A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
tdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Marco Miozzo <marco.miozzo@cttc.es>
18 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
19 */
20
22
23#include "lte-amc.h"
25
26#include <ns3/boolean.h>
27#include <ns3/log.h>
28#include <ns3/math.h>
29#include <ns3/pointer.h>
30#include <ns3/simulator.h>
31
32#include <cfloat>
33#include <set>
34
35namespace ns3
36{
37
38NS_LOG_COMPONENT_DEFINE("TdMtFfMacScheduler");
39
40/// TDMT type 0 allocation RBG
41static const int TdMtType0AllocationRbg[4] = {
42 10, // RGB size 1
43 26, // RGB size 2
44 63, // RGB size 3
45 110, // RGB size 4
46}; // see table 7.1.6.1-1 of 36.213
47
48NS_OBJECT_ENSURE_REGISTERED(TdMtFfMacScheduler);
49
51 : m_cschedSapUser(nullptr),
52 m_schedSapUser(nullptr),
53 m_nextRntiUl(0)
54{
55 m_amc = CreateObject<LteAmc>();
58}
59
61{
62 NS_LOG_FUNCTION(this);
63}
64
65void
67{
68 NS_LOG_FUNCTION(this);
77 delete m_schedSapProvider;
78}
79
82{
83 static TypeId tid =
84 TypeId("ns3::TdMtFfMacScheduler")
86 .SetGroupName("Lte")
87 .AddConstructor<TdMtFfMacScheduler>()
88 .AddAttribute("CqiTimerThreshold",
89 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
90 UintegerValue(1000),
92 MakeUintegerChecker<uint32_t>())
93 .AddAttribute("HarqEnabled",
94 "Activate/Deactivate the HARQ [by default is active].",
95 BooleanValue(true),
98 .AddAttribute("UlGrantMcs",
99 "The MCS of the UL grant, must be [0..15] (default 0)",
100 UintegerValue(0),
102 MakeUintegerChecker<uint8_t>());
103 return tid;
104}
105
106void
108{
109 m_cschedSapUser = s;
110}
111
112void
114{
115 m_schedSapUser = s;
116}
117
120{
121 return m_cschedSapProvider;
122}
123
126{
127 return m_schedSapProvider;
128}
129
130void
132{
134}
135
138{
139 return m_ffrSapUser;
140}
141
142void
145{
146 NS_LOG_FUNCTION(this);
147 // Read the subset of parameters used
148 m_cschedCellConfig = params;
151 cnf.m_result = SUCCESS;
153}
154
155void
158{
159 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
160 << (uint16_t)params.m_transmissionMode);
161 auto it = m_uesTxMode.find(params.m_rnti);
162 if (it == m_uesTxMode.end())
163 {
164 m_uesTxMode[params.m_rnti] = params.m_transmissionMode;
165 // generate HARQ buffers
166 m_dlHarqCurrentProcessId[params.m_rnti] = 0;
167 DlHarqProcessesStatus_t dlHarqPrcStatus;
168 dlHarqPrcStatus.resize(8, 0);
169 m_dlHarqProcessesStatus[params.m_rnti] = dlHarqPrcStatus;
170 DlHarqProcessesTimer_t dlHarqProcessesTimer;
171 dlHarqProcessesTimer.resize(8, 0);
172 m_dlHarqProcessesTimer[params.m_rnti] = dlHarqProcessesTimer;
174 dlHarqdci.resize(8);
175 m_dlHarqProcessesDciBuffer[params.m_rnti] = dlHarqdci;
176 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
177 dlHarqRlcPdu.resize(2);
178 dlHarqRlcPdu.at(0).resize(8);
179 dlHarqRlcPdu.at(1).resize(8);
180 m_dlHarqProcessesRlcPduListBuffer[params.m_rnti] = dlHarqRlcPdu;
181 m_ulHarqCurrentProcessId[params.m_rnti] = 0;
182 UlHarqProcessesStatus_t ulHarqPrcStatus;
183 ulHarqPrcStatus.resize(8, 0);
184 m_ulHarqProcessesStatus[params.m_rnti] = ulHarqPrcStatus;
186 ulHarqdci.resize(8);
187 m_ulHarqProcessesDciBuffer[params.m_rnti] = ulHarqdci;
188 }
189 else
190 {
191 (*it).second = params.m_transmissionMode;
192 }
193}
194
195void
198{
199 NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
200
201 for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
202 {
203 auto it = m_flowStatsDl.find(params.m_rnti);
204
205 if (it == m_flowStatsDl.end())
206 {
207 m_flowStatsDl.insert(params.m_rnti);
208 m_flowStatsUl.insert(params.m_rnti);
209 }
210 }
211}
212
213void
216{
217 NS_LOG_FUNCTION(this);
218 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
219 {
220 auto it = m_rlcBufferReq.begin();
221 while (it != m_rlcBufferReq.end())
222 {
223 if (((*it).first.m_rnti == params.m_rnti) &&
224 ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
225 {
226 auto temp = it;
227 it++;
228 m_rlcBufferReq.erase(temp);
229 }
230 else
231 {
232 it++;
233 }
234 }
235 }
236}
237
238void
241{
242 NS_LOG_FUNCTION(this);
243
244 m_uesTxMode.erase(params.m_rnti);
245 m_dlHarqCurrentProcessId.erase(params.m_rnti);
246 m_dlHarqProcessesStatus.erase(params.m_rnti);
247 m_dlHarqProcessesTimer.erase(params.m_rnti);
248 m_dlHarqProcessesDciBuffer.erase(params.m_rnti);
249 m_dlHarqProcessesRlcPduListBuffer.erase(params.m_rnti);
250 m_ulHarqCurrentProcessId.erase(params.m_rnti);
251 m_ulHarqProcessesStatus.erase(params.m_rnti);
252 m_ulHarqProcessesDciBuffer.erase(params.m_rnti);
253 m_flowStatsDl.erase(params.m_rnti);
254 m_flowStatsUl.erase(params.m_rnti);
255 m_ceBsrRxed.erase(params.m_rnti);
256 auto it = m_rlcBufferReq.begin();
257 while (it != m_rlcBufferReq.end())
258 {
259 if ((*it).first.m_rnti == params.m_rnti)
260 {
261 auto temp = it;
262 it++;
263 m_rlcBufferReq.erase(temp);
264 }
265 else
266 {
267 it++;
268 }
269 }
270 if (m_nextRntiUl == params.m_rnti)
271 {
272 m_nextRntiUl = 0;
273 }
274}
275
276void
279{
280 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
281 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
282
283 LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
284
285 auto it = m_rlcBufferReq.find(flow);
286
287 if (it == m_rlcBufferReq.end())
288 {
289 m_rlcBufferReq[flow] = params;
290 }
291 else
292 {
293 (*it).second = params;
294 }
295}
296
297void
300{
301 NS_LOG_FUNCTION(this);
302 NS_FATAL_ERROR("method not implemented");
303}
304
305void
308{
309 NS_LOG_FUNCTION(this);
310 NS_FATAL_ERROR("method not implemented");
311}
312
313int
315{
316 for (int i = 0; i < 4; i++)
317 {
318 if (dlbandwidth < TdMtType0AllocationRbg[i])
319 {
320 return i + 1;
321 }
322 }
323
324 return -1;
325}
326
327unsigned int
329{
330 unsigned int lcActive = 0;
331 for (auto it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
332 {
333 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
334 ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
335 ((*it).second.m_rlcStatusPduSize > 0)))
336 {
337 lcActive++;
338 }
339 if ((*it).first.m_rnti > rnti)
340 {
341 break;
342 }
343 }
344 return lcActive;
345}
346
347bool
349{
350 NS_LOG_FUNCTION(this << rnti);
351
352 auto it = m_dlHarqCurrentProcessId.find(rnti);
353 if (it == m_dlHarqCurrentProcessId.end())
354 {
355 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
356 }
357 auto itStat = m_dlHarqProcessesStatus.find(rnti);
358 if (itStat == m_dlHarqProcessesStatus.end())
359 {
360 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
361 }
362 uint8_t i = (*it).second;
363 do
364 {
365 i = (i + 1) % HARQ_PROC_NUM;
366 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
367
368 return (*itStat).second.at(i) == 0;
369}
370
371uint8_t
373{
374 NS_LOG_FUNCTION(this << rnti);
375
376 if (!m_harqOn)
377 {
378 return 0;
379 }
380
381 auto it = m_dlHarqCurrentProcessId.find(rnti);
382 if (it == m_dlHarqCurrentProcessId.end())
383 {
384 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
385 }
386 auto itStat = m_dlHarqProcessesStatus.find(rnti);
387 if (itStat == m_dlHarqProcessesStatus.end())
388 {
389 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
390 }
391 uint8_t i = (*it).second;
392 do
393 {
394 i = (i + 1) % HARQ_PROC_NUM;
395 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
396 if ((*itStat).second.at(i) == 0)
397 {
398 (*it).second = i;
399 (*itStat).second.at(i) = 1;
400 }
401 else
402 {
403 NS_FATAL_ERROR("No HARQ process available for RNTI "
404 << rnti << " check before update with HarqProcessAvailability");
405 }
406
407 return (*it).second;
408}
409
410void
412{
413 NS_LOG_FUNCTION(this);
414
415 for (auto itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
416 itTimers++)
417 {
418 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
419 {
420 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
421 {
422 // reset HARQ process
423
424 NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
425 auto itStat = m_dlHarqProcessesStatus.find((*itTimers).first);
426 if (itStat == m_dlHarqProcessesStatus.end())
427 {
428 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
429 << (*itTimers).first);
430 }
431 (*itStat).second.at(i) = 0;
432 (*itTimers).second.at(i) = 0;
433 }
434 else
435 {
436 (*itTimers).second.at(i)++;
437 }
438 }
439 }
440}
441
442void
445{
446 NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
447 << (0xF & params.m_sfnSf));
448 // API generated by RLC for triggering the scheduling of a DL subframe
449
450 // evaluate the relative channel quality indicator for each UE per each RBG
451 // (since we are using allocation type 0 the small unit of allocation is RBG)
452 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
453
455
457 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
458 std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
459 std::vector<bool> rbgMap; // global RBGs map
460 uint16_t rbgAllocatedNum = 0;
461 std::set<uint16_t> rntiAllocated;
462 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
464
465 // update UL HARQ proc id
466 for (auto itProcId = m_ulHarqCurrentProcessId.begin();
467 itProcId != m_ulHarqCurrentProcessId.end();
468 itProcId++)
469 {
470 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
471 }
472
473 // RACH Allocation
475 uint16_t rbStart = 0;
476 for (auto itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
477 {
479 (*itRach).m_estimatedSize,
480 " Default UL Grant MCS does not allow to send RACH messages");
482 newRar.m_rnti = (*itRach).m_rnti;
483 // DL-RACH Allocation
484 // Ideal: no needs of configuring m_dci
485 // UL-RACH Allocation
486 newRar.m_grant.m_rnti = newRar.m_rnti;
487 newRar.m_grant.m_mcs = m_ulGrantMcs;
488 uint16_t rbLen = 1;
489 uint16_t tbSizeBits = 0;
490 // find lowest TB size that fits UL grant estimated size
491 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
492 (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
493 {
494 rbLen++;
495 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
496 }
497 if (tbSizeBits < (*itRach).m_estimatedSize)
498 {
499 // no more allocation space: finish allocation
500 break;
501 }
502 newRar.m_grant.m_rbStart = rbStart;
503 newRar.m_grant.m_rbLen = rbLen;
504 newRar.m_grant.m_tbSize = tbSizeBits / 8;
505 newRar.m_grant.m_hopping = false;
506 newRar.m_grant.m_tpc = 0;
507 newRar.m_grant.m_cqiRequest = false;
508 newRar.m_grant.m_ulDelay = false;
509 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
510 << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize "
511 << newRar.m_grant.m_tbSize);
512 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
513 {
514 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
515 }
516
517 if (m_harqOn)
518 {
519 // generate UL-DCI for HARQ retransmissions
520 UlDciListElement_s uldci;
521 uldci.m_rnti = newRar.m_rnti;
522 uldci.m_rbLen = rbLen;
523 uldci.m_rbStart = rbStart;
524 uldci.m_mcs = m_ulGrantMcs;
525 uldci.m_tbSize = tbSizeBits / 8;
526 uldci.m_ndi = 1;
527 uldci.m_cceIndex = 0;
528 uldci.m_aggrLevel = 1;
529 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
530 uldci.m_hopping = false;
531 uldci.m_n2Dmrs = 0;
532 uldci.m_tpc = 0; // no power control
533 uldci.m_cqiRequest = false; // only period CQI at this stage
534 uldci.m_ulIndex = 0; // TDD parameter
535 uldci.m_dai = 1; // TDD parameter
536 uldci.m_freqHopping = 0;
537 uldci.m_pdcchPowerOffset = 0; // not used
538
539 uint8_t harqId = 0;
540 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
541 if (itProcId == m_ulHarqCurrentProcessId.end())
542 {
543 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
544 }
545 harqId = (*itProcId).second;
546 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
547 if (itDci == m_ulHarqProcessesDciBuffer.end())
548 {
549 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
550 << uldci.m_rnti);
551 }
552 (*itDci).second.at(harqId) = uldci;
553 }
554
555 rbStart = rbStart + rbLen;
556 ret.m_buildRarList.push_back(newRar);
557 }
558 m_rachList.clear();
559
560 // Process DL HARQ feedback
562 // retrieve past HARQ retx buffered
563 if (!m_dlInfoListBuffered.empty())
564 {
565 if (!params.m_dlInfoList.empty())
566 {
567 NS_LOG_INFO(this << " Received DL-HARQ feedback");
569 params.m_dlInfoList.begin(),
570 params.m_dlInfoList.end());
571 }
572 }
573 else
574 {
575 if (!params.m_dlInfoList.empty())
576 {
577 m_dlInfoListBuffered = params.m_dlInfoList;
578 }
579 }
580 if (!m_harqOn)
581 {
582 // Ignore HARQ feedback
583 m_dlInfoListBuffered.clear();
584 }
585 std::vector<DlInfoListElement_s> dlInfoListUntxed;
586 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
587 {
588 auto itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
589 if (itRnti != rntiAllocated.end())
590 {
591 // RNTI already allocated for retx
592 continue;
593 }
594 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
595 std::vector<bool> retx;
596 NS_LOG_INFO(this << " Processing DLHARQ feedback");
597 if (nLayers == 1)
598 {
599 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
601 retx.push_back(false);
602 }
603 else
604 {
605 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
607 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
609 }
610 if (retx.at(0) || retx.at(1))
611 {
612 // retrieve HARQ process information
613 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
614 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
615 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
616 auto itHarq = m_dlHarqProcessesDciBuffer.find(rnti);
617 if (itHarq == m_dlHarqProcessesDciBuffer.end())
618 {
619 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
620 }
621
622 DlDciListElement_s dci = (*itHarq).second.at(harqId);
623 int rv = 0;
624 if (dci.m_rv.size() == 1)
625 {
626 rv = dci.m_rv.at(0);
627 }
628 else
629 {
630 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
631 }
632
633 if (rv == 3)
634 {
635 // maximum number of retx reached -> drop process
636 NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
637 auto it = m_dlHarqProcessesStatus.find(rnti);
638 if (it == m_dlHarqProcessesStatus.end())
639 {
640 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
641 << m_dlInfoListBuffered.at(i).m_rnti);
642 }
643 (*it).second.at(harqId) = 0;
644 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
645 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
646 {
647 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
648 << m_dlInfoListBuffered.at(i).m_rnti);
649 }
650 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
651 {
652 (*itRlcPdu).second.at(k).at(harqId).clear();
653 }
654 continue;
655 }
656 // check the feasibility of retransmitting on the same RBGs
657 // translate the DCI to Spectrum framework
658 std::vector<int> dciRbg;
659 uint32_t mask = 0x1;
660 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
661 for (int j = 0; j < 32; j++)
662 {
663 if (((dci.m_rbBitmap & mask) >> j) == 1)
664 {
665 dciRbg.push_back(j);
666 NS_LOG_INFO("\t" << j);
667 }
668 mask = (mask << 1);
669 }
670 bool free = true;
671 for (std::size_t j = 0; j < dciRbg.size(); j++)
672 {
673 if (rbgMap.at(dciRbg.at(j)))
674 {
675 free = false;
676 break;
677 }
678 }
679 if (free)
680 {
681 // use the same RBGs for the retx
682 // reserve RBGs
683 for (std::size_t j = 0; j < dciRbg.size(); j++)
684 {
685 rbgMap.at(dciRbg.at(j)) = true;
686 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
687 rbgAllocatedNum++;
688 }
689
690 NS_LOG_INFO(this << " Send retx in the same RBGs");
691 }
692 else
693 {
694 // find RBGs for sending HARQ retx
695 uint8_t j = 0;
696 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
697 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
698 std::vector<bool> rbgMapCopy = rbgMap;
699 while ((j < dciRbg.size()) && (startRbg != rbgId))
700 {
701 if (!rbgMapCopy.at(rbgId))
702 {
703 rbgMapCopy.at(rbgId) = true;
704 dciRbg.at(j) = rbgId;
705 j++;
706 }
707 rbgId = (rbgId + 1) % rbgNum;
708 }
709 if (j == dciRbg.size())
710 {
711 // find new RBGs -> update DCI map
712 uint32_t rbgMask = 0;
713 for (std::size_t k = 0; k < dciRbg.size(); k++)
714 {
715 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
716 rbgAllocatedNum++;
717 }
718 dci.m_rbBitmap = rbgMask;
719 rbgMap = rbgMapCopy;
720 NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
721 }
722 else
723 {
724 // HARQ retx cannot be performed on this TTI -> store it
725 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
726 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
727 }
728 }
729 // retrieve RLC PDU list for retx TBsize and update DCI
731 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
732 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
733 {
734 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
735 }
736 for (std::size_t j = 0; j < nLayers; j++)
737 {
738 if (retx.at(j))
739 {
740 if (j >= dci.m_ndi.size())
741 {
742 // for avoiding errors in MIMO transient phases
743 dci.m_ndi.push_back(0);
744 dci.m_rv.push_back(0);
745 dci.m_mcs.push_back(0);
746 dci.m_tbsSize.push_back(0);
747 NS_LOG_INFO(this << " layer " << (uint16_t)j
748 << " no txed (MIMO transition)");
749 }
750 else
751 {
752 dci.m_ndi.at(j) = 0;
753 dci.m_rv.at(j)++;
754 (*itHarq).second.at(harqId).m_rv.at(j)++;
755 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
756 << (uint16_t)dci.m_rv.at(j));
757 }
758 }
759 else
760 {
761 // empty TB of layer j
762 dci.m_ndi.at(j) = 0;
763 dci.m_rv.at(j) = 0;
764 dci.m_mcs.at(j) = 0;
765 dci.m_tbsSize.at(j) = 0;
766 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
767 }
768 }
769 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
770 {
771 std::vector<RlcPduListElement_s> rlcPduListPerLc;
772 for (std::size_t j = 0; j < nLayers; j++)
773 {
774 if (retx.at(j))
775 {
776 if (j < dci.m_ndi.size())
777 {
778 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
779 << dci.m_tbsSize.at(j));
780 rlcPduListPerLc.push_back(
781 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
782 }
783 }
784 else
785 { // if no retx needed on layer j, push an RlcPduListElement_s object with
786 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
787 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
788 RlcPduListElement_s emptyElement;
789 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
790 .second.at(j)
791 .at(dci.m_harqProcess)
792 .at(k)
793 .m_logicalChannelIdentity;
794 emptyElement.m_size = 0;
795 rlcPduListPerLc.push_back(emptyElement);
796 }
797 }
798
799 if (!rlcPduListPerLc.empty())
800 {
801 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
802 }
803 }
804 newEl.m_rnti = rnti;
805 newEl.m_dci = dci;
806 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
807 // refresh timer
808 auto itHarqTimer = m_dlHarqProcessesTimer.find(rnti);
809 if (itHarqTimer == m_dlHarqProcessesTimer.end())
810 {
811 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
812 }
813 (*itHarqTimer).second.at(harqId) = 0;
814 ret.m_buildDataList.push_back(newEl);
815 rntiAllocated.insert(rnti);
816 }
817 else
818 {
819 // update HARQ process status
820 NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
821 auto it = m_dlHarqProcessesStatus.find(m_dlInfoListBuffered.at(i).m_rnti);
822 if (it == m_dlHarqProcessesStatus.end())
823 {
824 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
825 << m_dlInfoListBuffered.at(i).m_rnti);
826 }
827 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
828 auto itRlcPdu =
830 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
831 {
832 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
833 << m_dlInfoListBuffered.at(i).m_rnti);
834 }
835 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
836 {
837 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
838 }
839 }
840 }
841 m_dlInfoListBuffered.clear();
842 m_dlInfoListBuffered = dlInfoListUntxed;
843
844 if (rbgAllocatedNum == rbgNum)
845 {
846 // all the RBGs are already allocated -> exit
847 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
848 {
850 }
851 return;
852 }
853
854 auto itMax = m_flowStatsDl.end();
855 double metricMax = 0.0;
856 for (auto it = m_flowStatsDl.begin(); it != m_flowStatsDl.end(); it++)
857 {
858 auto itRnti = rntiAllocated.find(*it);
859 if (itRnti != rntiAllocated.end() || !HarqProcessAvailability(*it))
860 {
861 // UE already allocated for HARQ or without HARQ process available -> drop it
862 if (itRnti != rntiAllocated.end())
863 {
864 NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx" << (uint16_t)(*it));
865 }
866 if (!HarqProcessAvailability(*it))
867 {
868 NS_LOG_DEBUG(this << " RNTI discarded for HARQ id" << (uint16_t)(*it));
869 }
870
871 continue;
872 }
873
874 auto itTxMode = m_uesTxMode.find(*it);
875 if (itTxMode == m_uesTxMode.end())
876 {
877 NS_FATAL_ERROR("No Transmission Mode info on user " << (*it));
878 }
879 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
880 auto itCqi = m_p10CqiRxed.find(*it);
881 uint8_t wbCqi = 0;
882 if (itCqi != m_p10CqiRxed.end())
883 {
884 wbCqi = (*itCqi).second;
885 }
886 else
887 {
888 wbCqi = 1; // lowest value for trying a transmission
889 }
890
891 if (wbCqi != 0)
892 {
893 // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
894 if (LcActivePerFlow(*it) > 0)
895 {
896 // this UE has data to transmit
897 double achievableRate = 0.0;
898 for (uint8_t k = 0; k < nLayer; k++)
899 {
900 uint8_t mcs = 0;
901 mcs = m_amc->GetMcsFromCqi(wbCqi);
902 achievableRate +=
903 ((m_amc->GetDlTbSizeFromMcs(mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
904
905 NS_LOG_DEBUG(this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs
906 << " achievableRate " << achievableRate);
907 }
908
909 double metric = achievableRate;
910
911 if (metric > metricMax)
912 {
913 metricMax = metric;
914 itMax = it;
915 }
916 } // LcActivePerFlow
917
918 } // cqi
919
920 } // end for m_flowStatsDl
921
922 if (itMax == m_flowStatsDl.end())
923 {
924 // no UE available for downlink
925 NS_LOG_INFO(this << " any UE found");
926 }
927 else
928 {
929 // assign all free RBGs to this UE
930 std::vector<uint16_t> tempMap;
931 for (int i = 0; i < rbgNum; i++)
932 {
933 NS_LOG_INFO(this << " ALLOCATION for RBG " << i << " of " << rbgNum);
934 NS_LOG_DEBUG(this << " ALLOCATION for RBG " << i << " of " << rbgNum);
935 if (!rbgMap.at(i))
936 {
937 rbgMap.at(i) = true;
938 tempMap.push_back(i);
939 } // end for RBG free
940
941 } // end for RBGs
942 if (!tempMap.empty())
943 {
944 allocationMap[*itMax] = tempMap;
945 }
946 }
947
948 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
949 // creating the correspondent DCIs
950 auto itMap = allocationMap.begin();
951 while (itMap != allocationMap.end())
952 {
953 // create new BuildDataListElement_s for this LC
955 newEl.m_rnti = (*itMap).first;
956 // create the DlDciListElement_s
957 DlDciListElement_s newDci;
958 newDci.m_rnti = (*itMap).first;
959 newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
960
961 uint16_t lcActives = LcActivePerFlow((*itMap).first);
962 NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
963 if (lcActives == 0)
964 {
965 // Set to max value, to avoid divide by 0 below
966 lcActives = (uint16_t)65535; // UINT16_MAX;
967 }
968 uint16_t RgbPerRnti = (*itMap).second.size();
969 auto itCqi = m_p10CqiRxed.find((*itMap).first);
970 auto itTxMode = m_uesTxMode.find((*itMap).first);
971 if (itTxMode == m_uesTxMode.end())
972 {
973 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
974 }
975 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
976 for (uint8_t j = 0; j < nLayer; j++)
977 {
978 if (itCqi == m_p10CqiRxed.end())
979 {
980 newDci.m_mcs.push_back(0); // no info on this user -> lowest MCS
981 }
982 else
983 {
984 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
985 }
986
987 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RgbPerRnti * rbgSize) /
988 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
989 newDci.m_tbsSize.push_back(tbSize);
990 }
991
992 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
993 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
994 uint32_t rbgMask = 0;
995 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
996 {
997 rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
998 NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
999 }
1000 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1001
1002 // create the rlc PDUs -> equally divide resources among actives LCs
1003 for (auto itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1004 {
1005 if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1006 (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1007 ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1008 ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1009 {
1010 std::vector<RlcPduListElement_s> newRlcPduLe;
1011 for (uint8_t j = 0; j < nLayer; j++)
1012 {
1013 RlcPduListElement_s newRlcEl;
1014 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1015 newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1016 NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1017 << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1018 newRlcPduLe.push_back(newRlcEl);
1020 newRlcEl.m_logicalChannelIdentity,
1021 newRlcEl.m_size);
1022 if (m_harqOn)
1023 {
1024 // store RLC PDU list for HARQ
1025 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1026 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1027 {
1028 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1029 << (*itMap).first);
1030 }
1031 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1032 }
1033 }
1034 newEl.m_rlcPduList.push_back(newRlcPduLe);
1035 }
1036 if ((*itBufReq).first.m_rnti > (*itMap).first)
1037 {
1038 break;
1039 }
1040 }
1041 for (uint8_t j = 0; j < nLayer; j++)
1042 {
1043 newDci.m_ndi.push_back(1);
1044 newDci.m_rv.push_back(0);
1045 }
1046
1047 newDci.m_tpc = 1; // 1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1048
1049 newEl.m_dci = newDci;
1050
1051 if (m_harqOn)
1052 {
1053 // store DCI for HARQ
1054 auto itDci = m_dlHarqProcessesDciBuffer.find(newEl.m_rnti);
1055 if (itDci == m_dlHarqProcessesDciBuffer.end())
1056 {
1057 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1058 << newEl.m_rnti);
1059 }
1060 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1061 // refresh timer
1062 auto itHarqTimer = m_dlHarqProcessesTimer.find(newEl.m_rnti);
1063 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1064 {
1065 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1066 }
1067 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1068 }
1069
1070 // ...more parameters -> ignored in this version
1071
1072 ret.m_buildDataList.push_back(newEl);
1073
1074 itMap++;
1075 } // end while allocation
1076 ret.m_nrOfPdcchOfdmSymbols = 1; /// \todo check correct value according the DCIs txed
1077
1079}
1080
1081void
1084{
1085 NS_LOG_FUNCTION(this);
1086
1087 m_rachList = params.m_rachList;
1088}
1089
1090void
1093{
1094 NS_LOG_FUNCTION(this);
1095
1096 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1097 {
1098 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1099 {
1100 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1101 << " reported");
1102 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1103 auto it = m_p10CqiRxed.find(rnti);
1104 if (it == m_p10CqiRxed.end())
1105 {
1106 // create the new entry
1107 m_p10CqiRxed[rnti] =
1108 params.m_cqiList.at(i).m_wbCqi.at(0); // only codeword 0 at this stage (SISO)
1109 // generate correspondent timer
1111 }
1112 else
1113 {
1114 // update the CQI value and refresh correspondent timer
1115 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1116 // update correspondent timer
1117 auto itTimers = m_p10CqiTimers.find(rnti);
1118 (*itTimers).second = m_cqiTimersThreshold;
1119 }
1120 }
1121 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1122 {
1123 // subband CQI reporting high layer configured
1124 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1125 auto it = m_a30CqiRxed.find(rnti);
1126 if (it == m_a30CqiRxed.end())
1127 {
1128 // create the new entry
1129 m_a30CqiRxed[rnti] = params.m_cqiList.at(i).m_sbMeasResult;
1131 }
1132 else
1133 {
1134 // update the CQI value and refresh correspondent timer
1135 (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1136 auto itTimers = m_a30CqiTimers.find(rnti);
1137 (*itTimers).second = m_cqiTimersThreshold;
1138 }
1139 }
1140 else
1141 {
1142 NS_LOG_ERROR(this << " CQI type unknown");
1143 }
1144 }
1145}
1146
1147double
1148TdMtFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1149{
1150 auto itCqi = m_ueCqi.find(rnti);
1151 if (itCqi == m_ueCqi.end())
1152 {
1153 // no cqi info about this UE
1154 return NO_SINR;
1155 }
1156 else
1157 {
1158 // take the average SINR value among the available
1159 double sinrSum = 0;
1160 unsigned int sinrNum = 0;
1161 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1162 {
1163 double sinr = (*itCqi).second.at(i);
1164 if (sinr != NO_SINR)
1165 {
1166 sinrSum += sinr;
1167 sinrNum++;
1168 }
1169 }
1170 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1171 // store the value
1172 (*itCqi).second.at(rb) = estimatedSinr;
1173 return estimatedSinr;
1174 }
1175}
1176
1177void
1180{
1181 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1182 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1183
1185
1186 // Generate RBs map
1188 std::vector<bool> rbMap;
1189 std::set<uint16_t> rntiAllocated;
1190 std::vector<uint16_t> rbgAllocationMap;
1191 // update with RACH allocation map
1192 rbgAllocationMap = m_rachAllocationMap;
1193 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1194 m_rachAllocationMap.clear();
1196
1197 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1198 // remove RACH allocation
1199 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1200 {
1201 if (rbgAllocationMap.at(i) != 0)
1202 {
1203 rbMap.at(i) = true;
1204 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1205 }
1206 }
1207
1208 if (m_harqOn)
1209 {
1210 // Process UL HARQ feedback
1211 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1212 {
1213 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1214 {
1215 // retx correspondent block: retrieve the UL-DCI
1216 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1217 auto itProcId = m_ulHarqCurrentProcessId.find(rnti);
1218 if (itProcId == m_ulHarqCurrentProcessId.end())
1219 {
1220 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1221 }
1222 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1223 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1224 << " i " << i << " size " << params.m_ulInfoList.size());
1225 auto itHarq = m_ulHarqProcessesDciBuffer.find(rnti);
1226 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1227 {
1228 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1229 continue;
1230 }
1231 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1232 auto itStat = m_ulHarqProcessesStatus.find(rnti);
1233 if (itStat == m_ulHarqProcessesStatus.end())
1234 {
1235 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1236 }
1237 if ((*itStat).second.at(harqId) >= 3)
1238 {
1239 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1240 continue;
1241 }
1242 bool free = true;
1243 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1244 {
1245 if (rbMap.at(j))
1246 {
1247 free = false;
1248 NS_LOG_INFO(this << " BUSY " << j);
1249 }
1250 }
1251 if (free)
1252 {
1253 // retx on the same RBs
1254 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1255 {
1256 rbMap.at(j) = true;
1257 rbgAllocationMap.at(j) = dci.m_rnti;
1258 NS_LOG_INFO("\tRB " << j);
1259 }
1260 NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1261 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1262 << (*itStat).second.at(harqId) + 1);
1263 }
1264 else
1265 {
1266 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1267 continue;
1268 }
1269 dci.m_ndi = 0;
1270 // Update HARQ buffers with new HarqId
1271 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1272 (*itStat).second.at(harqId) = 0;
1273 (*itHarq).second.at((*itProcId).second) = dci;
1274 ret.m_dciList.push_back(dci);
1275 rntiAllocated.insert(dci.m_rnti);
1276 }
1277 else
1278 {
1279 NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1280 << params.m_ulInfoList.at(i).m_rnti);
1281 }
1282 }
1283 }
1284
1285 std::map<uint16_t, uint32_t>::iterator it;
1286 int nflows = 0;
1287
1288 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1289 {
1290 auto itRnti = rntiAllocated.find((*it).first);
1291 // select UEs with queues not empty and not yet allocated for HARQ
1292 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1293 {
1294 nflows++;
1295 }
1296 }
1297
1298 if (nflows == 0)
1299 {
1300 if (!ret.m_dciList.empty())
1301 {
1302 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1304 }
1305
1306 return; // no flows to be scheduled
1307 }
1308
1309 // Divide the remaining resources equally among the active users starting from the subsequent
1310 // one served last scheduling trigger
1311 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size());
1312 if (rbPerFlow < 3)
1313 {
1314 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1315 // >= 7 bytes
1316 }
1317 int rbAllocated = 0;
1318
1319 if (m_nextRntiUl != 0)
1320 {
1321 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1322 {
1323 if ((*it).first == m_nextRntiUl)
1324 {
1325 break;
1326 }
1327 }
1328 if (it == m_ceBsrRxed.end())
1329 {
1330 NS_LOG_ERROR(this << " no user found");
1331 }
1332 }
1333 else
1334 {
1335 it = m_ceBsrRxed.begin();
1336 m_nextRntiUl = (*it).first;
1337 }
1338 do
1339 {
1340 auto itRnti = rntiAllocated.find((*it).first);
1341 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1342 {
1343 // UE already allocated for UL-HARQ -> skip it
1344 NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1345 << (*it).first);
1346 it++;
1347 if (it == m_ceBsrRxed.end())
1348 {
1349 // restart from the first
1350 it = m_ceBsrRxed.begin();
1351 }
1352 continue;
1353 }
1354 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1355 {
1356 // limit to physical resources last resource assignment
1357 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1358 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1359 if (rbPerFlow < 3)
1360 {
1361 // terminate allocation
1362 rbPerFlow = 0;
1363 }
1364 }
1365
1366 UlDciListElement_s uldci;
1367 uldci.m_rnti = (*it).first;
1368 uldci.m_rbLen = rbPerFlow;
1369 bool allocated = false;
1370 NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1371 << " flows " << nflows);
1372 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1373 (rbPerFlow != 0))
1374 {
1375 // check availability
1376 bool free = true;
1377 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1378 {
1379 if (rbMap.at(j))
1380 {
1381 free = false;
1382 break;
1383 }
1384 }
1385 if (free)
1386 {
1387 uldci.m_rbStart = rbAllocated;
1388
1389 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1390 {
1391 rbMap.at(j) = true;
1392 // store info on allocation for managing ul-cqi interpretation
1393 rbgAllocationMap.at(j) = (*it).first;
1394 }
1395 rbAllocated += rbPerFlow;
1396 allocated = true;
1397 break;
1398 }
1399 rbAllocated++;
1400 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1401 {
1402 // limit to physical resources last resource assignment
1403 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1404 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1405 if (rbPerFlow < 3)
1406 {
1407 // terminate allocation
1408 rbPerFlow = 0;
1409 }
1410 }
1411 }
1412 if (!allocated)
1413 {
1414 // unable to allocate new resource: finish scheduling
1415 m_nextRntiUl = (*it).first;
1416 if (!ret.m_dciList.empty())
1417 {
1419 }
1420 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1421 return;
1422 }
1423
1424 auto itCqi = m_ueCqi.find((*it).first);
1425 int cqi = 0;
1426 if (itCqi == m_ueCqi.end())
1427 {
1428 // no cqi info about this UE
1429 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1430 }
1431 else
1432 {
1433 // take the lowest CQI value (worst RB)
1434 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1435 "CQI of RNTI = " << (*it).first << " has expired");
1436 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1437 if (minSinr == NO_SINR)
1438 {
1439 minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1440 }
1441 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1442 {
1443 double sinr = (*itCqi).second.at(i);
1444 if (sinr == NO_SINR)
1445 {
1446 sinr = EstimateUlSinr((*it).first, i);
1447 }
1448 if (sinr < minSinr)
1449 {
1450 minSinr = sinr;
1451 }
1452 }
1453
1454 // translate SINR -> cqi: WILD ACK: same as DL
1455 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1456 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1457 if (cqi == 0)
1458 {
1459 it++;
1460 if (it == m_ceBsrRxed.end())
1461 {
1462 // restart from the first
1463 it = m_ceBsrRxed.begin();
1464 }
1465 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1466 // remove UE from allocation map
1467 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1468 {
1469 rbgAllocationMap.at(i) = 0;
1470 }
1471 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1472 }
1473 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1474 }
1475
1476 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1478 uldci.m_ndi = 1;
1479 uldci.m_cceIndex = 0;
1480 uldci.m_aggrLevel = 1;
1481 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1482 uldci.m_hopping = false;
1483 uldci.m_n2Dmrs = 0;
1484 uldci.m_tpc = 0; // no power control
1485 uldci.m_cqiRequest = false; // only period CQI at this stage
1486 uldci.m_ulIndex = 0; // TDD parameter
1487 uldci.m_dai = 1; // TDD parameter
1488 uldci.m_freqHopping = 0;
1489 uldci.m_pdcchPowerOffset = 0; // not used
1490 ret.m_dciList.push_back(uldci);
1491 // store DCI for HARQ_PERIOD
1492 uint8_t harqId = 0;
1493 if (m_harqOn)
1494 {
1495 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1496 if (itProcId == m_ulHarqCurrentProcessId.end())
1497 {
1498 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1499 }
1500 harqId = (*itProcId).second;
1501 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
1502 if (itDci == m_ulHarqProcessesDciBuffer.end())
1503 {
1504 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1505 << uldci.m_rnti);
1506 }
1507 (*itDci).second.at(harqId) = uldci;
1508 // Update HARQ process status (RV 0)
1509 auto itStat = m_ulHarqProcessesStatus.find(uldci.m_rnti);
1510 if (itStat == m_ulHarqProcessesStatus.end())
1511 {
1512 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1513 << uldci.m_rnti);
1514 }
1515 (*itStat).second.at(harqId) = 0;
1516 }
1517
1518 NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
1519 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1520 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1521 << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
1522 << (uint16_t)harqId);
1523
1524 it++;
1525 if (it == m_ceBsrRxed.end())
1526 {
1527 // restart from the first
1528 it = m_ceBsrRxed.begin();
1529 }
1530 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1531 {
1532 // Stop allocation: no more PRBs
1533 m_nextRntiUl = (*it).first;
1534 break;
1535 }
1536 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1537
1538 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1540}
1541
1542void
1545{
1546 NS_LOG_FUNCTION(this);
1547}
1548
1549void
1552{
1553 NS_LOG_FUNCTION(this);
1554}
1555
1556void
1559{
1560 NS_LOG_FUNCTION(this);
1561
1562 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1563 {
1564 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1565 {
1566 // buffer status report
1567 // note that this scheduler does not differentiate the
1568 // allocation according to which LCGs have more/less bytes
1569 // to send.
1570 // Hence the BSR of different LCGs are just summed up to get
1571 // a total queue size that is used for allocation purposes.
1572
1573 uint32_t buffer = 0;
1574 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1575 {
1576 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1577 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1578 }
1579
1580 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1581 NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
1582 auto it = m_ceBsrRxed.find(rnti);
1583 if (it == m_ceBsrRxed.end())
1584 {
1585 // create the new entry
1586 m_ceBsrRxed[rnti] = buffer;
1587 }
1588 else
1589 {
1590 // update the buffer size value
1591 (*it).second = buffer;
1592 }
1593 }
1594 }
1595}
1596
1597void
1600{
1601 NS_LOG_FUNCTION(this);
1602 // retrieve the allocation for this subframe
1603 switch (m_ulCqiFilter)
1604 {
1606 // filter all the CQIs that are not SRS based
1607 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1608 {
1609 return;
1610 }
1611 }
1612 break;
1614 // filter all the CQIs that are not SRS based
1615 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1616 {
1617 return;
1618 }
1619 }
1620 break;
1621 default:
1622 NS_FATAL_ERROR("Unknown UL CQI type");
1623 }
1624
1625 switch (params.m_ulCqi.m_type)
1626 {
1627 case UlCqi_s::PUSCH: {
1628 NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
1629 << " subframe no. " << (0xF & params.m_sfnSf));
1630 auto itMap = m_allocationMaps.find(params.m_sfnSf);
1631 if (itMap == m_allocationMaps.end())
1632 {
1633 return;
1634 }
1635 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1636 {
1637 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1638 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1639 auto itCqi = m_ueCqi.find((*itMap).second.at(i));
1640 if (itCqi == m_ueCqi.end())
1641 {
1642 // create a new entry
1643 std::vector<double> newCqi;
1644 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1645 {
1646 if (i == j)
1647 {
1648 newCqi.push_back(sinr);
1649 }
1650 else
1651 {
1652 // initialize with NO_SINR value.
1653 newCqi.push_back(NO_SINR);
1654 }
1655 }
1656 m_ueCqi[(*itMap).second.at(i)] = newCqi;
1657 // generate correspondent timer
1658 m_ueCqiTimers[(*itMap).second.at(i)] = m_cqiTimersThreshold;
1659 }
1660 else
1661 {
1662 // update the value
1663 (*itCqi).second.at(i) = sinr;
1664 NS_LOG_DEBUG(this << " RNTI " << (*itMap).second.at(i) << " RB " << i << " SINR "
1665 << sinr);
1666 // update correspondent timer
1667 auto itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1668 (*itTimers).second = m_cqiTimersThreshold;
1669 }
1670 }
1671 // remove obsolete info on allocation
1672 m_allocationMaps.erase(itMap);
1673 }
1674 break;
1675 case UlCqi_s::SRS: {
1676 // get the RNTI from vendor specific parameters
1677 uint16_t rnti = 0;
1678 NS_ASSERT(!params.m_vendorSpecificList.empty());
1679 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1680 {
1681 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1682 {
1683 Ptr<SrsCqiRntiVsp> vsp =
1684 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1685 rnti = vsp->GetRnti();
1686 }
1687 }
1688 auto itCqi = m_ueCqi.find(rnti);
1689 if (itCqi == m_ueCqi.end())
1690 {
1691 // create a new entry
1692 std::vector<double> newCqi;
1693 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1694 {
1695 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1696 newCqi.push_back(sinr);
1697 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1698 << sinr);
1699 }
1700 m_ueCqi[rnti] = newCqi;
1701 // generate correspondent timer
1703 }
1704 else
1705 {
1706 // update the values
1707 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1708 {
1709 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1710 (*itCqi).second.at(j) = sinr;
1711 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1712 << sinr);
1713 }
1714 // update correspondent timer
1715 auto itTimers = m_ueCqiTimers.find(rnti);
1716 (*itTimers).second = m_cqiTimersThreshold;
1717 }
1718 }
1719 break;
1720 case UlCqi_s::PUCCH_1:
1721 case UlCqi_s::PUCCH_2:
1722 case UlCqi_s::PRACH: {
1723 NS_FATAL_ERROR("TdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1724 }
1725 break;
1726 default:
1727 NS_FATAL_ERROR("Unknown type of UL-CQI");
1728 }
1729}
1730
1731void
1733{
1734 // refresh DL CQI P01 Map
1735 auto itP10 = m_p10CqiTimers.begin();
1736 while (itP10 != m_p10CqiTimers.end())
1737 {
1738 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1739 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1740 if ((*itP10).second == 0)
1741 {
1742 // delete correspondent entries
1743 auto itMap = m_p10CqiRxed.find((*itP10).first);
1744 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1745 " Does not find CQI report for user " << (*itP10).first);
1746 NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
1747 m_p10CqiRxed.erase(itMap);
1748 auto temp = itP10;
1749 itP10++;
1750 m_p10CqiTimers.erase(temp);
1751 }
1752 else
1753 {
1754 (*itP10).second--;
1755 itP10++;
1756 }
1757 }
1758
1759 // refresh DL CQI A30 Map
1760 auto itA30 = m_a30CqiTimers.begin();
1761 while (itA30 != m_a30CqiTimers.end())
1762 {
1763 NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
1764 << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1765 if ((*itA30).second == 0)
1766 {
1767 // delete correspondent entries
1768 auto itMap = m_a30CqiRxed.find((*itA30).first);
1769 NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
1770 " Does not find CQI report for user " << (*itA30).first);
1771 NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
1772 m_a30CqiRxed.erase(itMap);
1773 auto temp = itA30;
1774 itA30++;
1775 m_a30CqiTimers.erase(temp);
1776 }
1777 else
1778 {
1779 (*itA30).second--;
1780 itA30++;
1781 }
1782 }
1783}
1784
1785void
1787{
1788 // refresh UL CQI Map
1789 auto itUl = m_ueCqiTimers.begin();
1790 while (itUl != m_ueCqiTimers.end())
1791 {
1792 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
1793 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1794 if ((*itUl).second == 0)
1795 {
1796 // delete correspondent entries
1797 auto itMap = m_ueCqi.find((*itUl).first);
1798 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
1799 " Does not find CQI report for user " << (*itUl).first);
1800 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
1801 (*itMap).second.clear();
1802 m_ueCqi.erase(itMap);
1803 auto temp = itUl;
1804 itUl++;
1805 m_ueCqiTimers.erase(temp);
1806 }
1807 else
1808 {
1809 (*itUl).second--;
1810 itUl++;
1811 }
1812 }
1813}
1814
1815void
1816TdMtFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
1817{
1818 LteFlowId_t flow(rnti, lcid);
1819 auto it = m_rlcBufferReq.find(flow);
1820 if (it != m_rlcBufferReq.end())
1821 {
1822 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
1823 << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
1824 << (*it).second.m_rlcRetransmissionQueueSize << " status "
1825 << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1826 // Update queues: RLC tx order Status, ReTx, Tx
1827 // Update status queue
1828 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1829 {
1830 (*it).second.m_rlcStatusPduSize = 0;
1831 }
1832 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
1833 (size >= (*it).second.m_rlcRetransmissionQueueSize))
1834 {
1835 (*it).second.m_rlcRetransmissionQueueSize = 0;
1836 }
1837 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1838 {
1839 uint32_t rlcOverhead;
1840 if (lcid == 1)
1841 {
1842 // for SRB1 (using RLC AM) it's better to
1843 // overestimate RLC overhead rather than
1844 // underestimate it and risk unneeded
1845 // segmentation which increases delay
1846 rlcOverhead = 4;
1847 }
1848 else
1849 {
1850 // minimum RLC overhead due to header
1851 rlcOverhead = 2;
1852 }
1853 // update transmission queue
1854 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1855 {
1856 (*it).second.m_rlcTransmissionQueueSize = 0;
1857 }
1858 else
1859 {
1860 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1861 }
1862 }
1863 }
1864 else
1865 {
1866 NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
1867 }
1868}
1869
1870void
1872{
1873 size = size - 2; // remove the minimum RLC overhead
1874 auto it = m_ceBsrRxed.find(rnti);
1875 if (it != m_ceBsrRxed.end())
1876 {
1877 NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1878 if ((*it).second >= size)
1879 {
1880 (*it).second -= size;
1881 }
1882 else
1883 {
1884 (*it).second = 0;
1885 }
1886 }
1887 else
1888 {
1889 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
1890 }
1891}
1892
1893void
1895{
1896 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
1898 params.m_rnti = rnti;
1899 params.m_transmissionMode = txMode;
1901}
1902
1903} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigCnf(const CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
virtual void CschedUeConfigUpdateInd(const CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:140
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
Implements the SCHED SAP and CSCHED SAP for a Time Domain Maximize Throughput scheduler.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
void DoSchedUlCqiInfoReq(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
void DoSchedUlTriggerReq(const FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
void DoCschedCellConfigReq(const FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
void DoCschedLcConfigReq(const FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
void DoCschedUeReleaseReq(const FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
LteFfrSapUser * GetLteFfrSapUser() override
void DoSchedDlRlcBufferReq(const FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
void DoSchedUlSrInfoReq(const FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
std::set< uint16_t > m_flowStatsDl
Set of UE statistics (per RNTI basis) in downlink.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
friend class MemberSchedSapProvider< TdMtFfMacScheduler >
allow MemberSchedSapProvider<TdMtFfMacScheduler> class friend access
int GetRbgSize(int dlbandwidth)
Get RBG size function.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
friend class MemberCschedSapProvider< TdMtFfMacScheduler >
allow MemberCschedSapProvider<TdMtFfMacScheduler> class friend access
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
void DoSchedDlPagingBufferReq(const FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
void DoSchedUlNoiseInterferenceReq(const FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
void DoSchedDlMacBufferReq(const FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
std::set< uint16_t > m_flowStatsUl
Set of UE statistics (per RNTI basis)
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
unsigned int LcActivePerFlow(uint16_t rnti)
LC active flow function.
void DoSchedDlCqiInfoReq(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
void DoSchedDlRachInfoReq(const FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
void DoSchedUlMacCtrlInfoReq(const FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void DoCschedLcReleaseReq(const FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
static TypeId GetTypeId()
Get the type ID.
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
void DoDispose() override
Destructor implementation.
void DoCschedUeConfigReq(const FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
void RefreshDlCqiMaps()
Refresh DL CQI maps function.
~TdMtFfMacScheduler() override
Destructor.
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR function.
void DoSchedDlTriggerReq(const FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
void RefreshUlCqiMaps()
Refresh UL CQI maps function.
std::vector< RachListElement_s > m_rachList
RACH list.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:932
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:81
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
constexpr double NO_SINR
Value for SINR outside the range defined by FF-API, used to indicate that there is no CQI for this el...
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Vector of the 8 HARQ processes per UE.
@ SUCCESS
Definition: ff-mac-common.h:62
constexpr uint32_t HARQ_DL_TIMEOUT
HARQ DL timeout.
constexpr uint32_t HARQ_PROC_NUM
Number of HARQ processes.
static const int TdMtType0AllocationRbg[4]
TDMT type 0 allocation RBG.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector.
See section 4.3.8 buildDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< BuildDataListElement_s > m_buildDataList
build data list
std::vector< BuildRarListElement_s > m_buildRarList
build rar list
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:43
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.