique key for the channel between a and b.
Ptr< NormalRandomVariable > m_normalO2iLowLossVar
a normal random variable for the calculation of 02i low loss, see TR38.901 Table 7....
double m_frequency
operating frequency in Hz
bool m_enforceRanges
strictly enforce TR 38.901 parameter ranges
virtual double GetShadowingStd(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const =0
Returns the shadow fading standard deviation.
Ptr< NormalRandomVariable > m_normalO2iHighLossVar
a normal random variable for the calculation of 02i high loss, see TR38.901 Table 7....
double DoCalcRxPower(double txPowerDbm, Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the received power by applying the pathloss model described in 3GPP TR 38....
bool m_shadowingEnabled
enable/disable shadowing
static Vector GetVectorDifference(Ptr< MobilityModel > a, Ptr< MobilityModel > b)
Get the difference between the node position.
bool m_buildingPenLossesEnabled
enable/disable building penetration losses
virtual double GetLossLos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const =0
Computes the pathloss between a and b considering that the line of sight is not obstructed.
Implements the pathloss model defined in 3GPP TR 38.901, Table 7.4.1-1 for the RMa scenario.
double GetLossNlos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is obstructed.
double GetShadowingStd(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading standard deviation.
static double Pl1(double frequency, double distance3D, double h, double w)
Computes the PL1 formula for the RMa scenario.
double GetLossLos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is not obstructed.
double GetO2iDistance2dIn() const override
Returns the minimum of the two independently generated distances according to the uniform distributio...
ThreeGppRmaPropagationLossModel()
Constructor.
~ThreeGppRmaPropagationLossModel() override
Destructor.
double GetShadowingCorrelationDistance(ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading correlation distance.
double m_h
average building height in meters
static TypeId GetTypeId()
Get the type ID.
static double GetBpDistance(double frequency, double hA, double hB)
Computes the breakpoint distance for the RMa scenario.
double m_w
average street width in meters
bool DoIsO2iLowPenetrationLoss(Ptr< const ChannelCondition > cond) const override
Indicates the condition of the o2i building penetration loss (defined in 3GPP TR 38....
Implements the pathloss model defined in 3GPP TR 38.901, Table 7.4.1-1 for the UMa scenario.
static TypeId GetTypeId()
Get the type ID.
double GetLossNlos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is obstructed.
double GetBpDistance(double hUt, double hBs, double distance2D) const
Computes the breakpoint distance.
~ThreeGppUmaPropagationLossModel() override
Destructor.
ThreeGppUmaPropagationLossModel()
Constructor.
int64_t DoAssignStreams(int64_t stream) override
Assign a fixed random variable stream number to the random variables used by this model.
double GetLossLos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is not obstructed.
double GetO2iDistance2dIn() const override
Returns the minimum of the two independently generated distances according to the uniform distributio...
Ptr< UniformRandomVariable > m_uniformVar
a uniform random variable used for the computation of the breakpoint distance
double GetShadowingStd(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading standard deviation.
double GetShadowingCorrelationDistance(ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading correlation distance.
Implements the pathloss model defined in 3GPP TR 38.901, Table 7.4.1-1 for the UMi-Street Canyon scen...
~ThreeGppUmiStreetCanyonPropagationLossModel() override
Destructor.
double GetLossNlos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is obstructed.
double GetShadowingStd(Ptr< MobilityModel > a, Ptr< MobilityModel > b, ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading standard deviation.
double GetBpDistance(double hUt, double hBs, double distance2D) const
Computes the breakpoint distance.
double GetO2iDistance2dIn() const override
Returns the minimum of the two independently generated distances according to the uniform distributio...
ThreeGppUmiStreetCanyonPropagationLossModel()
Constructor.
double GetLossLos(Ptr< MobilityModel > a, Ptr< MobilityModel > b) const override
Computes the pathloss between a and b considering that the line of sight is not obstructed.
static TypeId GetTypeId()
Get the type ID.
double GetShadowingCorrelationDistance(ChannelCondition::LosConditionValue cond) const override
Returns the shadow fading correlation distance.
a unique identifier for an interface.
TypeId SetParent(TypeId tid)
Set the parent TypeId.
double GetLength() const
Compute the length (magnitude) of the vector.
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Ptr< const AttributeChecker > MakeBooleanChecker()
Ptr< const AttributeAccessor > MakeDoubleAccessor(T1 a1)
Ptr< const AttributeAccessor > MakePointerAccessor(T1 a1)
#define NS_ABORT_MSG_UNLESS(cond, msg)
Abnormal program termination if a condition is false, with a message.
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
#define NS_ABORT_MSG(msg)
Unconditional abnormal program termination with a message.
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_WARN(msg)
Use NS_LOG to output a message of level LOG_WARN.
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
const std::map< int, std::vector< float > > SFCL_SuburbanRural
The map containing the 3GPP value regarding Shadow Fading and Clutter Loss tables for the NTN Suburba...
constexpr double M_C
propagation velocity in free space
double ComputeIonosphericPlusTroposphericScintillationLoss(double freq, double elevAngleQuantized)
Computes the ionospheric plus tropospheric scintillation loss using the formulas described in 3GPP TR...
std::tuple< double, double, double, double > GetBsUtDistancesAndHeights(ns3::Ptr< const ns3::MobilityModel > a, ns3::Ptr< const ns3::MobilityModel > b)
Get the base station and user terminal relative distances and heights.
double ComputeAtmosphericAbsorptionLoss(double freq, double elevAngle)
Computes the atmospheric absorption loss using the formula described in 3GPP TR 38....
double ComputeNtnPathloss(double freq, double dist3d)
Computes the free-space path loss using the formula described in 3GPP TR 38.811, Table 6....
const double atmosphericAbsorption[101]
Array containing the attenuation given by atmospheric absorption.
const std::map< int, float > troposphericScintillationLoss
Map containing the Tropospheric attenuation in dB with 99% probability at 20 GHz in Toulouse used for...
const std::map< int, std::vector< float > > SFCL_Urban
The map containing the 3GPP value regarding Shadow Fading and Clutter Loss tables for the NTN Urban s...
double ComputeClutterLoss(double freq, const std::map< int, std::vector< float > > *sfcl, double elevAngleQuantized)
Computes the clutter loss using the formula described in 3GPP TR 38.811, Sec 6.6.6....
SFCL_params
The enumerator used for code clarity when performing parameter assignment in the GetLoss Methods.
std::tuple< double, double > GetBsUtHeightsUmiStreetCanyon(double heightA, double heightB)
Get the base station and user terminal heights for the UmiStreetCanyon scenario.
const std::map< int, std::vector< float > > SFCL_DenseUrban
The map containing the 3GPP value regarding Shadow Fading and Clutter Loss tables for the NTN Dense U...
Every class exported by the ns3 library is enclosed in the ns3 namespace.
double CalculateDistance(const Vector3D &a, const Vector3D &b)
Define a struct for the m_o2iLossMap entries.
Define a struct for the m_shadowingMap entries.