A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
fdtbfq-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Marco Miozzo <marco.miozzo@cttc.es>
18 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
19 */
20
22
23#include "lte-amc.h"
25
26#include <ns3/boolean.h>
27#include <ns3/integer.h>
28#include <ns3/log.h>
29#include <ns3/math.h>
30#include <ns3/pointer.h>
31#include <ns3/simulator.h>
32
33#include <cfloat>
34#include <set>
35
36namespace ns3
37{
38
39NS_LOG_COMPONENT_DEFINE("FdTbfqFfMacScheduler");
40
42static const int FdTbfqType0AllocationRbg[4] = {
43 10, // RGB size 1
44 26, // RGB size 2
45 63, // RGB size 3
46 110, // RGB size 4
47}; // see table 7.1.6.1-1 of 36.213
48
49NS_OBJECT_ENSURE_REGISTERED(FdTbfqFfMacScheduler);
50
52 : m_cschedSapUser(nullptr),
53 m_schedSapUser(nullptr),
54 m_nextRntiUl(0),
55 bankSize(0)
56{
57 m_amc = CreateObject<LteAmc>();
60 m_ffrSapProvider = nullptr;
62}
63
65{
66 NS_LOG_FUNCTION(this);
67}
68
69void
71{
72 NS_LOG_FUNCTION(this);
81 delete m_schedSapProvider;
82 delete m_ffrSapUser;
83}
84
87{
88 static TypeId tid =
89 TypeId("ns3::FdTbfqFfMacScheduler")
91 .SetGroupName("Lte")
92 .AddConstructor<FdTbfqFfMacScheduler>()
93 .AddAttribute("CqiTimerThreshold",
94 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
95 UintegerValue(1000),
97 MakeUintegerChecker<uint32_t>())
98 .AddAttribute("DebtLimit",
99 "Flow debt limit (default -625000 bytes)",
100 IntegerValue(-625000),
102 MakeIntegerChecker<int>())
103 .AddAttribute("CreditLimit",
104 "Flow credit limit (default 625000 bytes)",
105 UintegerValue(625000),
107 MakeUintegerChecker<uint32_t>())
108 .AddAttribute("TokenPoolSize",
109 "The maximum value of flow token pool (default 1 bytes)",
110 UintegerValue(1),
112 MakeUintegerChecker<uint32_t>())
113 .AddAttribute("CreditableThreshold",
114 "Threshold of flow credit (default 0 bytes)",
115 UintegerValue(0),
117 MakeUintegerChecker<uint32_t>())
118
119 .AddAttribute("HarqEnabled",
120 "Activate/Deactivate the HARQ [by default is active].",
121 BooleanValue(true),
124 .AddAttribute("UlGrantMcs",
125 "The MCS of the UL grant, must be [0..15] (default 0)",
126 UintegerValue(0),
128 MakeUintegerChecker<uint8_t>());
129 return tid;
130}
131
132void
134{
135 m_cschedSapUser = s;
136}
137
138void
140{
141 m_schedSapUser = s;
142}
143
146{
147 return m_cschedSapProvider;
148}
149
152{
153 return m_schedSapProvider;
154}
155
156void
158{
160}
161
164{
165 return m_ffrSapUser;
166}
167
168void
171{
172 NS_LOG_FUNCTION(this);
173 // Read the subset of parameters used
174 m_cschedCellConfig = params;
177 cnf.m_result = SUCCESS;
179}
180
181void
184{
185 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
186 << (uint16_t)params.m_transmissionMode);
187 auto it = m_uesTxMode.find(params.m_rnti);
188 if (it == m_uesTxMode.end())
189 {
190 m_uesTxMode.insert(std::pair<uint16_t, double>(params.m_rnti, params.m_transmissionMode));
191 // generate HARQ buffers
192 m_dlHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
193 DlHarqProcessesStatus_t dlHarqPrcStatus;
194 dlHarqPrcStatus.resize(8, 0);
195 m_dlHarqProcessesStatus[params.m_rnti] = dlHarqPrcStatus;
196 DlHarqProcessesTimer_t dlHarqProcessesTimer;
197 dlHarqProcessesTimer.resize(8, 0);
198 m_dlHarqProcessesTimer[params.m_rnti] = dlHarqProcessesTimer;
200 dlHarqdci.resize(8);
201 m_dlHarqProcessesDciBuffer[params.m_rnti] = dlHarqdci;
202 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
203 dlHarqRlcPdu.resize(2);
204 dlHarqRlcPdu.at(0).resize(8);
205 dlHarqRlcPdu.at(1).resize(8);
206 m_dlHarqProcessesRlcPduListBuffer[params.m_rnti] = dlHarqRlcPdu;
207 m_ulHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
208 UlHarqProcessesStatus_t ulHarqPrcStatus;
209 ulHarqPrcStatus.resize(8, 0);
210 m_ulHarqProcessesStatus[params.m_rnti] = ulHarqPrcStatus;
212 ulHarqdci.resize(8);
213 m_ulHarqProcessesDciBuffer[params.m_rnti] = ulHarqdci;
214 }
215 else
216 {
217 (*it).second = params.m_transmissionMode;
218 }
219}
220
221void
224{
225 NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
226
227 for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
228 {
229 auto it = m_flowStatsDl.find(params.m_rnti);
230
231 if (it == m_flowStatsDl.end())
232 {
233 uint64_t mbrDlInBytes =
234 params.m_logicalChannelConfigList.at(i).m_eRabMaximulBitrateDl / 8; // byte/s
235 uint64_t mbrUlInBytes =
236 params.m_logicalChannelConfigList.at(i).m_eRabMaximulBitrateUl / 8; // byte/s
237 NS_LOG_DEBUG("mbrDlInBytes: " << mbrDlInBytes << " mbrUlInBytes: " << mbrUlInBytes);
238
239 fdtbfqsFlowPerf_t flowStatsDl;
240 flowStatsDl.flowStart = Simulator::Now();
241 flowStatsDl.packetArrivalRate = 0;
242 flowStatsDl.tokenGenerationRate = mbrDlInBytes;
243 flowStatsDl.tokenPoolSize = 0;
244 flowStatsDl.maxTokenPoolSize = m_tokenPoolSize;
245 flowStatsDl.counter = 0;
246 flowStatsDl.burstCredit = m_creditLimit; // bytes
247 flowStatsDl.debtLimit = m_debtLimit; // bytes
249 m_flowStatsDl.insert(
250 std::pair<uint16_t, fdtbfqsFlowPerf_t>(params.m_rnti, flowStatsDl));
251 fdtbfqsFlowPerf_t flowStatsUl;
252 flowStatsUl.flowStart = Simulator::Now();
253 flowStatsUl.packetArrivalRate = 0;
254 flowStatsUl.tokenGenerationRate = mbrUlInBytes;
255 flowStatsUl.tokenPoolSize = 0;
256 flowStatsUl.maxTokenPoolSize = m_tokenPoolSize;
257 flowStatsUl.counter = 0;
258 flowStatsUl.burstCredit = m_creditLimit; // bytes
259 flowStatsUl.debtLimit = m_debtLimit; // bytes
261 m_flowStatsUl.insert(
262 std::pair<uint16_t, fdtbfqsFlowPerf_t>(params.m_rnti, flowStatsUl));
263 }
264 else
265 {
266 // update MBR and GBR from UeManager::SetupDataRadioBearer ()
267 uint64_t mbrDlInBytes =
268 params.m_logicalChannelConfigList.at(i).m_eRabMaximulBitrateDl / 8; // byte/s
269 uint64_t mbrUlInBytes =
270 params.m_logicalChannelConfigList.at(i).m_eRabMaximulBitrateUl / 8; // byte/s
271 NS_LOG_DEBUG("mbrDlInBytes: " << mbrDlInBytes << " mbrUlInBytes: " << mbrUlInBytes);
272 m_flowStatsDl[(*it).first].tokenGenerationRate = mbrDlInBytes;
273 m_flowStatsUl[(*it).first].tokenGenerationRate = mbrUlInBytes;
274 }
275 }
276}
277
278void
281{
282 NS_LOG_FUNCTION(this);
283 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
284 {
285 auto it = m_rlcBufferReq.begin();
286 while (it != m_rlcBufferReq.end())
287 {
288 if (((*it).first.m_rnti == params.m_rnti) &&
289 ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
290 {
291 auto temp = it;
292 it++;
293 m_rlcBufferReq.erase(temp);
294 }
295 else
296 {
297 it++;
298 }
299 }
300 }
301}
302
303void
306{
307 NS_LOG_FUNCTION(this);
308
309 m_uesTxMode.erase(params.m_rnti);
310 m_dlHarqCurrentProcessId.erase(params.m_rnti);
311 m_dlHarqProcessesStatus.erase(params.m_rnti);
312 m_dlHarqProcessesTimer.erase(params.m_rnti);
313 m_dlHarqProcessesDciBuffer.erase(params.m_rnti);
314 m_dlHarqProcessesRlcPduListBuffer.erase(params.m_rnti);
315 m_ulHarqCurrentProcessId.erase(params.m_rnti);
316 m_ulHarqProcessesStatus.erase(params.m_rnti);
317 m_ulHarqProcessesDciBuffer.erase(params.m_rnti);
318 m_flowStatsDl.erase(params.m_rnti);
319 m_flowStatsUl.erase(params.m_rnti);
320 m_ceBsrRxed.erase(params.m_rnti);
321 auto it = m_rlcBufferReq.begin();
322 while (it != m_rlcBufferReq.end())
323 {
324 if ((*it).first.m_rnti == params.m_rnti)
325 {
326 auto temp = it;
327 it++;
328 m_rlcBufferReq.erase(temp);
329 }
330 else
331 {
332 it++;
333 }
334 }
335 if (m_nextRntiUl == params.m_rnti)
336 {
337 m_nextRntiUl = 0;
338 }
339}
340
341void
344{
345 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
346 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
347
348 LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
349
350 auto it = m_rlcBufferReq.find(flow);
351
352 if (it == m_rlcBufferReq.end())
353 {
354 m_rlcBufferReq[flow] = params;
355 }
356 else
357 {
358 (*it).second = params;
359 }
360}
361
362void
365{
366 NS_LOG_FUNCTION(this);
367 NS_FATAL_ERROR("method not implemented");
368}
369
370void
373{
374 NS_LOG_FUNCTION(this);
375 NS_FATAL_ERROR("method not implemented");
376}
377
378int
380{
381 for (int i = 0; i < 4; i++)
382 {
383 if (dlbandwidth < FdTbfqType0AllocationRbg[i])
384 {
385 return i + 1;
386 }
387 }
388
389 return -1;
390}
391
392unsigned int
394{
395 unsigned int lcActive = 0;
396 for (auto it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
397 {
398 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
399 ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
400 ((*it).second.m_rlcStatusPduSize > 0)))
401 {
402 lcActive++;
403 }
404 if ((*it).first.m_rnti > rnti)
405 {
406 break;
407 }
408 }
409 return lcActive;
410}
411
412bool
414{
415 NS_LOG_FUNCTION(this << rnti);
416
417 auto it = m_dlHarqCurrentProcessId.find(rnti);
418 if (it == m_dlHarqCurrentProcessId.end())
419 {
420 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
421 }
422 auto itStat = m_dlHarqProcessesStatus.find(rnti);
423 if (itStat == m_dlHarqProcessesStatus.end())
424 {
425 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
426 }
427 uint8_t i = (*it).second;
428 do
429 {
430 i = (i + 1) % HARQ_PROC_NUM;
431 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
432
433 return (*itStat).second.at(i) == 0;
434}
435
436uint8_t
438{
439 NS_LOG_FUNCTION(this << rnti);
440
441 if (!m_harqOn)
442 {
443 return 0;
444 }
445
446 auto it = m_dlHarqCurrentProcessId.find(rnti);
447 if (it == m_dlHarqCurrentProcessId.end())
448 {
449 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
450 }
451 auto itStat = m_dlHarqProcessesStatus.find(rnti);
452 if (itStat == m_dlHarqProcessesStatus.end())
453 {
454 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
455 }
456 uint8_t i = (*it).second;
457 do
458 {
459 i = (i + 1) % HARQ_PROC_NUM;
460 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
461 if ((*itStat).second.at(i) == 0)
462 {
463 (*it).second = i;
464 (*itStat).second.at(i) = 1;
465 }
466 else
467 {
468 NS_FATAL_ERROR("No HARQ process available for RNTI "
469 << rnti << " check before update with HarqProcessAvailability");
470 }
471
472 return (*it).second;
473}
474
475void
477{
478 NS_LOG_FUNCTION(this);
479
480 for (auto itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
481 itTimers++)
482 {
483 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
484 {
485 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
486 {
487 // reset HARQ process
488
489 NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
490 auto itStat = m_dlHarqProcessesStatus.find((*itTimers).first);
491 if (itStat == m_dlHarqProcessesStatus.end())
492 {
493 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
494 << (*itTimers).first);
495 }
496 (*itStat).second.at(i) = 0;
497 (*itTimers).second.at(i) = 0;
498 }
499 else
500 {
501 (*itTimers).second.at(i)++;
502 }
503 }
504 }
505}
506
507void
510{
511 NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
512 << (0xF & params.m_sfnSf));
513 // API generated by RLC for triggering the scheduling of a DL subframe
514
515 // evaluate the relative channel quality indicator for each UE per each RBG
516 // (since we are using allocation type 0 the small unit of allocation is RBG)
517 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
518
520
522 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
523 std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
524 std::vector<bool> rbgMap; // global RBGs map
525 uint16_t rbgAllocatedNum = 0;
526 std::set<uint16_t> rntiAllocated;
527 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
528
530 for (auto it = rbgMap.begin(); it != rbgMap.end(); it++)
531 {
532 if (*it)
533 {
534 rbgAllocatedNum++;
535 }
536 }
537
539
540 // update UL HARQ proc id
541 for (auto itProcId = m_ulHarqCurrentProcessId.begin();
542 itProcId != m_ulHarqCurrentProcessId.end();
543 itProcId++)
544 {
545 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
546 }
547
548 // RACH Allocation
549 std::vector<bool> ulRbMap;
550 ulRbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
552 uint8_t maxContinuousUlBandwidth = 0;
553 uint8_t tmpMinBandwidth = 0;
554 uint16_t ffrRbStartOffset = 0;
555 uint16_t tmpFfrRbStartOffset = 0;
556 uint16_t index = 0;
557
558 for (auto it = ulRbMap.begin(); it != ulRbMap.end(); it++)
559 {
560 if (*it)
561 {
562 if (tmpMinBandwidth > maxContinuousUlBandwidth)
563 {
564 maxContinuousUlBandwidth = tmpMinBandwidth;
565 ffrRbStartOffset = tmpFfrRbStartOffset;
566 }
567 tmpMinBandwidth = 0;
568 }
569 else
570 {
571 if (tmpMinBandwidth == 0)
572 {
573 tmpFfrRbStartOffset = index;
574 }
575 tmpMinBandwidth++;
576 }
577 index++;
578 }
579
580 if (tmpMinBandwidth > maxContinuousUlBandwidth)
581 {
582 maxContinuousUlBandwidth = tmpMinBandwidth;
583 ffrRbStartOffset = tmpFfrRbStartOffset;
584 }
585
587 uint16_t rbStart = 0;
588 rbStart = ffrRbStartOffset;
589 for (auto itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
590 {
592 (*itRach).m_estimatedSize,
593 " Default UL Grant MCS does not allow to send RACH messages");
595 newRar.m_rnti = (*itRach).m_rnti;
596 // DL-RACH Allocation
597 // Ideal: no needs of configuring m_dci
598 // UL-RACH Allocation
599 newRar.m_grant.m_rnti = newRar.m_rnti;
600 newRar.m_grant.m_mcs = m_ulGrantMcs;
601 uint16_t rbLen = 1;
602 uint16_t tbSizeBits = 0;
603 // find lowest TB size that fits UL grant estimated size
604 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
605 (rbStart + rbLen < (ffrRbStartOffset + maxContinuousUlBandwidth)))
606 {
607 rbLen++;
608 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
609 }
610 if (tbSizeBits < (*itRach).m_estimatedSize)
611 {
612 // no more allocation space: finish allocation
613 break;
614 }
615 newRar.m_grant.m_rbStart = rbStart;
616 newRar.m_grant.m_rbLen = rbLen;
617 newRar.m_grant.m_tbSize = tbSizeBits / 8;
618 newRar.m_grant.m_hopping = false;
619 newRar.m_grant.m_tpc = 0;
620 newRar.m_grant.m_cqiRequest = false;
621 newRar.m_grant.m_ulDelay = false;
622 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
623 << rbStart << " rbLen " << rbLen << " MCS " << (uint16_t)m_ulGrantMcs
624 << " tbSize " << newRar.m_grant.m_tbSize);
625 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
626 {
627 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
628 }
629
630 if (m_harqOn)
631 {
632 // generate UL-DCI for HARQ retransmissions
633 UlDciListElement_s uldci;
634 uldci.m_rnti = newRar.m_rnti;
635 uldci.m_rbLen = rbLen;
636 uldci.m_rbStart = rbStart;
637 uldci.m_mcs = m_ulGrantMcs;
638 uldci.m_tbSize = tbSizeBits / 8;
639 uldci.m_ndi = 1;
640 uldci.m_cceIndex = 0;
641 uldci.m_aggrLevel = 1;
642 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
643 uldci.m_hopping = false;
644 uldci.m_n2Dmrs = 0;
645 uldci.m_tpc = 0; // no power control
646 uldci.m_cqiRequest = false; // only period CQI at this stage
647 uldci.m_ulIndex = 0; // TDD parameter
648 uldci.m_dai = 1; // TDD parameter
649 uldci.m_freqHopping = 0;
650 uldci.m_pdcchPowerOffset = 0; // not used
651
652 uint8_t harqId = 0;
653 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
654 if (itProcId == m_ulHarqCurrentProcessId.end())
655 {
656 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
657 }
658 harqId = (*itProcId).second;
659 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
660 if (itDci == m_ulHarqProcessesDciBuffer.end())
661 {
662 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
663 << uldci.m_rnti);
664 }
665 (*itDci).second.at(harqId) = uldci;
666 }
667
668 rbStart = rbStart + rbLen;
669 ret.m_buildRarList.push_back(newRar);
670 }
671 m_rachList.clear();
672
673 // Process DL HARQ feedback
675 // retrieve past HARQ retx buffered
676 if (!m_dlInfoListBuffered.empty())
677 {
678 if (!params.m_dlInfoList.empty())
679 {
680 NS_LOG_INFO(this << " Received DL-HARQ feedback");
682 params.m_dlInfoList.begin(),
683 params.m_dlInfoList.end());
684 }
685 }
686 else
687 {
688 if (!params.m_dlInfoList.empty())
689 {
690 m_dlInfoListBuffered = params.m_dlInfoList;
691 }
692 }
693 if (!m_harqOn)
694 {
695 // Ignore HARQ feedback
696 m_dlInfoListBuffered.clear();
697 }
698 std::vector<DlInfoListElement_s> dlInfoListUntxed;
699 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
700 {
701 auto itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
702 if (itRnti != rntiAllocated.end())
703 {
704 // RNTI already allocated for retx
705 continue;
706 }
707 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
708 std::vector<bool> retx;
709 NS_LOG_INFO(this << " Processing DLHARQ feedback");
710 if (nLayers == 1)
711 {
712 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
714 retx.push_back(false);
715 }
716 else
717 {
718 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
720 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
722 }
723 if (retx.at(0) || retx.at(1))
724 {
725 // retrieve HARQ process information
726 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
727 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
728 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
729 auto itHarq = m_dlHarqProcessesDciBuffer.find(rnti);
730 if (itHarq == m_dlHarqProcessesDciBuffer.end())
731 {
732 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
733 }
734
735 DlDciListElement_s dci = (*itHarq).second.at(harqId);
736 int rv = 0;
737 if (dci.m_rv.size() == 1)
738 {
739 rv = dci.m_rv.at(0);
740 }
741 else
742 {
743 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
744 }
745
746 if (rv == 3)
747 {
748 // maximum number of retx reached -> drop process
749 NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
750 auto it = m_dlHarqProcessesStatus.find(rnti);
751 if (it == m_dlHarqProcessesStatus.end())
752 {
753 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
754 << m_dlInfoListBuffered.at(i).m_rnti);
755 }
756 (*it).second.at(harqId) = 0;
757 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
758 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
759 {
760 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
761 << m_dlInfoListBuffered.at(i).m_rnti);
762 }
763 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
764 {
765 (*itRlcPdu).second.at(k).at(harqId).clear();
766 }
767 continue;
768 }
769 // check the feasibility of retransmitting on the same RBGs
770 // translate the DCI to Spectrum framework
771 std::vector<int> dciRbg;
772 uint32_t mask = 0x1;
773 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
774 for (int j = 0; j < 32; j++)
775 {
776 if (((dci.m_rbBitmap & mask) >> j) == 1)
777 {
778 dciRbg.push_back(j);
779 NS_LOG_INFO("\t" << j);
780 }
781 mask = (mask << 1);
782 }
783 bool free = true;
784 for (std::size_t j = 0; j < dciRbg.size(); j++)
785 {
786 if (rbgMap.at(dciRbg.at(j)))
787 {
788 free = false;
789 break;
790 }
791 }
792 if (free)
793 {
794 // use the same RBGs for the retx
795 // reserve RBGs
796 for (std::size_t j = 0; j < dciRbg.size(); j++)
797 {
798 rbgMap.at(dciRbg.at(j)) = true;
799 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
800 rbgAllocatedNum++;
801 }
802
803 NS_LOG_INFO(this << " Send retx in the same RBGs");
804 }
805 else
806 {
807 // find RBGs for sending HARQ retx
808 uint8_t j = 0;
809 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
810 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
811 std::vector<bool> rbgMapCopy = rbgMap;
812 while ((j < dciRbg.size()) && (startRbg != rbgId))
813 {
814 if (!rbgMapCopy.at(rbgId))
815 {
816 rbgMapCopy.at(rbgId) = true;
817 dciRbg.at(j) = rbgId;
818 j++;
819 }
820 rbgId = (rbgId + 1) % rbgNum;
821 }
822 if (j == dciRbg.size())
823 {
824 // find new RBGs -> update DCI map
825 uint32_t rbgMask = 0;
826 for (std::size_t k = 0; k < dciRbg.size(); k++)
827 {
828 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
829 rbgAllocatedNum++;
830 }
831 dci.m_rbBitmap = rbgMask;
832 rbgMap = rbgMapCopy;
833 NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
834 }
835 else
836 {
837 // HARQ retx cannot be performed on this TTI -> store it
838 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
839 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
840 }
841 }
842 // retrieve RLC PDU list for retx TBsize and update DCI
844 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
845 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
846 {
847 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
848 }
849 for (std::size_t j = 0; j < nLayers; j++)
850 {
851 if (retx.at(j))
852 {
853 if (j >= dci.m_ndi.size())
854 {
855 // for avoiding errors in MIMO transient phases
856 dci.m_ndi.push_back(0);
857 dci.m_rv.push_back(0);
858 dci.m_mcs.push_back(0);
859 dci.m_tbsSize.push_back(0);
860 NS_LOG_INFO(this << " layer " << (uint16_t)j
861 << " no txed (MIMO transition)");
862 }
863 else
864 {
865 dci.m_ndi.at(j) = 0;
866 dci.m_rv.at(j)++;
867 (*itHarq).second.at(harqId).m_rv.at(j)++;
868 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
869 << (uint16_t)dci.m_rv.at(j));
870 }
871 }
872 else
873 {
874 // empty TB of layer j
875 dci.m_ndi.at(j) = 0;
876 dci.m_rv.at(j) = 0;
877 dci.m_mcs.at(j) = 0;
878 dci.m_tbsSize.at(j) = 0;
879 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
880 }
881 }
882 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
883 {
884 std::vector<RlcPduListElement_s> rlcPduListPerLc;
885 for (std::size_t j = 0; j < nLayers; j++)
886 {
887 if (retx.at(j))
888 {
889 if (j < dci.m_ndi.size())
890 {
891 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
892 << dci.m_tbsSize.at(j));
893 rlcPduListPerLc.push_back(
894 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
895 }
896 }
897 else
898 { // if no retx needed on layer j, push an RlcPduListElement_s object with
899 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
900 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
901 RlcPduListElement_s emptyElement;
902 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
903 .second.at(j)
904 .at(dci.m_harqProcess)
905 .at(k)
906 .m_logicalChannelIdentity;
907 emptyElement.m_size = 0;
908 rlcPduListPerLc.push_back(emptyElement);
909 }
910 }
911
912 if (!rlcPduListPerLc.empty())
913 {
914 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
915 }
916 }
917 newEl.m_rnti = rnti;
918 newEl.m_dci = dci;
919 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
920 // refresh timer
921 auto itHarqTimer = m_dlHarqProcessesTimer.find(rnti);
922 if (itHarqTimer == m_dlHarqProcessesTimer.end())
923 {
924 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
925 }
926 (*itHarqTimer).second.at(harqId) = 0;
927 ret.m_buildDataList.push_back(newEl);
928 rntiAllocated.insert(rnti);
929 }
930 else
931 {
932 // update HARQ process status
933 NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
934 auto it = m_dlHarqProcessesStatus.find(m_dlInfoListBuffered.at(i).m_rnti);
935 if (it == m_dlHarqProcessesStatus.end())
936 {
937 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
938 << m_dlInfoListBuffered.at(i).m_rnti);
939 }
940 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
941 auto itRlcPdu =
943 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
944 {
945 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
946 << m_dlInfoListBuffered.at(i).m_rnti);
947 }
948 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
949 {
950 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
951 }
952 }
953 }
954 m_dlInfoListBuffered.clear();
955 m_dlInfoListBuffered = dlInfoListUntxed;
956
957 if (rbgAllocatedNum == rbgNum)
958 {
959 // all the RBGs are already allocated -> exit
960 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
961 {
963 }
964 return;
965 }
966
967 // update token pool, counter and bank size
968 for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
969 {
970 if ((*itStats).second.tokenGenerationRate / 1000 + (*itStats).second.tokenPoolSize >
971 (*itStats).second.maxTokenPoolSize)
972 {
973 (*itStats).second.counter +=
974 (*itStats).second.tokenGenerationRate / 1000 -
975 ((*itStats).second.maxTokenPoolSize - (*itStats).second.tokenPoolSize);
976 (*itStats).second.tokenPoolSize = (*itStats).second.maxTokenPoolSize;
977 bankSize += (*itStats).second.tokenGenerationRate / 1000 -
978 ((*itStats).second.maxTokenPoolSize - (*itStats).second.tokenPoolSize);
979 }
980 else
981 {
982 (*itStats).second.tokenPoolSize += (*itStats).second.tokenGenerationRate / 1000;
983 }
984 }
985
986 std::set<uint16_t> allocatedRnti; // store UEs which are already assigned RBGs
987 std::set<uint8_t> allocatedRbg; // store RBGs which are already allocated to UE
988
989 int totalRbg = 0;
990 while (totalRbg < rbgNum)
991 {
992 // select UE with largest metric
993 std::map<uint16_t, fdtbfqsFlowPerf_t>::iterator it;
994 auto itMax = m_flowStatsDl.end();
995 double metricMax = 0.0;
996 bool firstRnti = true;
997 for (it = m_flowStatsDl.begin(); it != m_flowStatsDl.end(); it++)
998 {
999 auto itRnti = rntiAllocated.find((*it).first);
1000 if ((itRnti != rntiAllocated.end()) || (!HarqProcessAvailability((*it).first)))
1001 {
1002 // UE already allocated for HARQ or without HARQ process available -> drop it
1003 if (itRnti != rntiAllocated.end())
1004 {
1005 NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx" << (uint16_t)(*it).first);
1006 }
1007 if (!HarqProcessAvailability((*it).first))
1008 {
1009 NS_LOG_DEBUG(this << " RNTI discarded for HARQ id" << (uint16_t)(*it).first);
1010 }
1011 continue;
1012 }
1013 // check first the channel conditions for this UE, if CQI!=0
1014 auto itCqi = m_a30CqiRxed.find((*it).first);
1015 auto itTxMode = m_uesTxMode.find((*it).first);
1016 if (itTxMode == m_uesTxMode.end())
1017 {
1018 NS_FATAL_ERROR("No Transmission Mode info on user " << (*it).first);
1019 }
1020 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1021
1022 uint8_t cqiSum = 0;
1023 for (int k = 0; k < rbgNum; k++)
1024 {
1025 for (uint8_t j = 0; j < nLayer; j++)
1026 {
1027 if (itCqi == m_a30CqiRxed.end())
1028 {
1029 cqiSum += 1; // no info on this user -> lowest MCS
1030 }
1031 else
1032 {
1033 cqiSum += (*itCqi).second.m_higherLayerSelected.at(k).m_sbCqi.at(j);
1034 }
1035 }
1036 }
1037
1038 if (cqiSum == 0)
1039 {
1040 NS_LOG_INFO("Skip this flow, CQI==0, rnti:" << (*it).first);
1041 continue;
1042 }
1043
1044 if (LcActivePerFlow((*it).first) == 0)
1045 {
1046 continue;
1047 }
1048
1049 auto rnti = allocatedRnti.find((*it).first);
1050 if (rnti != allocatedRnti.end()) // already allocated RBGs to this UE
1051 {
1052 continue;
1053 }
1054
1055 double metric =
1056 (((double)(*it).second.counter) / ((double)(*it).second.tokenGenerationRate));
1057
1058 if (firstRnti)
1059 {
1060 metricMax = metric;
1061 itMax = it;
1062 firstRnti = false;
1063 continue;
1064 }
1065 if (metric > metricMax)
1066 {
1067 metricMax = metric;
1068 itMax = it;
1069 }
1070 } // end for m_flowStatsDl
1071
1072 if (itMax == m_flowStatsDl.end())
1073 {
1074 // all UEs are allocated RBG or all UEs already allocated for HARQ or without HARQ
1075 // process available
1076 break;
1077 }
1078
1079 // mark this UE as "allocated"
1080 allocatedRnti.insert((*itMax).first);
1081
1082 // calculate the maximum number of byte that the scheduler can assigned to this UE
1083 uint32_t budget = 0;
1084 if (bankSize > 0)
1085 {
1086 budget = (*itMax).second.counter - (*itMax).second.debtLimit;
1087 if (budget > (*itMax).second.burstCredit)
1088 {
1089 budget = (*itMax).second.burstCredit;
1090 }
1091 if (budget > bankSize)
1092 {
1093 budget = bankSize;
1094 }
1095 }
1096 budget = budget + (*itMax).second.tokenPoolSize;
1097
1098 // calculate how much bytes this UE actually need
1099 if (budget == 0)
1100 {
1101 // there are no tokens for this UE
1102 continue;
1103 }
1104 else
1105 {
1106 // calculate rlc buffer size
1107 uint32_t rlcBufSize = 0;
1108 uint8_t lcid = 0;
1109 for (auto itRlcBuf = m_rlcBufferReq.begin(); itRlcBuf != m_rlcBufferReq.end();
1110 itRlcBuf++)
1111 {
1112 if ((*itRlcBuf).first.m_rnti == (*itMax).first)
1113 {
1114 lcid = (*itRlcBuf).first.m_lcId;
1115 }
1116 }
1117 LteFlowId_t flow((*itMax).first, lcid);
1118 auto itRlcBuf = m_rlcBufferReq.find(flow);
1119 if (itRlcBuf != m_rlcBufferReq.end())
1120 {
1121 rlcBufSize = (*itRlcBuf).second.m_rlcTransmissionQueueSize +
1122 (*itRlcBuf).second.m_rlcRetransmissionQueueSize +
1123 (*itRlcBuf).second.m_rlcStatusPduSize;
1124 }
1125 if (budget > rlcBufSize)
1126 {
1127 budget = rlcBufSize;
1128 NS_LOG_DEBUG("budget > rlcBufSize. budget: " << budget
1129 << " RLC buffer size: " << rlcBufSize);
1130 }
1131 }
1132
1133 // assign RBGs to this UE
1134 uint32_t bytesTxed = 0;
1135 uint32_t bytesTxedTmp = 0;
1136 int rbgIndex = 0;
1137 while (bytesTxed <= budget)
1138 {
1139 totalRbg++;
1140
1141 auto itCqi = m_a30CqiRxed.find((*itMax).first);
1142 auto itTxMode = m_uesTxMode.find((*itMax).first);
1143 if (itTxMode == m_uesTxMode.end())
1144 {
1145 NS_FATAL_ERROR("No Transmission Mode info on user " << (*it).first);
1146 }
1147 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1148
1149 // find RBG with largest achievableRate
1150 double achievableRateMax = 0.0;
1151 rbgIndex = rbgNum;
1152 for (int k = 0; k < rbgNum; k++)
1153 {
1154 auto rbg = allocatedRbg.find(k);
1155 if (rbg != allocatedRbg.end()) // RBGs are already allocated to this UE
1156 {
1157 continue;
1158 }
1159
1160 if (rbgMap.at(k)) // this RBG is allocated in RACH procedure
1161 {
1162 continue;
1163 }
1164
1165 if (!m_ffrSapProvider->IsDlRbgAvailableForUe(k, (*itMax).first))
1166 {
1167 continue;
1168 }
1169
1170 std::vector<uint8_t> sbCqi;
1171 if (itCqi == m_a30CqiRxed.end())
1172 {
1173 sbCqi = std::vector<uint8_t>(nLayer, 1); // start with lowest value
1174 }
1175 else
1176 {
1177 sbCqi = (*itCqi).second.m_higherLayerSelected.at(k).m_sbCqi;
1178 }
1179 uint8_t cqi1 = sbCqi.at(0);
1180 uint8_t cqi2 = 0;
1181 if (sbCqi.size() > 1)
1182 {
1183 cqi2 = sbCqi.at(1);
1184 }
1185
1186 if ((cqi1 > 0) ||
1187 (cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1188 {
1189 if (LcActivePerFlow((*itMax).first) > 0)
1190 {
1191 // this UE has data to transmit
1192 double achievableRate = 0.0;
1193 for (uint8_t j = 0; j < nLayer; j++)
1194 {
1195 uint8_t mcs = 0;
1196 if (sbCqi.size() > j)
1197 {
1198 mcs = m_amc->GetMcsFromCqi(sbCqi.at(j));
1199 }
1200 else
1201 {
1202 // no info on this subband -> worst MCS
1203 mcs = 0;
1204 }
1205 achievableRate += ((m_amc->GetDlTbSizeFromMcs(mcs, rbgSize) / 8) /
1206 0.001); // = TB size / TTI
1207 }
1208
1209 if (achievableRate > achievableRateMax)
1210 {
1211 achievableRateMax = achievableRate;
1212 rbgIndex = k;
1213 }
1214 } // end of LcActivePerFlow
1215 } // end of cqi
1216 } // end of for rbgNum
1217
1218 if (rbgIndex == rbgNum) // impossible
1219 {
1220 // all RBGs are already assigned
1221 totalRbg = rbgNum;
1222 break;
1223 }
1224 else
1225 {
1226 // mark this UE as "allocated"
1227 allocatedRbg.insert(rbgIndex);
1228 }
1229
1230 // assign this RBG to UE
1231 auto itMap = allocationMap.find((*itMax).first);
1232 uint16_t RbgPerRnti;
1233 if (itMap == allocationMap.end())
1234 {
1235 // insert new element
1236 std::vector<uint16_t> tempMap;
1237 tempMap.push_back(rbgIndex);
1238 allocationMap[(*itMax).first] = tempMap;
1239 itMap = allocationMap.find(
1240 (*itMax).first); // point itMap to the first RBGs assigned to this UE
1241 }
1242 else
1243 {
1244 (*itMap).second.push_back(rbgIndex);
1245 }
1246 rbgMap.at(rbgIndex) = true; // Mark this RBG as allocated
1247
1248 RbgPerRnti = (*itMap).second.size();
1249
1250 // calculate tb size
1251 std::vector<uint8_t> worstCqi(2, 15);
1252 if (itCqi != m_a30CqiRxed.end())
1253 {
1254 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1255 {
1256 if ((*itCqi).second.m_higherLayerSelected.size() > (*itMap).second.at(k))
1257 {
1258 for (uint8_t j = 0; j < nLayer; j++)
1259 {
1260 if ((*itCqi)
1261 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1262 .m_sbCqi.size() > j)
1263 {
1264 if (((*itCqi)
1265 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1266 .m_sbCqi.at(j)) < worstCqi.at(j))
1267 {
1268 worstCqi.at(j) =
1269 ((*itCqi)
1270 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1271 .m_sbCqi.at(j));
1272 }
1273 }
1274 else
1275 {
1276 // no CQI for this layer of this suband -> worst one
1277 worstCqi.at(j) = 1;
1278 }
1279 }
1280 }
1281 else
1282 {
1283 for (uint8_t j = 0; j < nLayer; j++)
1284 {
1285 worstCqi.at(j) =
1286 1; // try with lowest MCS in RBG with no info on channel
1287 }
1288 }
1289 }
1290 }
1291 else
1292 {
1293 for (uint8_t j = 0; j < nLayer; j++)
1294 {
1295 worstCqi.at(j) = 1; // try with lowest MCS in RBG with no info on channel
1296 }
1297 }
1298
1299 bytesTxedTmp = bytesTxed;
1300 bytesTxed = 0;
1301 for (uint8_t j = 0; j < nLayer; j++)
1302 {
1303 int tbSize = (m_amc->GetDlTbSizeFromMcs(m_amc->GetMcsFromCqi(worstCqi.at(j)),
1304 RbgPerRnti * rbgSize) /
1305 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1306 bytesTxed += tbSize;
1307 }
1308
1309 } // end of while()
1310
1311 // remove and unmark last RBG assigned to UE
1312 if (bytesTxed > budget)
1313 {
1314 NS_LOG_DEBUG("budget: " << budget << " bytesTxed: " << bytesTxed << " at "
1315 << Simulator::Now().As(Time::MS));
1316 auto itMap = allocationMap.find((*itMax).first);
1317 (*itMap).second.pop_back();
1318 allocatedRbg.erase(rbgIndex);
1319 bytesTxed = bytesTxedTmp; // recovery bytesTxed
1320 totalRbg--;
1321 rbgMap.at(rbgIndex) = false; // unmark this RBG
1322 // If all the RBGs are removed from the allocation
1323 // of this RNTI, we remove the UE from the allocation map
1324 if ((*itMap).second.empty())
1325 {
1326 itMap = allocationMap.erase(itMap);
1327 }
1328 }
1329
1330 // only update the UE stats if it exists in the allocation map
1331 if (allocationMap.find((*itMax).first) != allocationMap.end())
1332 {
1333 // update UE stats
1334 if (bytesTxed <= (*itMax).second.tokenPoolSize)
1335 {
1336 (*itMax).second.tokenPoolSize -= bytesTxed;
1337 }
1338 else
1339 {
1340 (*itMax).second.counter =
1341 (*itMax).second.counter - (bytesTxed - (*itMax).second.tokenPoolSize);
1342 (*itMax).second.tokenPoolSize = 0;
1343 if (bankSize <= (bytesTxed - (*itMax).second.tokenPoolSize))
1344 {
1345 bankSize = 0;
1346 }
1347 else
1348 {
1349 bankSize = bankSize - (bytesTxed - (*itMax).second.tokenPoolSize);
1350 }
1351 }
1352 }
1353 } // end of RBGs
1354
1355 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1356 // creating the correspondent DCIs
1357 auto itMap = allocationMap.begin();
1358 while (itMap != allocationMap.end())
1359 {
1360 NS_LOG_DEBUG("Preparing DCI for RNTI " << (*itMap).first);
1361 // create new BuildDataListElement_s for this LC
1363 newEl.m_rnti = (*itMap).first;
1364 // create the DlDciListElement_s
1365 DlDciListElement_s newDci;
1366 newDci.m_rnti = (*itMap).first;
1367 newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
1368
1369 uint16_t lcActives = LcActivePerFlow((*itMap).first);
1370 NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1371 if (lcActives == 0)
1372 {
1373 // Set to max value, to avoid divide by 0 below
1374 lcActives = (uint16_t)65535; // UINT16_MAX;
1375 }
1376 uint16_t RgbPerRnti = (*itMap).second.size();
1377 auto itCqi = m_a30CqiRxed.find((*itMap).first);
1378 auto itTxMode = m_uesTxMode.find((*itMap).first);
1379 if (itTxMode == m_uesTxMode.end())
1380 {
1381 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
1382 }
1383 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1384 std::vector<uint8_t> worstCqi(2, 15);
1385 if (itCqi != m_a30CqiRxed.end())
1386 {
1387 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1388 {
1389 if ((*itCqi).second.m_higherLayerSelected.size() > (*itMap).second.at(k))
1390 {
1391 NS_LOG_INFO(this << " RBG " << (*itMap).second.at(k) << " CQI "
1392 << (uint16_t)((*itCqi)
1393 .second.m_higherLayerSelected
1394 .at((*itMap).second.at(k))
1395 .m_sbCqi.at(0)));
1396 for (uint8_t j = 0; j < nLayer; j++)
1397 {
1398 if ((*itCqi)
1399 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1400 .m_sbCqi.size() > j)
1401 {
1402 if (((*itCqi)
1403 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1404 .m_sbCqi.at(j)) < worstCqi.at(j))
1405 {
1406 worstCqi.at(j) =
1407 ((*itCqi)
1408 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1409 .m_sbCqi.at(j));
1410 }
1411 }
1412 else
1413 {
1414 // no CQI for this layer of this suband -> worst one
1415 worstCqi.at(j) = 1;
1416 }
1417 }
1418 }
1419 else
1420 {
1421 for (uint8_t j = 0; j < nLayer; j++)
1422 {
1423 worstCqi.at(j) = 1; // try with lowest MCS in RBG with no info on channel
1424 }
1425 }
1426 }
1427 }
1428 else
1429 {
1430 for (uint8_t j = 0; j < nLayer; j++)
1431 {
1432 worstCqi.at(j) = 1; // try with lowest MCS in RBG with no info on channel
1433 }
1434 }
1435 for (uint8_t j = 0; j < nLayer; j++)
1436 {
1437 NS_LOG_INFO(this << " Layer " << (uint16_t)j << " CQI selected "
1438 << (uint16_t)worstCqi.at(j));
1439 }
1440 for (uint8_t j = 0; j < nLayer; j++)
1441 {
1442 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi(worstCqi.at(j)));
1443 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RgbPerRnti * rbgSize) /
1444 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1445 newDci.m_tbsSize.push_back(tbSize);
1446 NS_LOG_INFO(this << " Layer " << (uint16_t)j << " MCS selected"
1447 << (uint16_t)m_amc->GetMcsFromCqi(worstCqi.at(j)));
1448 }
1449
1450 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1451 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1452 uint32_t rbgMask = 0;
1453 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1454 {
1455 rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
1456 NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
1457 }
1458 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1459
1460 // create the rlc PDUs -> equally divide resources among actives LCs
1461 for (auto itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1462 {
1463 if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1464 (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1465 ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1466 ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1467 {
1468 std::vector<RlcPduListElement_s> newRlcPduLe;
1469 for (uint8_t j = 0; j < nLayer; j++)
1470 {
1471 RlcPduListElement_s newRlcEl;
1472 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1473 newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1474 NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1475 << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1476 newRlcPduLe.push_back(newRlcEl);
1478 newRlcEl.m_logicalChannelIdentity,
1479 newRlcEl.m_size);
1480 if (m_harqOn)
1481 {
1482 // store RLC PDU list for HARQ
1483 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1484 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1485 {
1486 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1487 << (*itMap).first);
1488 }
1489 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1490 }
1491 }
1492 newEl.m_rlcPduList.push_back(newRlcPduLe);
1493 }
1494 if ((*itBufReq).first.m_rnti > (*itMap).first)
1495 {
1496 break;
1497 }
1498 }
1499 for (uint8_t j = 0; j < nLayer; j++)
1500 {
1501 newDci.m_ndi.push_back(1);
1502 newDci.m_rv.push_back(0);
1503 }
1504
1505 newDci.m_tpc = m_ffrSapProvider->GetTpc((*itMap).first);
1506
1507 newEl.m_dci = newDci;
1508
1509 if (m_harqOn)
1510 {
1511 // store DCI for HARQ
1512 auto itDci = m_dlHarqProcessesDciBuffer.find(newEl.m_rnti);
1513 if (itDci == m_dlHarqProcessesDciBuffer.end())
1514 {
1515 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1516 << newEl.m_rnti);
1517 }
1518 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1519 // refresh timer
1520 auto itHarqTimer = m_dlHarqProcessesTimer.find(newEl.m_rnti);
1521 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1522 {
1523 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1524 }
1525 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1526 }
1527
1528 // ...more parameters -> ignored in this version
1529
1530 ret.m_buildDataList.push_back(newEl);
1531
1532 itMap++;
1533 } // end while allocation
1534 ret.m_nrOfPdcchOfdmSymbols = 1;
1535
1537}
1538
1539void
1542{
1543 NS_LOG_FUNCTION(this);
1544
1545 m_rachList = params.m_rachList;
1546}
1547
1548void
1551{
1552 NS_LOG_FUNCTION(this);
1554
1555 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1556 {
1557 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1558 {
1559 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1560 << " reported");
1561 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1562 auto it = m_p10CqiRxed.find(rnti);
1563 if (it == m_p10CqiRxed.end())
1564 {
1565 // create the new entry
1566 m_p10CqiRxed[rnti] =
1567 params.m_cqiList.at(i).m_wbCqi.at(0); // only codeword 0 at this stage (SISO)
1568 // generate correspondent timer
1569 m_p10CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1570 }
1571 else
1572 {
1573 // update the CQI value and refresh correspondent timer
1574 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1575 // update correspondent timer
1576 auto itTimers = m_p10CqiTimers.find(rnti);
1577 (*itTimers).second = m_cqiTimersThreshold;
1578 }
1579 }
1580 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1581 {
1582 // subband CQI reporting high layer configured
1583 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1584 auto it = m_a30CqiRxed.find(rnti);
1585 if (it == m_a30CqiRxed.end())
1586 {
1587 // create the new entry
1588 m_a30CqiRxed[rnti] = params.m_cqiList.at(i).m_sbMeasResult;
1589 m_a30CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1590 }
1591 else
1592 {
1593 // update the CQI value and refresh correspondent timer
1594 (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1595 auto itTimers = m_a30CqiTimers.find(rnti);
1596 (*itTimers).second = m_cqiTimersThreshold;
1597 }
1598 }
1599 else
1600 {
1601 NS_LOG_ERROR(this << " CQI type unknown");
1602 }
1603 }
1604}
1605
1606double
1607FdTbfqFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1608{
1609 auto itCqi = m_ueCqi.find(rnti);
1610 if (itCqi == m_ueCqi.end())
1611 {
1612 // no cqi info about this UE
1613 return NO_SINR;
1614 }
1615 else
1616 {
1617 // take the average SINR value among the available
1618 double sinrSum = 0;
1619 unsigned int sinrNum = 0;
1620 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1621 {
1622 double sinr = (*itCqi).second.at(i);
1623 if (sinr != NO_SINR)
1624 {
1625 sinrSum += sinr;
1626 sinrNum++;
1627 }
1628 }
1629 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1630 // store the value
1631 (*itCqi).second.at(rb) = estimatedSinr;
1632 return estimatedSinr;
1633 }
1634}
1635
1636void
1639{
1640 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1641 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1642
1645
1646 // Generate RBs map
1648 std::vector<bool> rbMap;
1649 uint16_t rbAllocatedNum = 0;
1650 std::set<uint16_t> rntiAllocated;
1651 std::vector<uint16_t> rbgAllocationMap;
1652 // update with RACH allocation map
1653 rbgAllocationMap = m_rachAllocationMap;
1654 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1655 m_rachAllocationMap.clear();
1657
1658 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1659
1661
1662 for (auto it = rbMap.begin(); it != rbMap.end(); it++)
1663 {
1664 if (*it)
1665 {
1666 rbAllocatedNum++;
1667 }
1668 }
1669
1670 uint8_t minContinuousUlBandwidth = m_ffrSapProvider->GetMinContinuousUlBandwidth();
1671 uint8_t ffrUlBandwidth = m_cschedCellConfig.m_ulBandwidth - rbAllocatedNum;
1672
1673 // remove RACH allocation
1674 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1675 {
1676 if (rbgAllocationMap.at(i) != 0)
1677 {
1678 rbMap.at(i) = true;
1679 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1680 }
1681 }
1682
1683 if (m_harqOn)
1684 {
1685 // Process UL HARQ feedback
1686 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1687 {
1688 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1689 {
1690 // retx correspondent block: retrieve the UL-DCI
1691 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1692 auto itProcId = m_ulHarqCurrentProcessId.find(rnti);
1693 if (itProcId == m_ulHarqCurrentProcessId.end())
1694 {
1695 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1696 }
1697 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1698 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1699 << " i " << i << " size " << params.m_ulInfoList.size());
1700 auto itHarq = m_ulHarqProcessesDciBuffer.find(rnti);
1701 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1702 {
1703 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1704 continue;
1705 }
1706 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1707 auto itStat = m_ulHarqProcessesStatus.find(rnti);
1708 if (itStat == m_ulHarqProcessesStatus.end())
1709 {
1710 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1711 }
1712 if ((*itStat).second.at(harqId) >= 3)
1713 {
1714 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1715 continue;
1716 }
1717 bool free = true;
1718 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1719 {
1720 if (rbMap.at(j))
1721 {
1722 free = false;
1723 NS_LOG_INFO(this << " BUSY " << j);
1724 }
1725 }
1726 if (free)
1727 {
1728 // retx on the same RBs
1729 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1730 {
1731 rbMap.at(j) = true;
1732 rbgAllocationMap.at(j) = dci.m_rnti;
1733 NS_LOG_INFO("\tRB " << j);
1734 rbAllocatedNum++;
1735 }
1736 NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1737 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1738 << (*itStat).second.at(harqId) + 1);
1739 }
1740 else
1741 {
1742 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1743 continue;
1744 }
1745 dci.m_ndi = 0;
1746 // Update HARQ buffers with new HarqId
1747 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1748 (*itStat).second.at(harqId) = 0;
1749 (*itHarq).second.at((*itProcId).second) = dci;
1750 ret.m_dciList.push_back(dci);
1751 rntiAllocated.insert(dci.m_rnti);
1752 }
1753 else
1754 {
1755 NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1756 << params.m_ulInfoList.at(i).m_rnti);
1757 }
1758 }
1759 }
1760
1761 std::map<uint16_t, uint32_t>::iterator it;
1762 int nflows = 0;
1763
1764 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1765 {
1766 auto itRnti = rntiAllocated.find((*it).first);
1767 // select UEs with queues not empty and not yet allocated for HARQ
1768 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1769 {
1770 nflows++;
1771 }
1772 }
1773
1774 if (nflows == 0)
1775 {
1776 if (!ret.m_dciList.empty())
1777 {
1778 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1780 }
1781
1782 return; // no flows to be scheduled
1783 }
1784
1785 // Divide the remaining resources equally among the active users starting from the subsequent
1786 // one served last scheduling trigger
1787 uint16_t tempRbPerFlow = (ffrUlBandwidth) / (nflows + rntiAllocated.size());
1788 uint16_t rbPerFlow =
1789 (minContinuousUlBandwidth < tempRbPerFlow) ? minContinuousUlBandwidth : tempRbPerFlow;
1790
1791 if (rbPerFlow < 3)
1792 {
1793 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1794 // >= 7 bytes
1795 }
1796 int rbAllocated = 0;
1797
1798 if (m_nextRntiUl != 0)
1799 {
1800 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1801 {
1802 if ((*it).first == m_nextRntiUl)
1803 {
1804 break;
1805 }
1806 }
1807 if (it == m_ceBsrRxed.end())
1808 {
1809 NS_LOG_ERROR(this << " no user found");
1810 }
1811 }
1812 else
1813 {
1814 it = m_ceBsrRxed.begin();
1815 m_nextRntiUl = (*it).first;
1816 }
1817 do
1818 {
1819 auto itRnti = rntiAllocated.find((*it).first);
1820 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1821 {
1822 // UE already allocated for UL-HARQ -> skip it
1823 NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1824 << (*it).first);
1825 it++;
1826 if (it == m_ceBsrRxed.end())
1827 {
1828 // restart from the first
1829 it = m_ceBsrRxed.begin();
1830 }
1831 continue;
1832 }
1833 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1834 {
1835 // limit to physical resources last resource assignment
1836 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1837 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1838 if (rbPerFlow < 3)
1839 {
1840 // terminate allocation
1841 rbPerFlow = 0;
1842 }
1843 }
1844
1845 rbAllocated = 0;
1846 UlDciListElement_s uldci;
1847 uldci.m_rnti = (*it).first;
1848 uldci.m_rbLen = rbPerFlow;
1849 bool allocated = false;
1850 NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1851 << " flows " << nflows);
1852 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1853 (rbPerFlow != 0))
1854 {
1855 // check availability
1856 bool free = true;
1857 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1858 {
1859 if (rbMap.at(j))
1860 {
1861 free = false;
1862 break;
1863 }
1864 if (!m_ffrSapProvider->IsUlRbgAvailableForUe(j, (*it).first))
1865 {
1866 free = false;
1867 break;
1868 }
1869 }
1870 if (free)
1871 {
1872 NS_LOG_INFO(this << "RNTI: " << (*it).first << " RB Allocated " << rbAllocated
1873 << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1874 uldci.m_rbStart = rbAllocated;
1875
1876 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1877 {
1878 rbMap.at(j) = true;
1879 // store info on allocation for managing ul-cqi interpretation
1880 rbgAllocationMap.at(j) = (*it).first;
1881 }
1882 rbAllocated += rbPerFlow;
1883 allocated = true;
1884 break;
1885 }
1886 rbAllocated++;
1887 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1888 {
1889 // limit to physical resources last resource assignment
1890 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1891 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1892 if (rbPerFlow < 3)
1893 {
1894 // terminate allocation
1895 rbPerFlow = 0;
1896 }
1897 }
1898 }
1899 if (!allocated)
1900 {
1901 // unable to allocate new resource: finish scheduling
1902 // m_nextRntiUl = (*it).first;
1903 // if (ret.m_dciList.size () > 0)
1904 // {
1905 // m_schedSapUser->SchedUlConfigInd (ret);
1906 // }
1907 // m_allocationMaps[params.m_sfnSf] = rbgAllocationMap; return;
1908 break;
1909 }
1910
1911 auto itCqi = m_ueCqi.find((*it).first);
1912 int cqi = 0;
1913 if (itCqi == m_ueCqi.end())
1914 {
1915 // no cqi info about this UE
1916 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1917 }
1918 else
1919 {
1920 // take the lowest CQI value (worst RB)
1921 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1922 "CQI of RNTI = " << (*it).first << " has expired");
1923 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1924 if (minSinr == NO_SINR)
1925 {
1926 minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1927 }
1928 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1929 {
1930 double sinr = (*itCqi).second.at(i);
1931 if (sinr == NO_SINR)
1932 {
1933 sinr = EstimateUlSinr((*it).first, i);
1934 }
1935 if (sinr < minSinr)
1936 {
1937 minSinr = sinr;
1938 }
1939 }
1940
1941 // translate SINR -> cqi: WILD ACK: same as DL
1942 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1943 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1944 if (cqi == 0)
1945 {
1946 it++;
1947 if (it == m_ceBsrRxed.end())
1948 {
1949 // restart from the first
1950 it = m_ceBsrRxed.begin();
1951 }
1952 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1953 // remove UE from allocation map
1954 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1955 {
1956 rbgAllocationMap.at(i) = 0;
1957 }
1958 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1959 }
1960 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1961 }
1962
1963 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1965 uldci.m_ndi = 1;
1966 uldci.m_cceIndex = 0;
1967 uldci.m_aggrLevel = 1;
1968 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1969 uldci.m_hopping = false;
1970 uldci.m_n2Dmrs = 0;
1971 uldci.m_tpc = 0; // no power control
1972 uldci.m_cqiRequest = false; // only period CQI at this stage
1973 uldci.m_ulIndex = 0; // TDD parameter
1974 uldci.m_dai = 1; // TDD parameter
1975 uldci.m_freqHopping = 0;
1976 uldci.m_pdcchPowerOffset = 0; // not used
1977 ret.m_dciList.push_back(uldci);
1978 // store DCI for HARQ_PERIOD
1979 uint8_t harqId = 0;
1980 if (m_harqOn)
1981 {
1982 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1983 if (itProcId == m_ulHarqCurrentProcessId.end())
1984 {
1985 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1986 }
1987 harqId = (*itProcId).second;
1988 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
1989 if (itDci == m_ulHarqProcessesDciBuffer.end())
1990 {
1991 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1992 << uldci.m_rnti);
1993 }
1994 (*itDci).second.at(harqId) = uldci;
1995 // Update HARQ process status (RV 0)
1996 auto itStat = m_ulHarqProcessesStatus.find(uldci.m_rnti);
1997 if (itStat == m_ulHarqProcessesStatus.end())
1998 {
1999 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
2000 << uldci.m_rnti);
2001 }
2002 (*itStat).second.at(harqId) = 0;
2003 }
2004
2005 NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
2006 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
2007 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
2008 << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
2009 << (uint16_t)harqId);
2010
2011 it++;
2012 if (it == m_ceBsrRxed.end())
2013 {
2014 // restart from the first
2015 it = m_ceBsrRxed.begin();
2016 }
2017 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
2018 {
2019 // Stop allocation: no more PRBs
2020 m_nextRntiUl = (*it).first;
2021 break;
2022 }
2023 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
2024
2025 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
2027}
2028
2029void
2032{
2033 NS_LOG_FUNCTION(this);
2034}
2035
2036void
2039{
2040 NS_LOG_FUNCTION(this);
2041}
2042
2043void
2046{
2047 NS_LOG_FUNCTION(this);
2048
2049 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
2050 {
2051 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
2052 {
2053 // buffer status report
2054 // note that this scheduler does not differentiate the
2055 // allocation according to which LCGs have more/less bytes
2056 // to send.
2057 // Hence the BSR of different LCGs are just summed up to get
2058 // a total queue size that is used for allocation purposes.
2059
2060 uint32_t buffer = 0;
2061 for (uint8_t lcg = 0; lcg < 4; ++lcg)
2062 {
2063 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
2064 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
2065 }
2066
2067 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
2068 NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
2069 auto it = m_ceBsrRxed.find(rnti);
2070 if (it == m_ceBsrRxed.end())
2071 {
2072 // create the new entry
2073 m_ceBsrRxed.insert(std::pair<uint16_t, uint32_t>(rnti, buffer));
2074 }
2075 else
2076 {
2077 // update the buffer size value
2078 (*it).second = buffer;
2079 }
2080 }
2081 }
2082}
2083
2084void
2087{
2088 NS_LOG_FUNCTION(this);
2089 // retrieve the allocation for this subframe
2090 switch (m_ulCqiFilter)
2091 {
2093 // filter all the CQIs that are not SRS based
2094 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
2095 {
2096 return;
2097 }
2098 }
2099 break;
2101 // filter all the CQIs that are not SRS based
2102 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
2103 {
2104 return;
2105 }
2106 }
2107 break;
2108 default:
2109 NS_FATAL_ERROR("Unknown UL CQI type");
2110 }
2111
2112 switch (params.m_ulCqi.m_type)
2113 {
2114 case UlCqi_s::PUSCH: {
2115 NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
2116 << " subframe no. " << (0xF & params.m_sfnSf));
2117 auto itMap = m_allocationMaps.find(params.m_sfnSf);
2118 if (itMap == m_allocationMaps.end())
2119 {
2120 return;
2121 }
2122 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
2123 {
2124 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
2125 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
2126 auto itCqi = m_ueCqi.find((*itMap).second.at(i));
2127 if (itCqi == m_ueCqi.end())
2128 {
2129 // create a new entry
2130 std::vector<double> newCqi;
2131 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
2132 {
2133 if (i == j)
2134 {
2135 newCqi.push_back(sinr);
2136 }
2137 else
2138 {
2139 // initialize with NO_SINR value.
2140 newCqi.push_back(NO_SINR);
2141 }
2142 }
2143 m_ueCqi[(*itMap).second.at(i)] = newCqi;
2144 // generate correspondent timer
2145 m_ueCqiTimers[(*itMap).second.at(i)] = m_cqiTimersThreshold;
2146 }
2147 else
2148 {
2149 // update the value
2150 (*itCqi).second.at(i) = sinr;
2151 NS_LOG_DEBUG(this << " RNTI " << (*itMap).second.at(i) << " RB " << i << " SINR "
2152 << sinr);
2153 // update correspondent timer
2154 auto itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
2155 (*itTimers).second = m_cqiTimersThreshold;
2156 }
2157 }
2158 // remove obsolete info on allocation
2159 m_allocationMaps.erase(itMap);
2160 }
2161 break;
2162 case UlCqi_s::SRS: {
2163 // get the RNTI from vendor specific parameters
2164 uint16_t rnti = 0;
2165 NS_ASSERT(!params.m_vendorSpecificList.empty());
2166 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
2167 {
2168 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
2169 {
2170 Ptr<SrsCqiRntiVsp> vsp =
2171 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
2172 rnti = vsp->GetRnti();
2173 }
2174 }
2175 auto itCqi = m_ueCqi.find(rnti);
2176 if (itCqi == m_ueCqi.end())
2177 {
2178 // create a new entry
2179 std::vector<double> newCqi;
2180 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
2181 {
2182 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
2183 newCqi.push_back(sinr);
2184 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
2185 << sinr);
2186 }
2187 m_ueCqi.insert(std::pair<uint16_t, std::vector<double>>(rnti, newCqi));
2188 // generate correspondent timer
2189 m_ueCqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
2190 }
2191 else
2192 {
2193 // update the values
2194 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
2195 {
2196 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
2197 (*itCqi).second.at(j) = sinr;
2198 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
2199 << sinr);
2200 }
2201 // update correspondent timer
2202 auto itTimers = m_ueCqiTimers.find(rnti);
2203 (*itTimers).second = m_cqiTimersThreshold;
2204 }
2205 }
2206 break;
2207 case UlCqi_s::PUCCH_1:
2208 case UlCqi_s::PUCCH_2:
2209 case UlCqi_s::PRACH: {
2210 NS_FATAL_ERROR("FdTbfqFfMacScheduler supports only PUSCH and SRS UL-CQIs");
2211 }
2212 break;
2213 default:
2214 NS_FATAL_ERROR("Unknown type of UL-CQI");
2215 }
2216}
2217
2218void
2220{
2221 // refresh DL CQI P01 Map
2222 auto itP10 = m_p10CqiTimers.begin();
2223 while (itP10 != m_p10CqiTimers.end())
2224 {
2225 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
2226 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2227 if ((*itP10).second == 0)
2228 {
2229 // delete correspondent entries
2230 auto itMap = m_p10CqiRxed.find((*itP10).first);
2231 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
2232 " Does not find CQI report for user " << (*itP10).first);
2233 NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
2234 m_p10CqiRxed.erase(itMap);
2235 auto temp = itP10;
2236 itP10++;
2237 m_p10CqiTimers.erase(temp);
2238 }
2239 else
2240 {
2241 (*itP10).second--;
2242 itP10++;
2243 }
2244 }
2245
2246 // refresh DL CQI A30 Map
2247 auto itA30 = m_a30CqiTimers.begin();
2248 while (itA30 != m_a30CqiTimers.end())
2249 {
2250 NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
2251 << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2252 if ((*itA30).second == 0)
2253 {
2254 // delete correspondent entries
2255 auto itMap = m_a30CqiRxed.find((*itA30).first);
2256 NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
2257 " Does not find CQI report for user " << (*itA30).first);
2258 NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
2259 m_a30CqiRxed.erase(itMap);
2260 auto temp = itA30;
2261 itA30++;
2262 m_a30CqiTimers.erase(temp);
2263 }
2264 else
2265 {
2266 (*itA30).second--;
2267 itA30++;
2268 }
2269 }
2270}
2271
2272void
2274{
2275 // refresh UL CQI Map
2276 auto itUl = m_ueCqiTimers.begin();
2277 while (itUl != m_ueCqiTimers.end())
2278 {
2279 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
2280 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2281 if ((*itUl).second == 0)
2282 {
2283 // delete correspondent entries
2284 auto itMap = m_ueCqi.find((*itUl).first);
2285 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
2286 " Does not find CQI report for user " << (*itUl).first);
2287 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
2288 (*itMap).second.clear();
2289 m_ueCqi.erase(itMap);
2290 auto temp = itUl;
2291 itUl++;
2292 m_ueCqiTimers.erase(temp);
2293 }
2294 else
2295 {
2296 (*itUl).second--;
2297 itUl++;
2298 }
2299 }
2300}
2301
2302void
2303FdTbfqFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
2304{
2305 LteFlowId_t flow(rnti, lcid);
2306 auto it = m_rlcBufferReq.find(flow);
2307 if (it != m_rlcBufferReq.end())
2308 {
2309 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
2310 << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
2311 << (*it).second.m_rlcRetransmissionQueueSize << " status "
2312 << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2313 // Update queues: RLC tx order Status, ReTx, Tx
2314 // Update status queue
2315 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2316 {
2317 (*it).second.m_rlcStatusPduSize = 0;
2318 }
2319 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
2320 (size >= (*it).second.m_rlcRetransmissionQueueSize))
2321 {
2322 (*it).second.m_rlcRetransmissionQueueSize = 0;
2323 }
2324 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2325 {
2326 uint32_t rlcOverhead;
2327 if (lcid == 1)
2328 {
2329 // for SRB1 (using RLC AM) it's better to
2330 // overestimate RLC overhead rather than
2331 // underestimate it and risk unneeded
2332 // segmentation which increases delay
2333 rlcOverhead = 4;
2334 }
2335 else
2336 {
2337 // minimum RLC overhead due to header
2338 rlcOverhead = 2;
2339 }
2340 // update transmission queue
2341 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2342 {
2343 (*it).second.m_rlcTransmissionQueueSize = 0;
2344 }
2345 else
2346 {
2347 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2348 }
2349 }
2350 }
2351 else
2352 {
2353 NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
2354 }
2355}
2356
2357void
2359{
2360 size = size - 2; // remove the minimum RLC overhead
2361 auto it = m_ceBsrRxed.find(rnti);
2362 if (it != m_ceBsrRxed.end())
2363 {
2364 NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2365 if ((*it).second >= size)
2366 {
2367 (*it).second -= size;
2368 }
2369 else
2370 {
2371 (*it).second = 0;
2372 }
2373 }
2374 else
2375 {
2376 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
2377 }
2378}
2379
2380void
2382{
2383 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2385 params.m_rnti = rnti;
2386 params.m_transmissionMode = txMode;
2388}
2389
2390} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Token Bank Fair Queue scheduler.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
uint32_t m_tokenPoolSize
maximum size of token pool (byte)
std::map< uint16_t, fdtbfqsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
void DoSchedDlPagingBufferReq(const FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request function.
static TypeId GetTypeId()
Get the type ID.
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
uint64_t bankSize
the number of bytes in token bank
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
Set FF MAC Csched SAP user function.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
friend class MemberSchedSapProvider< FdTbfqFfMacScheduler >
allow MemberSchedSapProvider<FdTbfqFfMacScheduler> claass friend access
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
LteFfrSapUser * GetLteFfrSapUser() override
Get FFR SAP user function.
~FdTbfqFfMacScheduler() override
Destructor.
void DoCschedLcConfigReq(const FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request function.
void DoSchedDlMacBufferReq(const FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request function.
uint32_t m_creditableThreshold
threshold of flow credit
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
Set FF MAC sched SAP user function.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
Csched cell config.
void RefreshDlCqiMaps()
Refresh DL CQI maps function.
void DoDispose() override
Destructor implementation.
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SNR function.
std::vector< RachListElement_s > m_rachList
RACH list.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set FFR SAP provider function.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
Get FF MAC CSched SAP provider function.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmisson mode config update function.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
uint32_t m_creditLimit
flow credit limit (byte)
void DoSchedDlRlcBufferReq(const FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request function.
int m_debtLimit
flow debt limit (byte)
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
void DoSchedUlNoiseInterferenceReq(const FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request function.
void RefreshUlCqiMaps()
Refresh UL CQI maps function.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
void DoSchedDlRachInfoReq(const FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request function.
FfMacSchedSapProvider * m_schedSapProvider
sched SAP provider
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
void DoSchedUlMacCtrlInfoReq(const FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request function.
void DoSchedUlCqiInfoReq(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request function.
void DoCschedLcReleaseReq(const FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request function.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
void DoSchedDlCqiInfoReq(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request function.
std::map< uint16_t, fdtbfqsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
Get FF MAC sched SAP provider function.
void DoCschedUeConfigReq(const FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request function.
FfMacSchedSapUser * m_schedSapUser
sched SAP user
void DoCschedCellConfigReq(const FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
Csched cell config request function.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
unsigned int LcActivePerFlow(uint16_t rnti)
LC Active per flow function.
void DoCschedUeReleaseReq(const FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request function.
void DoSchedUlSrInfoReq(const FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request function.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
FfMacCschedSapUser * m_cschedSapUser
Csched SAP user.
friend class MemberCschedSapProvider< FdTbfqFfMacScheduler >
allow MemberCschedSapProvider<FdTbfqFfMacScheduler> class friend access
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
void DoSchedUlTriggerReq(const FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request function.
void DoSchedDlTriggerReq(const FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request function.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigCnf(const CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
virtual void CschedUeConfigUpdateInd(const CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
Hold a signed integer type.
Definition: integer.h:45
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
virtual uint8_t GetTpc(uint16_t rnti)=0
GetTpc.
virtual std::vector< bool > GetAvailableUlRbg()=0
Get vector of available RB in UL for this Cell.
virtual void ReportUlCqiInfo(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)=0
ReportUlCqiInfo.
virtual bool IsUlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in UL.
virtual void ReportDlCqiInfo(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)=0
ReportDlCqiInfo.
virtual std::vector< bool > GetAvailableDlRbg()=0
Get vector of available RBG in DL for this Cell.
virtual uint16_t GetMinContinuousUlBandwidth()=0
Get the minimum continuous Ul bandwidth.
virtual bool IsDlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in DL.
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:140
Template for the implementation of the LteFfrSapUser as a member of an owner class of type C to which...
Definition: lte-ffr-sap.h:259
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
@ MS
millisecond
Definition: nstime.h:117
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:932
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:81
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeIntegerAccessor(T1 a1)
Definition: integer.h:46
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
constexpr double NO_SINR
Value for SINR outside the range defined by FF-API, used to indicate that there is no CQI for this el...
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Vector of the 8 HARQ processes per UE.
@ SUCCESS
Definition: ff-mac-common.h:62
constexpr uint32_t HARQ_DL_TIMEOUT
HARQ DL timeout.
constexpr uint32_t HARQ_PROC_NUM
Number of HARQ processes.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector.
static const int FdTbfqType0AllocationRbg[4]
FdTbfqType0AllocationRbg value array.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector.
Definition: second.py:1
See section 4.3.8 buildDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< BuildDataListElement_s > m_buildDataList
build data list
std::vector< BuildRarListElement_s > m_buildRarList
build rar list
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:43
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
Time flowStart
flow start time
int counter
the number of token borrow or given to token bank
uint32_t burstCredit
the maximum number of tokens connection i can borrow from the bank each time
int debtLimit
counter threshold that the flow cannot further borrow tokens from bank
uint32_t creditableThreshold
the flow cannot borrow token from bank until the number of token it has deposited to bank reaches thi...
uint64_t packetArrivalRate
packet arrival rate( byte/s)
uint32_t tokenPoolSize
current size of token pool (byte)
uint32_t maxTokenPoolSize
maximum size of token pool (byte)
uint64_t tokenGenerationRate
token generation rate ( byte/s )