A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
tdtbfq-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Marco Miozzo <marco.miozzo@cttc.es>
18 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
19 */
20
22
23#include "lte-amc.h"
25
26#include <ns3/boolean.h>
27#include <ns3/integer.h>
28#include <ns3/log.h>
29#include <ns3/math.h>
30#include <ns3/pointer.h>
31#include <ns3/simulator.h>
32
33#include <cfloat>
34#include <set>
35
36namespace ns3
37{
38
39NS_LOG_COMPONENT_DEFINE("TdTbfqFfMacScheduler");
40
41/// TDTBFQ type 0 allocation RBG
42static const int TdTbfqType0AllocationRbg[4] = {
43 10, // RBG size 1
44 26, // RBG size 2
45 63, // RBG size 3
46 110, // RBG size 4
47}; // see table 7.1.6.1-1 of 36.213
48
49NS_OBJECT_ENSURE_REGISTERED(TdTbfqFfMacScheduler);
50
52 : m_cschedSapUser(nullptr),
53 m_schedSapUser(nullptr),
54 m_nextRntiUl(0),
55 bankSize(0)
56{
57 m_amc = CreateObject<LteAmc>();
60 m_ffrSapProvider = nullptr;
62}
63
65{
66 NS_LOG_FUNCTION(this);
67}
68
69void
71{
72 NS_LOG_FUNCTION(this);
81 delete m_schedSapProvider;
82 delete m_ffrSapUser;
83}
84
87{
88 static TypeId tid =
89 TypeId("ns3::TdTbfqFfMacScheduler")
91 .SetGroupName("Lte")
92 .AddConstructor<TdTbfqFfMacScheduler>()
93 .AddAttribute("CqiTimerThreshold",
94 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
95 UintegerValue(1000),
97 MakeUintegerChecker<uint32_t>())
98 .AddAttribute("DebtLimit",
99 "Flow debt limit (default -625000 bytes)",
100 IntegerValue(-625000),
102 MakeIntegerChecker<int>())
103 .AddAttribute("CreditLimit",
104 "Flow credit limit (default 625000 bytes)",
105 UintegerValue(625000),
107 MakeUintegerChecker<uint32_t>())
108 .AddAttribute("TokenPoolSize",
109 "The maximum value of flow token pool (default 1 bytes)",
110 UintegerValue(1),
112 MakeUintegerChecker<uint32_t>())
113 .AddAttribute("CreditableThreshold",
114 "Threshold of flow credit (default 0 bytes)",
115 UintegerValue(0),
117 MakeUintegerChecker<uint32_t>())
118
119 .AddAttribute("HarqEnabled",
120 "Activate/Deactivate the HARQ [by default is active].",
121 BooleanValue(true),
124 .AddAttribute("UlGrantMcs",
125 "The MCS of the UL grant, must be [0..15] (default 0)",
126 UintegerValue(0),
128 MakeUintegerChecker<uint8_t>());
129 return tid;
130}
131
132void
134{
135 m_cschedSapUser = s;
136}
137
138void
140{
141 m_schedSapUser = s;
142}
143
146{
147 return m_cschedSapProvider;
148}
149
152{
153 return m_schedSapProvider;
154}
155
156void
158{
160}
161
164{
165 return m_ffrSapUser;
166}
167
168void
171{
172 NS_LOG_FUNCTION(this);
173 // Read the subset of parameters used
174 m_cschedCellConfig = params;
177 cnf.m_result = SUCCESS;
179}
180
181void
184{
185 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
186 << (uint16_t)params.m_transmissionMode);
187 auto it = m_uesTxMode.find(params.m_rnti);
188 if (it == m_uesTxMode.end())
189 {
190 m_uesTxMode[params.m_rnti] = params.m_transmissionMode;
191 // generate HARQ buffers
192 m_dlHarqCurrentProcessId[params.m_rnti] = 0;
193 DlHarqProcessesStatus_t dlHarqPrcStatus;
194 dlHarqPrcStatus.resize(8, 0);
195 m_dlHarqProcessesStatus[params.m_rnti] = dlHarqPrcStatus;
196 DlHarqProcessesTimer_t dlHarqProcessesTimer;
197 dlHarqProcessesTimer.resize(8, 0);
198 m_dlHarqProcessesTimer[params.m_rnti] = dlHarqProcessesTimer;
200 dlHarqdci.resize(8);
201 m_dlHarqProcessesDciBuffer[params.m_rnti] = dlHarqdci;
202 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
203 dlHarqRlcPdu.resize(2);
204 dlHarqRlcPdu.at(0).resize(8);
205 dlHarqRlcPdu.at(1).resize(8);
206 m_dlHarqProcessesRlcPduListBuffer[params.m_rnti] = dlHarqRlcPdu;
207 m_ulHarqCurrentProcessId[params.m_rnti] = 0;
208 UlHarqProcessesStatus_t ulHarqPrcStatus;
209 ulHarqPrcStatus.resize(8, 0);
210 m_ulHarqProcessesStatus[params.m_rnti] = ulHarqPrcStatus;
212 ulHarqdci.resize(8);
213 m_ulHarqProcessesDciBuffer[params.m_rnti] = ulHarqdci;
214 }
215 else
216 {
217 (*it).second = params.m_transmissionMode;
218 }
219}
220
221void
224{
225 NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
226
227 for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
228 {
229 auto it = m_flowStatsDl.find(params.m_rnti);
230
231 if (it == m_flowStatsDl.end())
232 {
233 uint64_t mbrDlInBytes =
234 params.m_logicalChannelConfigList.at(i).m_eRabMaximulBitrateDl / 8; // byte/s
235 uint64_t mbrUlInBytes =
236 params.m_logicalChannelConfigList.at(i).m_eRabMaximulBitrateUl / 8; // byte/s
237
238 tdtbfqsFlowPerf_t flowStatsDl;
239 flowStatsDl.flowStart = Simulator::Now();
240 flowStatsDl.packetArrivalRate = 0;
241 flowStatsDl.tokenGenerationRate = mbrDlInBytes;
242 flowStatsDl.tokenPoolSize = 0;
243 flowStatsDl.maxTokenPoolSize = m_tokenPoolSize;
244 flowStatsDl.counter = 0;
245 flowStatsDl.burstCredit = m_creditLimit; // bytes
246 flowStatsDl.debtLimit = m_debtLimit; // bytes
248 m_flowStatsDl[params.m_rnti] = flowStatsDl;
249 tdtbfqsFlowPerf_t flowStatsUl;
250 flowStatsUl.flowStart = Simulator::Now();
251 flowStatsUl.packetArrivalRate = 0;
252 flowStatsUl.tokenGenerationRate = mbrUlInBytes;
253 flowStatsUl.tokenPoolSize = 0;
254 flowStatsUl.maxTokenPoolSize = m_tokenPoolSize;
255 flowStatsUl.counter = 0;
256 flowStatsUl.burstCredit = m_creditLimit; // bytes
257 flowStatsUl.debtLimit = m_debtLimit; // bytes
259 m_flowStatsUl[params.m_rnti] = flowStatsUl;
260 }
261 else
262 {
263 // update MBR and GBR from UeManager::SetupDataRadioBearer ()
264 uint64_t mbrDlInBytes =
265 params.m_logicalChannelConfigList.at(i).m_eRabMaximulBitrateDl / 8; // byte/s
266 uint64_t mbrUlInBytes =
267 params.m_logicalChannelConfigList.at(i).m_eRabMaximulBitrateUl / 8; // byte/s
268 m_flowStatsDl[(*it).first].tokenGenerationRate = mbrDlInBytes;
269 m_flowStatsUl[(*it).first].tokenGenerationRate = mbrUlInBytes;
270 }
271 }
272}
273
274void
277{
278 NS_LOG_FUNCTION(this);
279 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
280 {
281 auto it = m_rlcBufferReq.begin();
282 while (it != m_rlcBufferReq.end())
283 {
284 if (((*it).first.m_rnti == params.m_rnti) &&
285 ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
286 {
287 auto temp = it;
288 it++;
289 m_rlcBufferReq.erase(temp);
290 }
291 else
292 {
293 it++;
294 }
295 }
296 }
297}
298
299void
302{
303 NS_LOG_FUNCTION(this);
304
305 m_uesTxMode.erase(params.m_rnti);
306 m_dlHarqCurrentProcessId.erase(params.m_rnti);
307 m_dlHarqProcessesStatus.erase(params.m_rnti);
308 m_dlHarqProcessesTimer.erase(params.m_rnti);
309 m_dlHarqProcessesDciBuffer.erase(params.m_rnti);
310 m_dlHarqProcessesRlcPduListBuffer.erase(params.m_rnti);
311 m_ulHarqCurrentProcessId.erase(params.m_rnti);
312 m_ulHarqProcessesStatus.erase(params.m_rnti);
313 m_ulHarqProcessesDciBuffer.erase(params.m_rnti);
314 m_flowStatsDl.erase(params.m_rnti);
315 m_flowStatsUl.erase(params.m_rnti);
316 m_ceBsrRxed.erase(params.m_rnti);
317 auto it = m_rlcBufferReq.begin();
318 while (it != m_rlcBufferReq.end())
319 {
320 if ((*it).first.m_rnti == params.m_rnti)
321 {
322 auto temp = it;
323 it++;
324 m_rlcBufferReq.erase(temp);
325 }
326 else
327 {
328 it++;
329 }
330 }
331 if (m_nextRntiUl == params.m_rnti)
332 {
333 m_nextRntiUl = 0;
334 }
335}
336
337void
340{
341 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
342 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
343
344 LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
345
346 auto it = m_rlcBufferReq.find(flow);
347
348 if (it == m_rlcBufferReq.end())
349 {
350 m_rlcBufferReq[flow] = params;
351 }
352 else
353 {
354 (*it).second = params;
355 }
356}
357
358void
361{
362 NS_LOG_FUNCTION(this);
363 NS_FATAL_ERROR("method not implemented");
364}
365
366void
369{
370 NS_LOG_FUNCTION(this);
371 NS_FATAL_ERROR("method not implemented");
372}
373
374int
376{
377 for (int i = 0; i < 4; i++)
378 {
379 if (dlbandwidth < TdTbfqType0AllocationRbg[i])
380 {
381 return i + 1;
382 }
383 }
384
385 return -1;
386}
387
388unsigned int
390{
391 unsigned int lcActive = 0;
392 for (auto it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
393 {
394 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
395 ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
396 ((*it).second.m_rlcStatusPduSize > 0)))
397 {
398 lcActive++;
399 }
400 if ((*it).first.m_rnti > rnti)
401 {
402 break;
403 }
404 }
405 return lcActive;
406}
407
408bool
410{
411 NS_LOG_FUNCTION(this << rnti);
412
413 auto it = m_dlHarqCurrentProcessId.find(rnti);
414 if (it == m_dlHarqCurrentProcessId.end())
415 {
416 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
417 }
418 auto itStat = m_dlHarqProcessesStatus.find(rnti);
419 if (itStat == m_dlHarqProcessesStatus.end())
420 {
421 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
422 }
423 uint8_t i = (*it).second;
424 do
425 {
426 i = (i + 1) % HARQ_PROC_NUM;
427 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
428
429 return (*itStat).second.at(i) == 0;
430}
431
432uint8_t
434{
435 NS_LOG_FUNCTION(this << rnti);
436
437 if (!m_harqOn)
438 {
439 return 0;
440 }
441
442 auto it = m_dlHarqCurrentProcessId.find(rnti);
443 if (it == m_dlHarqCurrentProcessId.end())
444 {
445 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
446 }
447 auto itStat = m_dlHarqProcessesStatus.find(rnti);
448 if (itStat == m_dlHarqProcessesStatus.end())
449 {
450 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
451 }
452 uint8_t i = (*it).second;
453 do
454 {
455 i = (i + 1) % HARQ_PROC_NUM;
456 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
457 if ((*itStat).second.at(i) == 0)
458 {
459 (*it).second = i;
460 (*itStat).second.at(i) = 1;
461 }
462 else
463 {
464 NS_FATAL_ERROR("No HARQ process available for RNTI "
465 << rnti << " check before update with HarqProcessAvailability");
466 }
467
468 return (*it).second;
469}
470
471void
473{
474 NS_LOG_FUNCTION(this);
475
476 for (auto itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
477 itTimers++)
478 {
479 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
480 {
481 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
482 {
483 // reset HARQ process
484
485 NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
486 auto itStat = m_dlHarqProcessesStatus.find((*itTimers).first);
487 if (itStat == m_dlHarqProcessesStatus.end())
488 {
489 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
490 << (*itTimers).first);
491 }
492 (*itStat).second.at(i) = 0;
493 (*itTimers).second.at(i) = 0;
494 }
495 else
496 {
497 (*itTimers).second.at(i)++;
498 }
499 }
500 }
501}
502
503void
506{
507 NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
508 << (0xF & params.m_sfnSf));
509 // API generated by RLC for triggering the scheduling of a DL subframe
510
511 // evaluate the relative channel quality indicator for each UE per each RBG
512 // (since we are using allocation type 0 the small unit of allocation is RBG)
513 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
514
516
518 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
519 std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
520 std::vector<bool> rbgMap; // global RBGs map
521 uint16_t rbgAllocatedNum = 0;
522 std::set<uint16_t> rntiAllocated;
523 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
524
526 for (auto it = rbgMap.begin(); it != rbgMap.end(); it++)
527 {
528 if (*it)
529 {
530 rbgAllocatedNum++;
531 }
532 }
533
535
536 // update UL HARQ proc id
537 for (auto itProcId = m_ulHarqCurrentProcessId.begin();
538 itProcId != m_ulHarqCurrentProcessId.end();
539 itProcId++)
540 {
541 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
542 }
543
544 // RACH Allocation
545 std::vector<bool> ulRbMap;
546 ulRbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
548 uint8_t maxContinuousUlBandwidth = 0;
549 uint8_t tmpMinBandwidth = 0;
550 uint16_t ffrRbStartOffset = 0;
551 uint16_t tmpFfrRbStartOffset = 0;
552 uint16_t index = 0;
553
554 for (auto it = ulRbMap.begin(); it != ulRbMap.end(); it++)
555 {
556 if (*it)
557 {
558 if (tmpMinBandwidth > maxContinuousUlBandwidth)
559 {
560 maxContinuousUlBandwidth = tmpMinBandwidth;
561 ffrRbStartOffset = tmpFfrRbStartOffset;
562 }
563 tmpMinBandwidth = 0;
564 }
565 else
566 {
567 if (tmpMinBandwidth == 0)
568 {
569 tmpFfrRbStartOffset = index;
570 }
571 tmpMinBandwidth++;
572 }
573 index++;
574 }
575
576 if (tmpMinBandwidth > maxContinuousUlBandwidth)
577 {
578 maxContinuousUlBandwidth = tmpMinBandwidth;
579 ffrRbStartOffset = tmpFfrRbStartOffset;
580 }
581
583 uint16_t rbStart = 0;
584 rbStart = ffrRbStartOffset;
585 for (auto itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
586 {
588 (*itRach).m_estimatedSize,
589 " Default UL Grant MCS does not allow to send RACH messages");
591 newRar.m_rnti = (*itRach).m_rnti;
592 // DL-RACH Allocation
593 // Ideal: no needs of configuring m_dci
594 // UL-RACH Allocation
595 newRar.m_grant.m_rnti = newRar.m_rnti;
596 newRar.m_grant.m_mcs = m_ulGrantMcs;
597 uint16_t rbLen = 1;
598 uint16_t tbSizeBits = 0;
599 // find lowest TB size that fits UL grant estimated size
600 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
601 (rbStart + rbLen < (ffrRbStartOffset + maxContinuousUlBandwidth)))
602 {
603 rbLen++;
604 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
605 }
606 if (tbSizeBits < (*itRach).m_estimatedSize)
607 {
608 // no more allocation space: finish allocation
609 break;
610 }
611 newRar.m_grant.m_rbStart = rbStart;
612 newRar.m_grant.m_rbLen = rbLen;
613 newRar.m_grant.m_tbSize = tbSizeBits / 8;
614 newRar.m_grant.m_hopping = false;
615 newRar.m_grant.m_tpc = 0;
616 newRar.m_grant.m_cqiRequest = false;
617 newRar.m_grant.m_ulDelay = false;
618 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
619 << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize "
620 << newRar.m_grant.m_tbSize);
621 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
622 {
623 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
624 }
625
626 if (m_harqOn)
627 {
628 // generate UL-DCI for HARQ retransmissions
629 UlDciListElement_s uldci;
630 uldci.m_rnti = newRar.m_rnti;
631 uldci.m_rbLen = rbLen;
632 uldci.m_rbStart = rbStart;
633 uldci.m_mcs = m_ulGrantMcs;
634 uldci.m_tbSize = tbSizeBits / 8;
635 uldci.m_ndi = 1;
636 uldci.m_cceIndex = 0;
637 uldci.m_aggrLevel = 1;
638 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
639 uldci.m_hopping = false;
640 uldci.m_n2Dmrs = 0;
641 uldci.m_tpc = 0; // no power control
642 uldci.m_cqiRequest = false; // only period CQI at this stage
643 uldci.m_ulIndex = 0; // TDD parameter
644 uldci.m_dai = 1; // TDD parameter
645 uldci.m_freqHopping = 0;
646 uldci.m_pdcchPowerOffset = 0; // not used
647
648 uint8_t harqId = 0;
649 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
650 if (itProcId == m_ulHarqCurrentProcessId.end())
651 {
652 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
653 }
654 harqId = (*itProcId).second;
655 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
656 if (itDci == m_ulHarqProcessesDciBuffer.end())
657 {
658 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
659 << uldci.m_rnti);
660 }
661 (*itDci).second.at(harqId) = uldci;
662 }
663
664 rbStart = rbStart + rbLen;
665 ret.m_buildRarList.push_back(newRar);
666 }
667 m_rachList.clear();
668
669 // Process DL HARQ feedback
671 // retrieve past HARQ retx buffered
672 if (!m_dlInfoListBuffered.empty())
673 {
674 if (!params.m_dlInfoList.empty())
675 {
676 NS_LOG_INFO(this << " Received DL-HARQ feedback");
678 params.m_dlInfoList.begin(),
679 params.m_dlInfoList.end());
680 }
681 }
682 else
683 {
684 if (!params.m_dlInfoList.empty())
685 {
686 m_dlInfoListBuffered = params.m_dlInfoList;
687 }
688 }
689 if (!m_harqOn)
690 {
691 // Ignore HARQ feedback
692 m_dlInfoListBuffered.clear();
693 }
694 std::vector<DlInfoListElement_s> dlInfoListUntxed;
695 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
696 {
697 auto itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
698 if (itRnti != rntiAllocated.end())
699 {
700 // RNTI already allocated for retx
701 continue;
702 }
703 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
704 std::vector<bool> retx;
705 NS_LOG_INFO(this << " Processing DLHARQ feedback");
706 if (nLayers == 1)
707 {
708 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
710 retx.push_back(false);
711 }
712 else
713 {
714 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
716 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
718 }
719 if (retx.at(0) || retx.at(1))
720 {
721 // retrieve HARQ process information
722 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
723 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
724 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
725 auto itHarq = m_dlHarqProcessesDciBuffer.find(rnti);
726 if (itHarq == m_dlHarqProcessesDciBuffer.end())
727 {
728 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
729 }
730
731 DlDciListElement_s dci = (*itHarq).second.at(harqId);
732 int rv = 0;
733 if (dci.m_rv.size() == 1)
734 {
735 rv = dci.m_rv.at(0);
736 }
737 else
738 {
739 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
740 }
741
742 if (rv == 3)
743 {
744 // maximum number of retx reached -> drop process
745 NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
746 auto it = m_dlHarqProcessesStatus.find(rnti);
747 if (it == m_dlHarqProcessesStatus.end())
748 {
749 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
750 << m_dlInfoListBuffered.at(i).m_rnti);
751 }
752 (*it).second.at(harqId) = 0;
753 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
754 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
755 {
756 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
757 << m_dlInfoListBuffered.at(i).m_rnti);
758 }
759 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
760 {
761 (*itRlcPdu).second.at(k).at(harqId).clear();
762 }
763 continue;
764 }
765 // check the feasibility of retransmitting on the same RBGs
766 // translate the DCI to Spectrum framework
767 std::vector<int> dciRbg;
768 uint32_t mask = 0x1;
769 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
770 for (int j = 0; j < 32; j++)
771 {
772 if (((dci.m_rbBitmap & mask) >> j) == 1)
773 {
774 dciRbg.push_back(j);
775 NS_LOG_INFO("\t" << j);
776 }
777 mask = (mask << 1);
778 }
779 bool free = true;
780 for (std::size_t j = 0; j < dciRbg.size(); j++)
781 {
782 if (rbgMap.at(dciRbg.at(j)))
783 {
784 free = false;
785 break;
786 }
787 }
788 if (free)
789 {
790 // use the same RBGs for the retx
791 // reserve RBGs
792 for (std::size_t j = 0; j < dciRbg.size(); j++)
793 {
794 rbgMap.at(dciRbg.at(j)) = true;
795 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
796 rbgAllocatedNum++;
797 }
798
799 NS_LOG_INFO(this << " Send retx in the same RBGs");
800 }
801 else
802 {
803 // find RBGs for sending HARQ retx
804 uint8_t j = 0;
805 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
806 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
807 std::vector<bool> rbgMapCopy = rbgMap;
808 while ((j < dciRbg.size()) && (startRbg != rbgId))
809 {
810 if (!rbgMapCopy.at(rbgId))
811 {
812 rbgMapCopy.at(rbgId) = true;
813 dciRbg.at(j) = rbgId;
814 j++;
815 }
816 rbgId = (rbgId + 1) % rbgNum;
817 }
818 if (j == dciRbg.size())
819 {
820 // find new RBGs -> update DCI map
821 uint32_t rbgMask = 0;
822 for (std::size_t k = 0; k < dciRbg.size(); k++)
823 {
824 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
825 rbgAllocatedNum++;
826 }
827 dci.m_rbBitmap = rbgMask;
828 rbgMap = rbgMapCopy;
829 NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
830 }
831 else
832 {
833 // HARQ retx cannot be performed on this TTI -> store it
834 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
835 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
836 }
837 }
838 // retrieve RLC PDU list for retx TBsize and update DCI
840 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
841 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
842 {
843 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
844 }
845 for (std::size_t j = 0; j < nLayers; j++)
846 {
847 if (retx.at(j))
848 {
849 if (j >= dci.m_ndi.size())
850 {
851 // for avoiding errors in MIMO transient phases
852 dci.m_ndi.push_back(0);
853 dci.m_rv.push_back(0);
854 dci.m_mcs.push_back(0);
855 dci.m_tbsSize.push_back(0);
856 NS_LOG_INFO(this << " layer " << (uint16_t)j
857 << " no txed (MIMO transition)");
858 }
859 else
860 {
861 dci.m_ndi.at(j) = 0;
862 dci.m_rv.at(j)++;
863 (*itHarq).second.at(harqId).m_rv.at(j)++;
864 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
865 << (uint16_t)dci.m_rv.at(j));
866 }
867 }
868 else
869 {
870 // empty TB of layer j
871 dci.m_ndi.at(j) = 0;
872 dci.m_rv.at(j) = 0;
873 dci.m_mcs.at(j) = 0;
874 dci.m_tbsSize.at(j) = 0;
875 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
876 }
877 }
878 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
879 {
880 std::vector<RlcPduListElement_s> rlcPduListPerLc;
881 for (std::size_t j = 0; j < nLayers; j++)
882 {
883 if (retx.at(j))
884 {
885 if (j < dci.m_ndi.size())
886 {
887 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
888 << dci.m_tbsSize.at(j));
889 rlcPduListPerLc.push_back(
890 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
891 }
892 }
893 else
894 { // if no retx needed on layer j, push an RlcPduListElement_s object with
895 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
896 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
897 RlcPduListElement_s emptyElement;
898 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
899 .second.at(j)
900 .at(dci.m_harqProcess)
901 .at(k)
902 .m_logicalChannelIdentity;
903 emptyElement.m_size = 0;
904 rlcPduListPerLc.push_back(emptyElement);
905 }
906 }
907
908 if (!rlcPduListPerLc.empty())
909 {
910 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
911 }
912 }
913 newEl.m_rnti = rnti;
914 newEl.m_dci = dci;
915 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
916 // refresh timer
917 auto itHarqTimer = m_dlHarqProcessesTimer.find(rnti);
918 if (itHarqTimer == m_dlHarqProcessesTimer.end())
919 {
920 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
921 }
922 (*itHarqTimer).second.at(harqId) = 0;
923 ret.m_buildDataList.push_back(newEl);
924 rntiAllocated.insert(rnti);
925 }
926 else
927 {
928 // update HARQ process status
929 NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
930 auto it = m_dlHarqProcessesStatus.find(m_dlInfoListBuffered.at(i).m_rnti);
931 if (it == m_dlHarqProcessesStatus.end())
932 {
933 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
934 << m_dlInfoListBuffered.at(i).m_rnti);
935 }
936 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
937 auto itRlcPdu =
939 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
940 {
941 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
942 << m_dlInfoListBuffered.at(i).m_rnti);
943 }
944 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
945 {
946 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
947 }
948 }
949 }
950 m_dlInfoListBuffered.clear();
951 m_dlInfoListBuffered = dlInfoListUntxed;
952
953 if (rbgAllocatedNum == rbgNum)
954 {
955 // all the RBGs are already allocated -> exit
956 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
957 {
959 }
960 return;
961 }
962
963 // update token pool, counter and bank size
964 for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
965 {
966 if ((*itStats).second.tokenGenerationRate / 1000 + (*itStats).second.tokenPoolSize >
967 (*itStats).second.maxTokenPoolSize)
968 {
969 (*itStats).second.counter +=
970 (*itStats).second.tokenGenerationRate / 1000 -
971 ((*itStats).second.maxTokenPoolSize - (*itStats).second.tokenPoolSize);
972 (*itStats).second.tokenPoolSize = (*itStats).second.maxTokenPoolSize;
973 bankSize += (*itStats).second.tokenGenerationRate / 1000 -
974 ((*itStats).second.maxTokenPoolSize - (*itStats).second.tokenPoolSize);
975 }
976 else
977 {
978 (*itStats).second.tokenPoolSize += (*itStats).second.tokenGenerationRate / 1000;
979 }
980 }
981
982 // select UE with largest metric
983 auto itMax = m_flowStatsDl.end();
984 double metricMax = 0.0;
985 bool firstRnti = true;
986 for (auto it = m_flowStatsDl.begin(); it != m_flowStatsDl.end(); it++)
987 {
988 auto itRnti = rntiAllocated.find((*it).first);
989 if ((itRnti != rntiAllocated.end()) || (!HarqProcessAvailability((*it).first)))
990 {
991 // UE already allocated for HARQ or without HARQ process available -> drop it
992 if (itRnti != rntiAllocated.end())
993 {
994 NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx" << (uint16_t)(*it).first);
995 }
996 if (!HarqProcessAvailability((*it).first))
997 {
998 NS_LOG_DEBUG(this << " RNTI discarded for HARQ id" << (uint16_t)(*it).first);
999 }
1000 continue;
1001 }
1002
1003 // check first the channel conditions for this UE, if CQI!=0
1004 auto itCqi = m_a30CqiRxed.find((*it).first);
1005 auto itTxMode = m_uesTxMode.find((*it).first);
1006 if (itTxMode == m_uesTxMode.end())
1007 {
1008 NS_FATAL_ERROR("No Transmission Mode info on user " << (*it).first);
1009 }
1010 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1011
1012 uint8_t cqiSum = 0;
1013 for (int k = 0; k < rbgNum; k++)
1014 {
1015 for (uint8_t j = 0; j < nLayer; j++)
1016 {
1017 if (itCqi == m_a30CqiRxed.end())
1018 {
1019 cqiSum += 1; // no info on this user -> lowest MCS
1020 }
1021 else
1022 {
1023 cqiSum += (*itCqi).second.m_higherLayerSelected.at(k).m_sbCqi.at(j);
1024 }
1025 }
1026 }
1027
1028 if (cqiSum == 0)
1029 {
1030 NS_LOG_INFO("Skip this flow, CQI==0, rnti:" << (*it).first);
1031 continue;
1032 }
1033
1034 /*
1035 if (LcActivePerFlow ((*it).first) == 0)
1036 {
1037 continue;
1038 }
1039 */
1040
1041 double metric =
1042 (((double)(*it).second.counter) / ((double)(*it).second.tokenGenerationRate));
1043
1044 if (firstRnti)
1045 {
1046 metricMax = metric;
1047 itMax = it;
1048 firstRnti = false;
1049 continue;
1050 }
1051 if (metric > metricMax)
1052 {
1053 metricMax = metric;
1054 itMax = it;
1055 }
1056 } // end for m_flowStatsDl
1057
1058 if (itMax == m_flowStatsDl.end())
1059 {
1060 // all UEs are allocated RBG or all UEs already allocated for HARQ or without HARQ process
1061 // available
1062 return;
1063 }
1064 else
1065 {
1066 // assign all RBGs to this UE
1067 std::vector<uint16_t> tempMap;
1068 for (int i = 0; i < rbgNum; i++)
1069 {
1070 if (rbgMap.at(i))
1071 { // this RBG is allocated in RACH procedure
1072 continue;
1073 }
1074
1075 if (!m_ffrSapProvider->IsDlRbgAvailableForUe(i, (*itMax).first))
1076 {
1077 continue;
1078 }
1079
1080 tempMap.push_back(i);
1081 rbgMap.at(i) = true;
1082 }
1083 if (!tempMap.empty())
1084 {
1085 allocationMap[(*itMax).first] = tempMap;
1086 }
1087 }
1088
1089 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1090 // creating the correspondent DCIs
1091 auto itMap = allocationMap.begin();
1092 while (itMap != allocationMap.end())
1093 {
1094 // create new BuildDataListElement_s for this LC
1096 newEl.m_rnti = (*itMap).first;
1097 // create the DlDciListElement_s
1098 DlDciListElement_s newDci;
1099 newDci.m_rnti = (*itMap).first;
1100 newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
1101
1102 uint16_t lcActives = LcActivePerFlow((*itMap).first);
1103 NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1104 if (lcActives == 0)
1105 {
1106 // Set to max value, to avoid divide by 0 below
1107 lcActives = (uint16_t)65535; // UINT16_MAX;
1108 }
1109 uint16_t RbgPerRnti = (*itMap).second.size();
1110 auto itCqi = m_a30CqiRxed.find((*itMap).first);
1111 auto itTxMode = m_uesTxMode.find((*itMap).first);
1112 if (itTxMode == m_uesTxMode.end())
1113 {
1114 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
1115 }
1116 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1117 std::vector<uint8_t> worstCqi(2, 15);
1118 if (itCqi != m_a30CqiRxed.end())
1119 {
1120 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1121 {
1122 if ((*itCqi).second.m_higherLayerSelected.size() > (*itMap).second.at(k))
1123 {
1124 for (uint8_t j = 0; j < nLayer; j++)
1125 {
1126 if ((*itCqi)
1127 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1128 .m_sbCqi.size() > j)
1129 {
1130 if (((*itCqi)
1131 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1132 .m_sbCqi.at(j)) < worstCqi.at(j))
1133 {
1134 worstCqi.at(j) =
1135 ((*itCqi)
1136 .second.m_higherLayerSelected.at((*itMap).second.at(k))
1137 .m_sbCqi.at(j));
1138 }
1139 }
1140 else
1141 {
1142 // no CQI for this layer of this suband -> worst one
1143 worstCqi.at(j) = 1;
1144 }
1145 }
1146 }
1147 else
1148 {
1149 for (uint8_t j = 0; j < nLayer; j++)
1150 {
1151 worstCqi.at(j) = 1; // try with lowest MCS in RBG with no info on channel
1152 }
1153 }
1154 }
1155 }
1156 else
1157 {
1158 for (uint8_t j = 0; j < nLayer; j++)
1159 {
1160 worstCqi.at(j) = 1; // try with lowest MCS in RBG with no info on channel
1161 }
1162 }
1163 uint32_t bytesTxed = 0;
1164 for (uint8_t j = 0; j < nLayer; j++)
1165 {
1166 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi(worstCqi.at(j)));
1167 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RbgPerRnti * rbgSize) /
1168 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1169 newDci.m_tbsSize.push_back(tbSize);
1170 bytesTxed += tbSize;
1171 }
1172
1173 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1174 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1175 uint32_t rbgMask = 0;
1176 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1177 {
1178 rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
1179 NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
1180 }
1181 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1182
1183 // create the rlc PDUs -> equally divide resources among actives LCs
1184 for (auto itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1185 {
1186 if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1187 (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1188 ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1189 ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1190 {
1191 std::vector<RlcPduListElement_s> newRlcPduLe;
1192 for (uint8_t j = 0; j < nLayer; j++)
1193 {
1194 RlcPduListElement_s newRlcEl;
1195 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1196 newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1197 NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1198 << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1199 newRlcPduLe.push_back(newRlcEl);
1201 newRlcEl.m_logicalChannelIdentity,
1202 newRlcEl.m_size);
1203 if (m_harqOn)
1204 {
1205 // store RLC PDU list for HARQ
1206 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1207 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1208 {
1209 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1210 << (*itMap).first);
1211 }
1212 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1213 }
1214 }
1215 newEl.m_rlcPduList.push_back(newRlcPduLe);
1216 }
1217 if ((*itBufReq).first.m_rnti > (*itMap).first)
1218 {
1219 break;
1220 }
1221 }
1222 for (uint8_t j = 0; j < nLayer; j++)
1223 {
1224 newDci.m_ndi.push_back(1);
1225 newDci.m_rv.push_back(0);
1226 }
1227
1228 newDci.m_tpc = m_ffrSapProvider->GetTpc((*itMap).first);
1229
1230 newEl.m_dci = newDci;
1231
1232 if (m_harqOn)
1233 {
1234 // store DCI for HARQ
1235 auto itDci = m_dlHarqProcessesDciBuffer.find(newEl.m_rnti);
1236 if (itDci == m_dlHarqProcessesDciBuffer.end())
1237 {
1238 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1239 << newEl.m_rnti);
1240 }
1241 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1242 // refresh timer
1243 auto itHarqTimer = m_dlHarqProcessesTimer.find(newEl.m_rnti);
1244 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1245 {
1246 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1247 }
1248 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1249 }
1250
1251 // update UE stats
1252 if (bytesTxed <= (*itMax).second.tokenPoolSize)
1253 {
1254 (*itMax).second.tokenPoolSize -= bytesTxed;
1255 }
1256 else
1257 {
1258 (*itMax).second.counter =
1259 (*itMax).second.counter - (bytesTxed - (*itMax).second.tokenPoolSize);
1260 (*itMax).second.tokenPoolSize = 0;
1261 if (bankSize <= (bytesTxed - (*itMax).second.tokenPoolSize))
1262 {
1263 bankSize = 0;
1264 }
1265 else
1266 {
1267 bankSize = bankSize - (bytesTxed - (*itMax).second.tokenPoolSize);
1268 }
1269 }
1270
1271 // ...more parameters -> ignored in this version
1272
1273 ret.m_buildDataList.push_back(newEl);
1274
1275 itMap++;
1276 } // end while allocation
1277 ret.m_nrOfPdcchOfdmSymbols = 1; /// \todo check correct value according the DCIs txed
1278
1280}
1281
1282void
1285{
1286 NS_LOG_FUNCTION(this);
1287
1288 m_rachList = params.m_rachList;
1289}
1290
1291void
1294{
1295 NS_LOG_FUNCTION(this);
1297
1298 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1299 {
1300 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1301 {
1302 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1303 << " reported");
1304 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1305 auto it = m_p10CqiRxed.find(rnti);
1306 if (it == m_p10CqiRxed.end())
1307 {
1308 // create the new entry
1309 m_p10CqiRxed[rnti] =
1310 params.m_cqiList.at(i).m_wbCqi.at(0); // only codeword 0 at this stage (SISO)
1311 // generate correspondent timer
1313 }
1314 else
1315 {
1316 // update the CQI value and refresh correspondent timer
1317 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1318 // update correspondent timer
1319 auto itTimers = m_p10CqiTimers.find(rnti);
1320 (*itTimers).second = m_cqiTimersThreshold;
1321 }
1322 }
1323 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1324 {
1325 // subband CQI reporting high layer configured
1326 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1327 auto it = m_a30CqiRxed.find(rnti);
1328 if (it == m_a30CqiRxed.end())
1329 {
1330 // create the new entry
1331 m_a30CqiRxed[rnti] = params.m_cqiList.at(i).m_sbMeasResult;
1333 }
1334 else
1335 {
1336 // update the CQI value and refresh correspondent timer
1337 (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1338 auto itTimers = m_a30CqiTimers.find(rnti);
1339 (*itTimers).second = m_cqiTimersThreshold;
1340 }
1341 }
1342 else
1343 {
1344 NS_LOG_ERROR(this << " CQI type unknown");
1345 }
1346 }
1347}
1348
1349double
1350TdTbfqFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1351{
1352 auto itCqi = m_ueCqi.find(rnti);
1353 if (itCqi == m_ueCqi.end())
1354 {
1355 // no cqi info about this UE
1356 return NO_SINR;
1357 }
1358 else
1359 {
1360 // take the average SINR value among the available
1361 double sinrSum = 0;
1362 unsigned int sinrNum = 0;
1363 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1364 {
1365 double sinr = (*itCqi).second.at(i);
1366 if (sinr != NO_SINR)
1367 {
1368 sinrSum += sinr;
1369 sinrNum++;
1370 }
1371 }
1372 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1373 // store the value
1374 (*itCqi).second.at(rb) = estimatedSinr;
1375 return estimatedSinr;
1376 }
1377}
1378
1379void
1382{
1383 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1384 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1385
1388
1389 // Generate RBs map
1391 std::vector<bool> rbMap;
1392 uint16_t rbAllocatedNum = 0;
1393 std::set<uint16_t> rntiAllocated;
1394 std::vector<uint16_t> rbgAllocationMap;
1395 // update with RACH allocation map
1396 rbgAllocationMap = m_rachAllocationMap;
1397 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1398 m_rachAllocationMap.clear();
1400
1401 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1402
1404
1405 for (auto it = rbMap.begin(); it != rbMap.end(); it++)
1406 {
1407 if (*it)
1408 {
1409 rbAllocatedNum++;
1410 }
1411 }
1412
1413 uint8_t minContinuousUlBandwidth = m_ffrSapProvider->GetMinContinuousUlBandwidth();
1414 uint8_t ffrUlBandwidth = m_cschedCellConfig.m_ulBandwidth - rbAllocatedNum;
1415
1416 // remove RACH allocation
1417 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1418 {
1419 if (rbgAllocationMap.at(i) != 0)
1420 {
1421 rbMap.at(i) = true;
1422 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1423 }
1424 }
1425
1426 if (m_harqOn)
1427 {
1428 // Process UL HARQ feedback
1429 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1430 {
1431 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1432 {
1433 // retx correspondent block: retrieve the UL-DCI
1434 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1435 auto itProcId = m_ulHarqCurrentProcessId.find(rnti);
1436 if (itProcId == m_ulHarqCurrentProcessId.end())
1437 {
1438 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1439 }
1440 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1441 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1442 << " i " << i << " size " << params.m_ulInfoList.size());
1443 auto itHarq = m_ulHarqProcessesDciBuffer.find(rnti);
1444 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1445 {
1446 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1447 continue;
1448 }
1449 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1450 auto itStat = m_ulHarqProcessesStatus.find(rnti);
1451 if (itStat == m_ulHarqProcessesStatus.end())
1452 {
1453 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1454 }
1455 if ((*itStat).second.at(harqId) >= 3)
1456 {
1457 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1458 continue;
1459 }
1460 bool free = true;
1461 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1462 {
1463 if (rbMap.at(j))
1464 {
1465 free = false;
1466 NS_LOG_INFO(this << " BUSY " << j);
1467 }
1468 }
1469 if (free)
1470 {
1471 // retx on the same RBs
1472 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1473 {
1474 rbMap.at(j) = true;
1475 rbgAllocationMap.at(j) = dci.m_rnti;
1476 NS_LOG_INFO("\tRB " << j);
1477 rbAllocatedNum++;
1478 }
1479 NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1480 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1481 << (*itStat).second.at(harqId) + 1);
1482 }
1483 else
1484 {
1485 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1486 continue;
1487 }
1488 dci.m_ndi = 0;
1489 // Update HARQ buffers with new HarqId
1490 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1491 (*itStat).second.at(harqId) = 0;
1492 (*itHarq).second.at((*itProcId).second) = dci;
1493 ret.m_dciList.push_back(dci);
1494 rntiAllocated.insert(dci.m_rnti);
1495 }
1496 else
1497 {
1498 NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1499 << params.m_ulInfoList.at(i).m_rnti);
1500 }
1501 }
1502 }
1503
1504 std::map<uint16_t, uint32_t>::iterator it;
1505 int nflows = 0;
1506
1507 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1508 {
1509 auto itRnti = rntiAllocated.find((*it).first);
1510 // select UEs with queues not empty and not yet allocated for HARQ
1511 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1512 {
1513 nflows++;
1514 }
1515 }
1516
1517 if (nflows == 0)
1518 {
1519 if (!ret.m_dciList.empty())
1520 {
1521 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1523 }
1524
1525 return; // no flows to be scheduled
1526 }
1527
1528 // Divide the remaining resources equally among the active users starting from the subsequent
1529 // one served last scheduling trigger
1530 uint16_t tempRbPerFlow = (ffrUlBandwidth) / (nflows + rntiAllocated.size());
1531 uint16_t rbPerFlow =
1532 (minContinuousUlBandwidth < tempRbPerFlow) ? minContinuousUlBandwidth : tempRbPerFlow;
1533
1534 if (rbPerFlow < 3)
1535 {
1536 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1537 // >= 7 bytes
1538 }
1539 int rbAllocated = 0;
1540
1541 if (m_nextRntiUl != 0)
1542 {
1543 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1544 {
1545 if ((*it).first == m_nextRntiUl)
1546 {
1547 break;
1548 }
1549 }
1550 if (it == m_ceBsrRxed.end())
1551 {
1552 NS_LOG_ERROR(this << " no user found");
1553 }
1554 }
1555 else
1556 {
1557 it = m_ceBsrRxed.begin();
1558 m_nextRntiUl = (*it).first;
1559 }
1560 do
1561 {
1562 auto itRnti = rntiAllocated.find((*it).first);
1563 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1564 {
1565 // UE already allocated for UL-HARQ -> skip it
1566 NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1567 << (*it).first);
1568 it++;
1569 if (it == m_ceBsrRxed.end())
1570 {
1571 // restart from the first
1572 it = m_ceBsrRxed.begin();
1573 }
1574 continue;
1575 }
1576 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1577 {
1578 // limit to physical resources last resource assignment
1579 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1580 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1581 if (rbPerFlow < 3)
1582 {
1583 // terminate allocation
1584 rbPerFlow = 0;
1585 }
1586 }
1587
1588 rbAllocated = 0;
1589 UlDciListElement_s uldci;
1590 uldci.m_rnti = (*it).first;
1591 uldci.m_rbLen = rbPerFlow;
1592 bool allocated = false;
1593 NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1594 << " flows " << nflows);
1595 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1596 (rbPerFlow != 0))
1597 {
1598 // check availability
1599 bool free = true;
1600 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1601 {
1602 if (rbMap.at(j))
1603 {
1604 free = false;
1605 break;
1606 }
1607 if (!m_ffrSapProvider->IsUlRbgAvailableForUe(j, (*it).first))
1608 {
1609 free = false;
1610 break;
1611 }
1612 }
1613 if (free)
1614 {
1615 NS_LOG_INFO(this << "RNTI: " << (*it).first << " RB Allocated " << rbAllocated
1616 << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1617 uldci.m_rbStart = rbAllocated;
1618
1619 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1620 {
1621 rbMap.at(j) = true;
1622 // store info on allocation for managing ul-cqi interpretation
1623 rbgAllocationMap.at(j) = (*it).first;
1624 }
1625 rbAllocated += rbPerFlow;
1626 allocated = true;
1627 break;
1628 }
1629 rbAllocated++;
1630 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1631 {
1632 // limit to physical resources last resource assignment
1633 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1634 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1635 if (rbPerFlow < 3)
1636 {
1637 // terminate allocation
1638 rbPerFlow = 0;
1639 }
1640 }
1641 }
1642 if (!allocated)
1643 {
1644 // unable to allocate new resource: finish scheduling
1645 // m_nextRntiUl = (*it).first;
1646 // if (ret.m_dciList.size () > 0)
1647 // {
1648 // m_schedSapUser->SchedUlConfigInd (ret);
1649 // }
1650 // m_allocationMaps[params.m_sfnSf] = rbgAllocationMap; return;
1651 break;
1652 }
1653
1654 auto itCqi = m_ueCqi.find((*it).first);
1655 int cqi = 0;
1656 if (itCqi == m_ueCqi.end())
1657 {
1658 // no cqi info about this UE
1659 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1660 }
1661 else
1662 {
1663 // take the lowest CQI value (worst RB)
1664 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1665 "CQI of RNTI = " << (*it).first << " has expired");
1666 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1667 if (minSinr == NO_SINR)
1668 {
1669 minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1670 }
1671 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1672 {
1673 double sinr = (*itCqi).second.at(i);
1674 if (sinr == NO_SINR)
1675 {
1676 sinr = EstimateUlSinr((*it).first, i);
1677 }
1678 if (sinr < minSinr)
1679 {
1680 minSinr = sinr;
1681 }
1682 }
1683
1684 // translate SINR -> cqi: WILD ACK: same as DL
1685 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1686 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1687 if (cqi == 0)
1688 {
1689 it++;
1690 if (it == m_ceBsrRxed.end())
1691 {
1692 // restart from the first
1693 it = m_ceBsrRxed.begin();
1694 }
1695 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1696 // remove UE from allocation map
1697 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1698 {
1699 rbgAllocationMap.at(i) = 0;
1700 }
1701 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1702 }
1703 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1704 }
1705
1706 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1708 uldci.m_ndi = 1;
1709 uldci.m_cceIndex = 0;
1710 uldci.m_aggrLevel = 1;
1711 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1712 uldci.m_hopping = false;
1713 uldci.m_n2Dmrs = 0;
1714 uldci.m_tpc = 0; // no power control
1715 uldci.m_cqiRequest = false; // only period CQI at this stage
1716 uldci.m_ulIndex = 0; // TDD parameter
1717 uldci.m_dai = 1; // TDD parameter
1718 uldci.m_freqHopping = 0;
1719 uldci.m_pdcchPowerOffset = 0; // not used
1720 ret.m_dciList.push_back(uldci);
1721 // store DCI for HARQ_PERIOD
1722 uint8_t harqId = 0;
1723 if (m_harqOn)
1724 {
1725 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1726 if (itProcId == m_ulHarqCurrentProcessId.end())
1727 {
1728 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1729 }
1730 harqId = (*itProcId).second;
1731 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
1732 if (itDci == m_ulHarqProcessesDciBuffer.end())
1733 {
1734 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1735 << uldci.m_rnti);
1736 }
1737 (*itDci).second.at(harqId) = uldci;
1738 // Update HARQ process status (RV 0)
1739 auto itStat = m_ulHarqProcessesStatus.find(uldci.m_rnti);
1740 if (itStat == m_ulHarqProcessesStatus.end())
1741 {
1742 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1743 << uldci.m_rnti);
1744 }
1745 (*itStat).second.at(harqId) = 0;
1746 }
1747
1748 NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
1749 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1750 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1751 << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
1752 << (uint16_t)harqId);
1753
1754 it++;
1755 if (it == m_ceBsrRxed.end())
1756 {
1757 // restart from the first
1758 it = m_ceBsrRxed.begin();
1759 }
1760 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1761 {
1762 // Stop allocation: no more PRBs
1763 m_nextRntiUl = (*it).first;
1764 break;
1765 }
1766 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1767
1768 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1770}
1771
1772void
1775{
1776 NS_LOG_FUNCTION(this);
1777}
1778
1779void
1782{
1783 NS_LOG_FUNCTION(this);
1784}
1785
1786void
1789{
1790 NS_LOG_FUNCTION(this);
1791
1792 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1793 {
1794 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1795 {
1796 // buffer status report
1797 // note that this scheduler does not differentiate the
1798 // allocation according to which LCGs have more/less bytes
1799 // to send.
1800 // Hence the BSR of different LCGs are just summed up to get
1801 // a total queue size that is used for allocation purposes.
1802
1803 uint32_t buffer = 0;
1804 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1805 {
1806 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1807 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1808 }
1809
1810 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1811 NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
1812 auto it = m_ceBsrRxed.find(rnti);
1813 if (it == m_ceBsrRxed.end())
1814 {
1815 // create the new entry
1816 m_ceBsrRxed[rnti] = buffer;
1817 }
1818 else
1819 {
1820 // update the buffer size value
1821 (*it).second = buffer;
1822 }
1823 }
1824 }
1825}
1826
1827void
1830{
1831 NS_LOG_FUNCTION(this);
1832 // retrieve the allocation for this subframe
1833 switch (m_ulCqiFilter)
1834 {
1836 // filter all the CQIs that are not SRS based
1837 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1838 {
1839 return;
1840 }
1841 }
1842 break;
1844 // filter all the CQIs that are not SRS based
1845 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1846 {
1847 return;
1848 }
1849 }
1850 break;
1851 default:
1852 NS_FATAL_ERROR("Unknown UL CQI type");
1853 }
1854
1855 switch (params.m_ulCqi.m_type)
1856 {
1857 case UlCqi_s::PUSCH: {
1858 NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
1859 << " subframe no. " << (0xF & params.m_sfnSf));
1860 auto itMap = m_allocationMaps.find(params.m_sfnSf);
1861 if (itMap == m_allocationMaps.end())
1862 {
1863 return;
1864 }
1865 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1866 {
1867 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1868 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1869 auto itCqi = m_ueCqi.find((*itMap).second.at(i));
1870 if (itCqi == m_ueCqi.end())
1871 {
1872 // create a new entry
1873 std::vector<double> newCqi;
1874 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1875 {
1876 if (i == j)
1877 {
1878 newCqi.push_back(sinr);
1879 }
1880 else
1881 {
1882 // initialize with NO_SINR value.
1883 newCqi.push_back(NO_SINR);
1884 }
1885 }
1886 m_ueCqi[(*itMap).second.at(i)] = newCqi;
1887 // generate correspondent timer
1888 m_ueCqiTimers[(*itMap).second.at(i)] = m_cqiTimersThreshold;
1889 }
1890 else
1891 {
1892 // update the value
1893 (*itCqi).second.at(i) = sinr;
1894 NS_LOG_DEBUG(this << " RNTI " << (*itMap).second.at(i) << " RB " << i << " SINR "
1895 << sinr);
1896 // update correspondent timer
1897 auto itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1898 (*itTimers).second = m_cqiTimersThreshold;
1899 }
1900 }
1901 // remove obsolete info on allocation
1902 m_allocationMaps.erase(itMap);
1903 }
1904 break;
1905 case UlCqi_s::SRS: {
1906 // get the RNTI from vendor specific parameters
1907 uint16_t rnti = 0;
1908 NS_ASSERT(!params.m_vendorSpecificList.empty());
1909 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1910 {
1911 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1912 {
1913 Ptr<SrsCqiRntiVsp> vsp =
1914 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1915 rnti = vsp->GetRnti();
1916 }
1917 }
1918 auto itCqi = m_ueCqi.find(rnti);
1919 if (itCqi == m_ueCqi.end())
1920 {
1921 // create a new entry
1922 std::vector<double> newCqi;
1923 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1924 {
1925 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1926 newCqi.push_back(sinr);
1927 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1928 << sinr);
1929 }
1930 m_ueCqi[rnti] = newCqi;
1931 // generate correspondent timer
1933 }
1934 else
1935 {
1936 // update the values
1937 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1938 {
1939 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1940 (*itCqi).second.at(j) = sinr;
1941 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1942 << sinr);
1943 }
1944 // update correspondent timer
1945 auto itTimers = m_ueCqiTimers.find(rnti);
1946 (*itTimers).second = m_cqiTimersThreshold;
1947 }
1948 }
1949 break;
1950 case UlCqi_s::PUCCH_1:
1951 case UlCqi_s::PUCCH_2:
1952 case UlCqi_s::PRACH: {
1953 NS_FATAL_ERROR("TdTbfqFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1954 }
1955 break;
1956 default:
1957 NS_FATAL_ERROR("Unknown type of UL-CQI");
1958 }
1959}
1960
1961void
1963{
1964 // refresh DL CQI P01 Map
1965 auto itP10 = m_p10CqiTimers.begin();
1966 while (itP10 != m_p10CqiTimers.end())
1967 {
1968 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1969 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1970 if ((*itP10).second == 0)
1971 {
1972 // delete correspondent entries
1973 auto itMap = m_p10CqiRxed.find((*itP10).first);
1974 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1975 " Does not find CQI report for user " << (*itP10).first);
1976 NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
1977 m_p10CqiRxed.erase(itMap);
1978 auto temp = itP10;
1979 itP10++;
1980 m_p10CqiTimers.erase(temp);
1981 }
1982 else
1983 {
1984 (*itP10).second--;
1985 itP10++;
1986 }
1987 }
1988
1989 // refresh DL CQI A30 Map
1990 auto itA30 = m_a30CqiTimers.begin();
1991 while (itA30 != m_a30CqiTimers.end())
1992 {
1993 NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
1994 << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1995 if ((*itA30).second == 0)
1996 {
1997 // delete correspondent entries
1998 auto itMap = m_a30CqiRxed.find((*itA30).first);
1999 NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
2000 " Does not find CQI report for user " << (*itA30).first);
2001 NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
2002 m_a30CqiRxed.erase(itMap);
2003 auto temp = itA30;
2004 itA30++;
2005 m_a30CqiTimers.erase(temp);
2006 }
2007 else
2008 {
2009 (*itA30).second--;
2010 itA30++;
2011 }
2012 }
2013}
2014
2015void
2017{
2018 // refresh UL CQI Map
2019 auto itUl = m_ueCqiTimers.begin();
2020 while (itUl != m_ueCqiTimers.end())
2021 {
2022 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
2023 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2024 if ((*itUl).second == 0)
2025 {
2026 // delete correspondent entries
2027 auto itMap = m_ueCqi.find((*itUl).first);
2028 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
2029 " Does not find CQI report for user " << (*itUl).first);
2030 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
2031 (*itMap).second.clear();
2032 m_ueCqi.erase(itMap);
2033 auto temp = itUl;
2034 itUl++;
2035 m_ueCqiTimers.erase(temp);
2036 }
2037 else
2038 {
2039 (*itUl).second--;
2040 itUl++;
2041 }
2042 }
2043}
2044
2045void
2046TdTbfqFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
2047{
2048 LteFlowId_t flow(rnti, lcid);
2049 auto it = m_rlcBufferReq.find(flow);
2050 if (it != m_rlcBufferReq.end())
2051 {
2052 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
2053 << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
2054 << (*it).second.m_rlcRetransmissionQueueSize << " status "
2055 << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2056 // Update queues: RLC tx order Status, ReTx, Tx
2057 // Update status queue
2058 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2059 {
2060 (*it).second.m_rlcStatusPduSize = 0;
2061 }
2062 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
2063 (size >= (*it).second.m_rlcRetransmissionQueueSize))
2064 {
2065 (*it).second.m_rlcRetransmissionQueueSize = 0;
2066 }
2067 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2068 {
2069 uint32_t rlcOverhead;
2070 if (lcid == 1)
2071 {
2072 // for SRB1 (using RLC AM) it's better to
2073 // overestimate RLC overhead rather than
2074 // underestimate it and risk unneeded
2075 // segmentation which increases delay
2076 rlcOverhead = 4;
2077 }
2078 else
2079 {
2080 // minimum RLC overhead due to header
2081 rlcOverhead = 2;
2082 }
2083 // update transmission queue
2084 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2085 {
2086 (*it).second.m_rlcTransmissionQueueSize = 0;
2087 }
2088 else
2089 {
2090 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2091 }
2092 }
2093 }
2094 else
2095 {
2096 NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
2097 }
2098}
2099
2100void
2102{
2103 size = size - 2; // remove the minimum RLC overhead
2104 auto it = m_ceBsrRxed.find(rnti);
2105 if (it != m_ceBsrRxed.end())
2106 {
2107 NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2108 if ((*it).second >= size)
2109 {
2110 (*it).second -= size;
2111 }
2112 else
2113 {
2114 (*it).second = 0;
2115 }
2116 }
2117 else
2118 {
2119 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
2120 }
2121}
2122
2123void
2125{
2126 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2128 params.m_rnti = rnti;
2129 params.m_transmissionMode = txMode;
2131}
2132
2133} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigCnf(const CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
virtual void CschedUeConfigUpdateInd(const CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
Hold a signed integer type.
Definition: integer.h:45
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
virtual uint8_t GetTpc(uint16_t rnti)=0
GetTpc.
virtual std::vector< bool > GetAvailableUlRbg()=0
Get vector of available RB in UL for this Cell.
virtual void ReportUlCqiInfo(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)=0
ReportUlCqiInfo.
virtual bool IsUlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in UL.
virtual void ReportDlCqiInfo(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)=0
ReportDlCqiInfo.
virtual std::vector< bool > GetAvailableDlRbg()=0
Get vector of available RBG in DL for this Cell.
virtual uint16_t GetMinContinuousUlBandwidth()=0
Get the minimum continuous Ul bandwidth.
virtual bool IsDlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in DL.
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:140
Template for the implementation of the LteFfrSapUser as a member of an owner class of type C to which...
Definition: lte-ffr-sap.h:259
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
Implements the SCHED SAP and CSCHED SAP for a Time Domain Token Bank Fair Queue scheduler.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
static TypeId GetTypeId()
Get the type ID.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
~TdTbfqFfMacScheduler() override
Destructor.
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
FfMacSchedSapUser * m_schedSapUser
A=Sched SAP user.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active flow size.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
uint32_t m_creditLimit
flow credit limit (byte)
void DoSchedUlMacCtrlInfoReq(const FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void DoSchedUlTriggerReq(const FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
int GetRbgSize(int dlbandwidth)
Get RBG size.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
void DoSchedDlPagingBufferReq(const FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
void RefreshDlCqiMaps()
Refresh DL CQI maps function.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
uint32_t m_creditableThreshold
threshold of flow credit
void DoSchedDlTriggerReq(const FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
std::map< uint16_t, tdtbfqsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
LteFfrSapUser * GetLteFfrSapUser() override
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
void DoSchedDlMacBufferReq(const FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
void DoCschedLcConfigReq(const FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mde configuration update function.
friend class MemberCschedSapProvider< TdTbfqFfMacScheduler >
allow MemberCschedSapProvider<TdTbfqFfMacScheduler> class friend access
void DoSchedDlRachInfoReq(const FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
void RefreshUlCqiMaps()
Refresh UL CQI maps function.
void DoSchedUlCqiInfoReq(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
int m_debtLimit
flow debt limit (byte)
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR function.
std::vector< RachListElement_s > m_rachList
RACH list.
void DoCschedLcReleaseReq(const FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
void DoSchedUlSrInfoReq(const FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
void DoCschedUeConfigReq(const FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
friend class MemberSchedSapProvider< TdTbfqFfMacScheduler >
allow MemberSchedSapProvider<TdTbfqFfMacScheduler> class friend access
uint32_t m_tokenPoolSize
maximum size of token pool (byte)
void DoCschedUeReleaseReq(const FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
void DoSchedDlRlcBufferReq(const FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
void DoDispose() override
Destructor implementation.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
void DoSchedUlNoiseInterferenceReq(const FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
void DoCschedCellConfigReq(const FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
void DoSchedDlCqiInfoReq(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
std::map< uint16_t, tdtbfqsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
uint64_t bankSize
the number of bytes in token bank
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:932
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:81
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeIntegerAccessor(T1 a1)
Definition: integer.h:46
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
constexpr double NO_SINR
Value for SINR outside the range defined by FF-API, used to indicate that there is no CQI for this el...
static const int TdTbfqType0AllocationRbg[4]
TDTBFQ type 0 allocation RBG.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Vector of the 8 HARQ processes per UE.
@ SUCCESS
Definition: ff-mac-common.h:62
constexpr uint32_t HARQ_DL_TIMEOUT
HARQ DL timeout.
constexpr uint32_t HARQ_PROC_NUM
Number of HARQ processes.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector.
Definition: second.py:1
See section 4.3.8 buildDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< BuildDataListElement_s > m_buildDataList
build data list
std::vector< BuildRarListElement_s > m_buildRarList
build rar list
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:43
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
uint32_t tokenPoolSize
current size of token pool (byte)
int debtLimit
counter threshold that the flow cannot further borrow tokens from bank
uint32_t maxTokenPoolSize
maximum size of token pool (byte)
int counter
the number of token borrow or given to token bank
uint32_t creditableThreshold
the flow cannot borrow token from bank until the number of token it has deposited to bank reaches thi...
uint64_t packetArrivalRate
packet arrival rate( byte/s)
uint64_t tokenGenerationRate
token generation rate ( byte/s )
Time flowStart
flow start time
uint32_t burstCredit
the maximum number of tokens connection i can borrow from the bank each time