A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
uniform-planar-array.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2020 University of Padova, Dep. of Information Engineering, SIGNET lab.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 */
17
19
20#include <ns3/boolean.h>
21#include <ns3/double.h>
22#include <ns3/log.h>
23#include <ns3/uinteger.h>
24
25namespace ns3
26{
27
28NS_LOG_COMPONENT_DEFINE("UniformPlanarArray");
29
30NS_OBJECT_ENSURE_REGISTERED(UniformPlanarArray);
31
34{
35}
36
38{
39}
40
43{
44 static TypeId tid =
45 TypeId("ns3::UniformPlanarArray")
47 .AddConstructor<UniformPlanarArray>()
48 .SetGroupName("Antenna")
49 .AddAttribute(
50 "AntennaHorizontalSpacing",
51 "Horizontal spacing between antenna elements, in multiples of wave length",
52 DoubleValue(0.5),
55 MakeDoubleChecker<double>(0.0))
56 .AddAttribute("AntennaVerticalSpacing",
57 "Vertical spacing between antenna elements, in multiples of wave length",
58 DoubleValue(0.5),
61 MakeDoubleChecker<double>(0.0))
62 .AddAttribute("NumColumns",
63 "Horizontal size of the array",
67 MakeUintegerChecker<uint32_t>(1))
68 .AddAttribute("NumRows",
69 "Vertical size of the array",
73 MakeUintegerChecker<uint32_t>(1))
74 .AddAttribute("BearingAngle",
75 "The bearing angle in radians",
76 DoubleValue(0.0),
78 MakeDoubleChecker<double>(-M_PI, M_PI))
79 .AddAttribute("DowntiltAngle",
80 "The downtilt angle in radians",
81 DoubleValue(0.0),
83 MakeDoubleChecker<double>(-M_PI, M_PI))
84 .AddAttribute("PolSlantAngle",
85 "The polarization slant angle in radians",
86 DoubleValue(0.0),
89 MakeDoubleChecker<double>(-M_PI, M_PI))
90 .AddAttribute("NumVerticalPorts",
91 "Vertical number of ports",
95 MakeUintegerChecker<uint32_t>())
96 .AddAttribute("NumHorizontalPorts",
97 "Horizontal number of ports",
101 MakeUintegerChecker<uint32_t>())
102 .AddAttribute("IsDualPolarized",
103 "If true, dual polarized antenna",
104 BooleanValue(false),
108 return tid;
109}
110
111void
113{
114 NS_LOG_FUNCTION(this << n);
115 if (n != m_numColumns)
116 {
117 m_isBfVectorValid = false;
118 }
119 m_numColumns = n;
120}
121
124{
125 return m_numColumns;
126}
127
128void
130{
131 NS_LOG_FUNCTION(this << n);
132 if (n != m_numRows)
133 {
134 m_isBfVectorValid = false;
135 }
136 m_numRows = n;
137}
138
141{
142 return m_numRows;
143}
144
145void
147{
148 m_alpha = alpha;
149 m_cosAlpha = cos(m_alpha);
150 m_sinAlpha = sin(m_alpha);
151}
152
153void
155{
156 m_beta = beta;
157 m_cosBeta = cos(m_beta);
158 m_sinBeta = sin(m_beta);
159}
160
161void
163{
164 m_polSlant = polSlant;
165 m_cosPolSlant[0] = cos(m_polSlant);
166 m_sinPolSlant[0] = sin(m_polSlant);
167}
168
169void
171{
172 NS_LOG_FUNCTION(this << s);
173 NS_ABORT_MSG_IF(s <= 0, "Trying to set an invalid spacing: " << s);
174
175 if (s != m_disH)
176 {
177 m_isBfVectorValid = false;
178 }
179 m_disH = s;
180}
181
182double
184{
185 return m_disH;
186}
187
188void
190{
191 NS_LOG_FUNCTION(this << s);
192 NS_ABORT_MSG_IF(s <= 0, "Trying to set an invalid spacing: " << s);
193
194 if (s != m_disV)
195 {
196 m_isBfVectorValid = false;
197 }
198 m_disV = s;
199}
200
201double
203{
204 return m_disV;
205}
206
207std::pair<double, double>
209{
210 NS_LOG_FUNCTION(this << a);
211 NS_ASSERT_MSG(polIndex < GetNumPols(), "Polarization index can be 0 or 1.");
212
213 // convert the theta and phi angles from GCS to LCS using eq. 7.1-7 and 7.1-8 in 3GPP TR 38.901
214 // NOTE we assume a fixed slant angle of 0 degrees
215 double cosIncl = cos(a.GetInclination());
216 double sinIncl = sin(a.GetInclination());
217 double cosAzim = cos(a.GetAzimuth() - m_alpha);
218 double sinAzim = sin(a.GetAzimuth() - m_alpha);
219 double thetaPrime = std::acos(m_cosBeta * cosIncl + m_sinBeta * cosAzim * sinIncl);
220 double phiPrime =
221 std::arg(std::complex<double>(m_cosBeta * sinIncl * cosAzim - m_sinBeta * cosIncl,
222 sinAzim * sinIncl));
223 Angles aPrime(phiPrime, thetaPrime);
224 NS_LOG_DEBUG(a << " -> " << aPrime);
225
226 // compute the antenna element field patterns using eq. 7.3-4 and 7.3-5 in 3GPP TR 38.901,
227 // using the configured polarization slant angle (m_polSlant)
228 // NOTE: the slant angle (assumed to be 0) differs from the polarization slant angle
229 // (m_polSlant, given by the attribute), in 3GPP TR 38.901
230 double aPrimeDb = m_antennaElement->GetGainDb(aPrime);
231 double fieldThetaPrime =
232 pow(10, aPrimeDb / 20) * m_cosPolSlant[polIndex]; // convert to linear magnitude
233 double fieldPhiPrime =
234 pow(10, aPrimeDb / 20) * m_sinPolSlant[polIndex]; // convert to linear magnitude
235
236 // compute psi using eq. 7.1-15 in 3GPP TR 38.901, assuming that the slant
237 // angle (gamma) is 0
238 double psi = std::arg(std::complex<double>(m_cosBeta * sinIncl - m_sinBeta * cosIncl * cosAzim,
239 m_sinBeta * sinAzim));
240 NS_LOG_DEBUG("psi " << psi);
241
242 // convert the antenna element field pattern to GCS using eq. 7.1-11
243 // in 3GPP TR 38.901
244 double fieldTheta = cos(psi) * fieldThetaPrime - sin(psi) * fieldPhiPrime;
245 double fieldPhi = sin(psi) * fieldThetaPrime + cos(psi) * fieldPhiPrime;
247 << " " << RadiansToDegrees(a.GetInclination()) << " "
248 << fieldTheta * fieldTheta + fieldPhi * fieldPhi);
249
250 return std::make_pair(fieldPhi, fieldTheta);
251}
252
253Vector
255{
256 NS_LOG_FUNCTION(this << index);
257 uint64_t tmpIndex = index;
258 // for dual polarization, the top half corresponds to one polarization and
259 // lower half corresponds to the other polarization
260 if (m_isDualPolarized && tmpIndex >= m_numRows * m_numColumns)
261 {
262 tmpIndex -= m_numRows * m_numColumns;
263 }
264 // compute the element coordinates in the LCS
265 // assume the left bottom corner is (0,0,0), and the rectangular antenna array is on the y-z
266 // plane.
267 double xPrime = 0;
268 double yPrime = m_disH * (tmpIndex % m_numColumns);
269 double zPrime = m_disV * floor(tmpIndex / m_numColumns);
270
271 // convert the coordinates to the GCS using the rotation matrix 7.1-4 in 3GPP
272 // TR 38.901
273 Vector loc;
274 loc.x = m_cosAlpha * m_cosBeta * xPrime - m_sinAlpha * yPrime + m_cosAlpha * m_sinBeta * zPrime;
275 loc.y = m_sinAlpha * m_cosBeta * xPrime + m_cosAlpha * yPrime + m_sinAlpha * m_sinBeta * zPrime;
276 loc.z = -m_sinBeta * xPrime + m_cosBeta * zPrime;
277 return loc;
278}
279
280uint8_t
282{
283 return m_isDualPolarized ? 2 : 1;
284}
285
286size_t
288{
289 // From 38.901 [M, N, P, Mg, Ng] = [m_numRows, m_numColumns, 2, 1, 1]
290 return GetNumPols() * m_numRows * m_numColumns;
291 // with dual polarization, the number of antenna elements double up
292}
293
294void
296{
297 NS_LOG_FUNCTION(this);
298 NS_ASSERT_MSG(nPorts > 0, "Ports should be greater than 0");
299 NS_ASSERT_MSG(((m_numRows % nPorts) == 0),
300 "The number of vertical ports must divide number of rows");
301 m_numVPorts = nPorts;
302}
303
304void
306{
307 NS_ASSERT_MSG(nPorts > 0, "Ports should be greater than 0");
308 NS_ASSERT_MSG(((m_numColumns % nPorts) == 0),
309 "The number of horizontal ports must divide number of columns");
310 m_numHPorts = nPorts;
311}
312
313uint16_t
315{
316 return m_numVPorts;
317}
318
319uint16_t
321{
322 return m_numHPorts;
323}
324
325uint16_t
327{
329}
330
331size_t
333{
334 return m_numRows / m_numVPorts;
335}
336
337size_t
339{
340 return m_numColumns / m_numHPorts;
341}
342
343size_t
345{
346 // Multiply the number of rows and number of columns belonging to one antenna port.
347 // This also holds for dual polarization, where each polarization belongs to a separate port.
349}
350
351uint16_t
352UniformPlanarArray::ArrayIndexFromPortIndex(uint16_t portIndex, uint16_t subElementIndex) const
353{
354 NS_ASSERT_MSG(portIndex < GetNumPorts(), "Port should be less than total Ports");
355 NS_ASSERT(subElementIndex < (GetHElemsPerPort() * GetVElemsPerPort()));
356
357 // In case the array is dual-polarized, change to the index that belongs to the first
358 // polarization
359 auto firstPolPortIdx = portIndex;
360 auto polarizationOffset = 0;
361 auto arraySize = GetNumHorizontalPorts() * GetNumVerticalPorts();
362 if (firstPolPortIdx >= arraySize)
363 {
364 firstPolPortIdx = portIndex - arraySize;
365 polarizationOffset = GetNumColumns() * GetNumRows();
366 }
367 // column-major indexing
368 auto hPortIdx = firstPolPortIdx / GetNumVerticalPorts();
369 auto vPortIdx = firstPolPortIdx % GetNumVerticalPorts();
370 auto hElemIdx = (hPortIdx * GetHElemsPerPort()) + (subElementIndex % GetHElemsPerPort());
371 auto vElemIdx = (vPortIdx * GetVElemsPerPort()) + (subElementIndex / GetHElemsPerPort());
372 return (vElemIdx * GetNumColumns() + hElemIdx + polarizationOffset);
373}
374
375bool
377{
378 return m_isDualPolarized;
379}
380
381void
383{
384 m_isDualPolarized = isDualPol;
385 if (isDualPol)
386 {
387 m_cosPolSlant[1] = cos(m_polSlant - M_PI / 2);
388 m_sinPolSlant[1] = sin(m_polSlant - M_PI / 2);
389 }
390}
391
392double
394{
395 return m_polSlant;
396}
397
398uint8_t
399UniformPlanarArray::GetElemPol(size_t elemIndex) const
400{
401 NS_ASSERT(elemIndex < GetNumElems());
402 return (elemIndex < GetNumRows() * GetNumColumns()) ? 0 : 1;
403}
404
405} /* namespace ns3 */
Class holding the azimuth and inclination angles of spherical coordinates.
Definition: angles.h:118
double GetInclination() const
Getter for inclination angle.
Definition: angles.cc:246
double GetAzimuth() const
Getter for azimuth angle.
Definition: angles.cc:240
virtual double GetGainDb(Angles a)=0
this method is expected to be re-implemented by each antenna model
AttributeValue implementation for Boolean.
Definition: boolean.h:37
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
Class implementing the phased array model virtual base class.
Ptr< AntennaModel > m_antennaElement
the model of the antenna element in use
bool m_isBfVectorValid
ensures the validity of the beamforming vector
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:932
Hold an unsigned integer type.
Definition: uinteger.h:45
double m_disV
antenna spacing in the vertical direction in multiples of wave length
double m_sinAlpha
the sine of alpha
void SetPolSlant(double polSlant)
Set the polarization slant angle This method sets the polarization slant angle and computes its cosin...
uint16_t GetNumPorts() const override
Get the total number of antenna ports.
double m_disH
antenna spacing in the horizontal direction in multiples of wave length
void SetBeta(double beta)
Set the downtilt angle This method sets the downtilt angle and computes its cosine and sine.
bool m_isDualPolarized
if true antenna elements are dual-polarized
uint16_t ArrayIndexFromPortIndex(uint16_t portIndex, uint16_t subElementIndex) const override
Maps element within a port to an index of element within the antenna array.
void SetNumRows(uint32_t n) override
Set the number of rows of the phased array This method resets the stored beamforming vector to a Comp...
bool IsDualPol() const override
Check if an antenna array contains dual-polarized elements.
static TypeId GetTypeId()
Get the type ID.
void SetAlpha(double alpha)
Set the bearing angle This method sets the bearing angle and computes its cosine and sine.
void SetNumColumns(uint32_t n) override
Set the number of columns of the phased array This method resets the stored beamforming vector to a C...
double GetAntennaVerticalSpacing() const
Get the vertical spacing for the antenna elements of the phased array.
uint16_t GetNumVerticalPorts() const override
Get the number of vertical antenna ports.
uint16_t m_numVPorts
Number of vertical ports.
std::pair< double, double > GetElementFieldPattern(Angles a, uint8_t polIndex=0) const override
Returns the horizontal and vertical components of the antenna element field pattern at the specified ...
double m_polSlant
the polarization slant angle in radians
uint8_t GetElemPol(size_t elemIndex) const override
Returns the index of polarization to which belongs the antenna element with a specific index.
uint32_t GetNumRows() const override
Get the number of rows of the phased array.
double GetPolSlant() const override
Returns polarization angle of first polarization.
double m_cosBeta
the cosine of Beta
void SetAntennaVerticalSpacing(double s)
Set the vertical spacing for the antenna elements of the phased array This method resets the stored b...
double GetAntennaHorizontalSpacing() const
Get the horizontal spacing for the antenna elements of the phased array.
~UniformPlanarArray() override
Destructor.
uint32_t m_numRows
number of rows
Vector GetElementLocation(uint64_t index) const override
Returns the location of the antenna element with the specified index assuming the left bottom corner ...
uint32_t m_numColumns
number of columns
double m_alpha
the bearing angle in radians
uint16_t GetNumHorizontalPorts() const override
Get the number of horizontal antenna ports.
uint16_t m_numHPorts
Number of horizontal ports.
void SetDualPol(bool isDualPol)
Set the polarization.
size_t GetHElemsPerPort() const override
Get the number of horizontal elements belonging to each port.
void SetNumVerticalPorts(uint16_t nPorts) override
Set the number of vertical antenna ports.
size_t GetVElemsPerPort() const override
Get the number of vertical elements belonging to each port.
uint32_t GetNumColumns() const override
Get the number of columns of the phased array.
void SetNumHorizontalPorts(uint16_t nPorts) override
Set the number of horizontal antenna ports.
std::vector< double > m_cosPolSlant
the cosine of polarization slant angle
double m_sinBeta
the sine of Beta
size_t GetNumElems() const override
Returns the number of total antenna elements.
void SetAntennaHorizontalSpacing(double s)
Set the horizontal spacing for the antenna elements of the phased array This method resets the stored...
double m_beta
the downtilt angle in radians
double m_cosAlpha
the cosine of alpha
size_t GetNumElemsPerPort() const override
Get the total number of elements belonging to each port.
uint8_t GetNumPols() const override
Returns the number of polarizations, 2 in the case that the antenna is dual-polarized,...
std::vector< double > m_sinPolSlant
the sine polarization slant angle
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:81
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeDoubleAccessor(T1 a1)
Definition: double.h:43
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
Every class exported by the ns3 library is enclosed in the ns3 namespace.
double RadiansToDegrees(double radians)
converts radians to degrees
Definition: angles.cc:45