A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
energy-model-with-harvesting-example.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2014 Wireless Communications and Networking Group (WCNG),
3 * University of Rochester, Rochester, NY, USA.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Cristiano Tapparello <cristiano.tapparello@rochester.edu>
19 */
20
21/**
22 *
23 * This example extends the energy model example by connecting a basic energy
24 * harvester to the nodes.
25 *
26 * The example considers a simple communication link between a source and a
27 * destination node, where the source node sends a packet to the destination
28 * every 1 second. Each node is powered by a BasicEnergySource, which is recharged
29 * by a BasicEnergyHarvester, and the WiFi radio consumes energy for the transmission/
30 * reception of the packets.
31 *
32 * For the receiver node, the example prints the energy consumption of the WiFi radio,
33 * the power harvested by the energy harvester and the residual energy in the
34 * energy source.
35 *
36 * The nodes initial energy is set to 1.0 J, the transmission and reception entail a
37 * current consumption of 0.0174 A and 0.0197 A, respectively (default values in
38 * WifiRadioEnergyModel). The energy harvester provides an amount of power that varies
39 * according to a random variable uniformly distributed in [0 0.1] W, and is updated
40 * every 1 s. The energy source voltage is 3 V (default value in BasicEnergySource) and
41 * the residual energy level is updated every 1 second (default value).
42 *
43 * The simulation start at time 0 and it is hard stopped at time 10 seconds. Given the
44 * packet size and the distance between the nodes, each transmission lasts 0.0023s.
45 * As a result, the destination node receives 10 messages.
46 *
47 */
48
49#include "ns3/core-module.h"
50#include "ns3/energy-module.h"
51#include "ns3/internet-module.h"
52#include "ns3/mobility-module.h"
53#include "ns3/network-module.h"
54#include "ns3/wifi-radio-energy-model-helper.h"
55#include "ns3/yans-wifi-helper.h"
56
57#include <fstream>
58#include <iostream>
59#include <string>
60#include <vector>
61
62using namespace ns3;
63
64NS_LOG_COMPONENT_DEFINE("EnergyWithHarvestingExample");
65
66/**
67 * Print a received packet
68 *
69 * \param from sender address
70 * \return a string with the details of the packet: dst {IP, port}, time.
71 */
72static inline std::string
74{
76
77 std::ostringstream oss;
78 oss << "--\nReceived one packet! Socket: " << iaddr.GetIpv4() << " port: " << iaddr.GetPort()
79 << " at time = " << Simulator::Now().GetSeconds() << "\n--";
80
81 return oss.str();
82}
83
84/**
85 * \param socket Pointer to socket.
86 *
87 * Packet receiving sink.
88 */
89void
91{
92 Ptr<Packet> packet;
93 Address from;
94 while ((packet = socket->RecvFrom(from)))
95 {
96 if (packet->GetSize() > 0)
97 {
99 }
100 }
101}
102
103/**
104 * \param socket Pointer to socket.
105 * \param pktSize Packet size.
106 * \param n Pointer to node.
107 * \param pktCount Number of packets to generate.
108 * \param pktInterval Packet sending interval.
109 *
110 * Traffic generator.
111 */
112static void
115 Ptr<Node> n,
116 uint32_t pktCount,
117 Time pktInterval)
118{
119 if (pktCount > 0)
120 {
121 socket->Send(Create<Packet>(pktSize));
122 Simulator::Schedule(pktInterval,
124 socket,
125 pktSize,
126 n,
127 pktCount - 1,
128 pktInterval);
129 }
130 else
131 {
132 socket->Close();
133 }
134}
135
136/**
137 * Trace function for remaining energy at node.
138 *
139 * \param oldValue Old value
140 * \param remainingEnergy New value
141 */
142void
143RemainingEnergy(double oldValue, double remainingEnergy)
144{
145 NS_LOG_UNCOND(Simulator::Now().GetSeconds()
146 << "s Current remaining energy = " << remainingEnergy << "J");
147}
148
149/**
150 * Trace function for total energy consumption at node.
151 *
152 * \param oldValue Old value
153 * \param totalEnergy New value
154 */
155void
156TotalEnergy(double oldValue, double totalEnergy)
157{
158 NS_LOG_UNCOND(Simulator::Now().GetSeconds()
159 << "s Total energy consumed by radio = " << totalEnergy << "J");
160}
161
162/**
163 * Trace function for the power harvested by the energy harvester.
164 *
165 * \param oldValue Old value
166 * \param harvestedPower New value
167 */
168void
169HarvestedPower(double oldValue, double harvestedPower)
170{
171 NS_LOG_UNCOND(Simulator::Now().GetSeconds()
172 << "s Current harvested power = " << harvestedPower << " W");
173}
174
175/**
176 * Trace function for the total energy harvested by the node.
177 *
178 * \param oldValue Old value
179 * \param totalEnergyHarvested New value
180 */
181void
182TotalEnergyHarvested(double oldValue, double totalEnergyHarvested)
183{
184 NS_LOG_UNCOND(Simulator::Now().GetSeconds()
185 << "s Total energy harvested by harvester = " << totalEnergyHarvested << " J");
186}
187
188int
189main(int argc, char* argv[])
190{
191 std::string phyMode("DsssRate1Mbps");
192 double Prss = -80; // dBm
193 uint32_t PacketSize = 200; // bytes
194 bool verbose = false;
195
196 // simulation parameters
197 uint32_t numPackets = 10000; // number of packets to send
198 double interval = 1; // seconds
199 double startTime = 0.0; // seconds
200 double distanceToRx = 100.0; // meters
201
202 // Energy Harvester variables
203 double harvestingUpdateInterval = 1; // seconds
204
205 CommandLine cmd(__FILE__);
206 cmd.AddValue("phyMode", "Wifi Phy mode", phyMode);
207 cmd.AddValue("Prss", "Intended primary RSS (dBm)", Prss);
208 cmd.AddValue("PacketSize", "size of application packet sent", PacketSize);
209 cmd.AddValue("numPackets", "Total number of packets to send", numPackets);
210 cmd.AddValue("startTime", "Simulation start time", startTime);
211 cmd.AddValue("distanceToRx", "X-Axis distance between nodes", distanceToRx);
212 cmd.AddValue("verbose", "Turn on all device log components", verbose);
213 cmd.Parse(argc, argv);
214
215 // Convert to time object
216 Time interPacketInterval = Seconds(interval);
217
218 // disable fragmentation for frames below 2200 bytes
219 Config::SetDefault("ns3::WifiRemoteStationManager::FragmentationThreshold",
220 StringValue("2200"));
221 // turn off RTS/CTS for frames below 2200 bytes
222 Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue("2200"));
223 // Fix non-unicast data rate to be the same as that of unicast
224 Config::SetDefault("ns3::WifiRemoteStationManager::NonUnicastMode", StringValue(phyMode));
225
227 c.Create(2); // create 2 nodes
228 NodeContainer networkNodes;
229 networkNodes.Add(c.Get(0));
230 networkNodes.Add(c.Get(1));
231
232 // The below set of helpers will help us to put together the wifi NICs we want
234 if (verbose)
235 {
237 }
238 wifi.SetStandard(WIFI_STANDARD_80211b);
239
240 /** Wifi PHY **/
241 /***************************************************************************/
242 YansWifiPhyHelper wifiPhy;
243
244 /** wifi channel **/
245 YansWifiChannelHelper wifiChannel;
246 wifiChannel.SetPropagationDelay("ns3::ConstantSpeedPropagationDelayModel");
247 wifiChannel.AddPropagationLoss("ns3::FriisPropagationLossModel");
248
249 // create wifi channel
250 Ptr<YansWifiChannel> wifiChannelPtr = wifiChannel.Create();
251 wifiPhy.SetChannel(wifiChannelPtr);
252
253 /** MAC layer **/
254 // Add a MAC and disable rate control
255 WifiMacHelper wifiMac;
256 wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager",
257 "DataMode",
258 StringValue(phyMode),
259 "ControlMode",
260 StringValue(phyMode));
261 // Set it to ad-hoc mode
262 wifiMac.SetType("ns3::AdhocWifiMac");
263
264 /** install PHY + MAC **/
265 NetDeviceContainer devices = wifi.Install(wifiPhy, wifiMac, networkNodes);
266
267 /** mobility **/
269 Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
270 positionAlloc->Add(Vector(0.0, 0.0, 0.0));
271 positionAlloc->Add(Vector(2 * distanceToRx, 0.0, 0.0));
272 mobility.SetPositionAllocator(positionAlloc);
273 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
274 mobility.Install(c);
275
276 /** Energy Model **/
277 /***************************************************************************/
278 /* energy source */
279 BasicEnergySourceHelper basicSourceHelper;
280 // configure energy source
281 basicSourceHelper.Set("BasicEnergySourceInitialEnergyJ", DoubleValue(1.0));
282 // install source
283 EnergySourceContainer sources = basicSourceHelper.Install(c);
284 /* device energy model */
285 WifiRadioEnergyModelHelper radioEnergyHelper;
286 // configure radio energy model
287 radioEnergyHelper.Set("TxCurrentA", DoubleValue(0.0174));
288 radioEnergyHelper.Set("RxCurrentA", DoubleValue(0.0197));
289 // install device model
290 DeviceEnergyModelContainer deviceModels = radioEnergyHelper.Install(devices, sources);
291
292 /* energy harvester */
293 BasicEnergyHarvesterHelper basicHarvesterHelper;
294 // configure energy harvester
295 basicHarvesterHelper.Set("PeriodicHarvestedPowerUpdateInterval",
296 TimeValue(Seconds(harvestingUpdateInterval)));
297 basicHarvesterHelper.Set("HarvestablePower",
298 StringValue("ns3::UniformRandomVariable[Min=0.0|Max=0.1]"));
299 // install harvester on all energy sources
300 EnergyHarvesterContainer harvesters = basicHarvesterHelper.Install(sources);
301 /***************************************************************************/
302
303 /** Internet stack **/
305 internet.Install(networkNodes);
306
308 NS_LOG_INFO("Assign IP Addresses.");
309 ipv4.SetBase("10.1.1.0", "255.255.255.0");
310 Ipv4InterfaceContainer i = ipv4.Assign(devices);
311
312 TypeId tid = TypeId::LookupByName("ns3::UdpSocketFactory");
313 Ptr<Socket> recvSink = Socket::CreateSocket(networkNodes.Get(1), tid); // node 1, Destination
315 recvSink->Bind(local);
316 recvSink->SetRecvCallback(MakeCallback(&ReceivePacket));
317
318 Ptr<Socket> source = Socket::CreateSocket(networkNodes.Get(0), tid); // node 0, Source
320 source->SetAllowBroadcast(true);
321 source->Connect(remote);
322
323 /** connect trace sources **/
324 /***************************************************************************/
325 // all traces are connected to node 1 (Destination)
326 // energy source
327 Ptr<BasicEnergySource> basicSourcePtr = DynamicCast<BasicEnergySource>(sources.Get(1));
328 basicSourcePtr->TraceConnectWithoutContext("RemainingEnergy", MakeCallback(&RemainingEnergy));
329 // device energy model
330 Ptr<DeviceEnergyModel> basicRadioModelPtr =
331 basicSourcePtr->FindDeviceEnergyModels("ns3::WifiRadioEnergyModel").Get(0);
332 NS_ASSERT(basicRadioModelPtr);
333 basicRadioModelPtr->TraceConnectWithoutContext("TotalEnergyConsumption",
335 // energy harvester
336 Ptr<BasicEnergyHarvester> basicHarvesterPtr =
337 DynamicCast<BasicEnergyHarvester>(harvesters.Get(1));
338 basicHarvesterPtr->TraceConnectWithoutContext("HarvestedPower", MakeCallback(&HarvestedPower));
339 basicHarvesterPtr->TraceConnectWithoutContext("TotalEnergyHarvested",
341 /***************************************************************************/
342
343 /** simulation setup **/
344 // start traffic
345 Simulator::Schedule(Seconds(startTime),
347 source,
348 PacketSize,
349 networkNodes.Get(0),
350 numPackets,
351 interPacketInterval);
352
355
356 for (auto iter = deviceModels.Begin(); iter != deviceModels.End(); iter++)
357 {
358 double energyConsumed = (*iter)->GetTotalEnergyConsumption();
359 NS_LOG_UNCOND("End of simulation ("
360 << Simulator::Now().GetSeconds()
361 << "s) Total energy consumed by radio = " << energyConsumed << "J");
362 NS_ASSERT(energyConsumed <= 1.0);
363 }
364
366
367 return 0;
368}
a polymophic address class
Definition: address.h:101
Creates a BasicEnergyHarvester object.
void Set(std::string name, const AttributeValue &v) override
Creates a BasicEnergySource object.
void Set(std::string name, const AttributeValue &v) override
Parse command-line arguments.
Definition: command-line.h:232
Holds a vector of ns3::DeviceEnergyModel pointers.
Iterator Begin() const
Get an iterator which refers to the first DeviceEnergyModel pointer in the container.
Iterator End() const
Get an iterator which refers to the last DeviceEnergyModel pointer in the container.
DeviceEnergyModelContainer Install(Ptr< NetDevice > device, Ptr< EnergySource > source) const
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
Holds a vector of ns3::EnergyHarvester pointers.
Ptr< EnergyHarvester > Get(uint32_t i) const
Get the i-th Ptr<EnergyHarvester> stored in this container.
EnergyHarvesterContainer Install(Ptr< EnergySource > source) const
Holds a vector of ns3::EnergySource pointers.
Ptr< EnergySource > Get(uint32_t i) const
Get the i-th Ptr<EnergySource> stored in this container.
EnergySourceContainer Install(Ptr< Node > node) const
an Inet address class
Ipv4Address GetIpv4() const
static InetSocketAddress ConvertFrom(const Address &address)
Returns an InetSocketAddress which corresponds to the input Address.
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
static Ipv4Address GetBroadcast()
static Ipv4Address GetAny()
holds a vector of std::pair of Ptr<Ipv4> and interface index.
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
void Add(const NodeContainer &nc)
Append the contents of another NodeContainer to the end of this container.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:571
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:142
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
static void Run()
Run the simulation.
Definition: simulator.cc:178
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:186
static Ptr< Socket > CreateSocket(Ptr< Node > node, TypeId tid)
This method wraps the creation of sockets that is performed on a given node by a SocketFactory specif...
Definition: socket.cc:72
Hold variables of type string.
Definition: string.h:56
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
double GetSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:403
AttributeValue implementation for Time.
Definition: nstime.h:1406
a unique identifier for an interface.
Definition: type-id.h:59
static TypeId LookupByName(std::string name)
Get a TypeId by name.
Definition: type-id.cc:836
helps to create WifiNetDevice objects
Definition: wifi-helper.h:324
static void EnableLogComponents(LogLevel logLevel=LOG_LEVEL_ALL)
Helper to enable all WifiNetDevice log components with one statement.
Definition: wifi-helper.cc:880
create MAC layers for a ns3::WifiNetDevice.
void SetType(std::string type, Args &&... args)
Assign WifiRadioEnergyModel to wifi devices.
void Set(std::string name, const AttributeValue &v) override
manage and create wifi channel objects for the YANS model.
void SetPropagationDelay(std::string name, Ts &&... args)
void AddPropagationLoss(std::string name, Ts &&... args)
Ptr< YansWifiChannel > Create() const
Make it easy to create and manage PHY objects for the YANS model.
void SetChannel(Ptr< YansWifiChannel > channel)
void HarvestedPower(double oldValue, double harvestedPower)
Trace function for the power harvested by the energy harvester.
void TotalEnergy(double oldValue, double totalEnergy)
Trace function for total energy consumption at node.
void ReceivePacket(Ptr< Socket > socket)
void TotalEnergyHarvested(double oldValue, double totalEnergyHarvested)
Trace function for the total energy harvested by the node.
void RemainingEnergy(double oldValue, double remainingEnergy)
Trace function for remaining energy at node.
static void GenerateTraffic(Ptr< Socket > socket, uint32_t pktSize, Ptr< Node > n, uint32_t pktCount, Time pktInterval)
static std::string PrintReceivedPacket(Address &from)
Print a received packet.
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:894
#define NS_LOG_UNCOND(msg)
Output the requested message unconditionally.
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1319
@ WIFI_STANDARD_80211b
ns devices
Definition: first.py:42
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Callback< R, Args... > MakeCallback(R(T::*memPtr)(Args...), OBJ objPtr)
Build Callbacks for class method members which take varying numbers of arguments and potentially retu...
Definition: callback.h:706
ns cmd
Definition: second.py:40
ns wifi
Definition: third.py:95
ns mobility
Definition: third.py:105
bool verbose
uint32_t pktSize
packet size used for the simulation (in bytes)