A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
rr-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Marco Miozzo <marco.miozzo@cttc.es>
18 */
19
20#include "rr-ff-mac-scheduler.h"
21
22#include "lte-amc.h"
23#include "lte-common.h"
25
26#include <ns3/boolean.h>
27#include <ns3/log.h>
28#include <ns3/math.h>
29#include <ns3/pointer.h>
30#include <ns3/simulator.h>
31
32#include <cfloat>
33#include <climits>
34#include <set>
35
36namespace ns3
37{
38
39NS_LOG_COMPONENT_DEFINE("RrFfMacScheduler");
40
41/// Type 0 allocation RBG
42static const int Type0AllocationRbg[4] = {
43 10, // RGB size 1
44 26, // RGB size 2
45 63, // RGB size 3
46 110, // RGB size 4
47}; // see table 7.1.6.1-1 of 36.213
48
49NS_OBJECT_ENSURE_REGISTERED(RrFfMacScheduler);
50
52 : m_cschedSapUser(nullptr),
53 m_schedSapUser(nullptr),
54 m_nextRntiDl(0),
55 m_nextRntiUl(0)
56{
57 m_amc = CreateObject<LteAmc>();
60}
61
63{
64 NS_LOG_FUNCTION(this);
65}
66
67void
69{
70 NS_LOG_FUNCTION(this);
79 delete m_schedSapProvider;
80}
81
84{
85 static TypeId tid =
86 TypeId("ns3::RrFfMacScheduler")
88 .SetGroupName("Lte")
89 .AddConstructor<RrFfMacScheduler>()
90 .AddAttribute("CqiTimerThreshold",
91 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
92 UintegerValue(1000),
94 MakeUintegerChecker<uint32_t>())
95 .AddAttribute("HarqEnabled",
96 "Activate/Deactivate the HARQ [by default is active].",
97 BooleanValue(true),
100 .AddAttribute("UlGrantMcs",
101 "The MCS of the UL grant, must be [0..15] (default 0)",
102 UintegerValue(0),
104 MakeUintegerChecker<uint8_t>());
105 return tid;
106}
107
108void
110{
111 m_cschedSapUser = s;
112}
113
114void
116{
117 m_schedSapUser = s;
118}
119
122{
123 return m_cschedSapProvider;
124}
125
128{
129 return m_schedSapProvider;
130}
131
132void
134{
136}
137
140{
141 return m_ffrSapUser;
142}
143
144void
147{
148 NS_LOG_FUNCTION(this);
149 // Read the subset of parameters used
150 m_cschedCellConfig = params;
153 cnf.m_result = SUCCESS;
155}
156
157void
160{
161 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
162 << (uint16_t)params.m_transmissionMode);
163 auto it = m_uesTxMode.find(params.m_rnti);
164 if (it == m_uesTxMode.end())
165 {
166 m_uesTxMode[params.m_rnti] = params.m_transmissionMode;
167 // generate HARQ buffers
168 m_dlHarqCurrentProcessId[params.m_rnti] = 0;
169 DlHarqProcessesStatus_t dlHarqPrcStatus;
170 dlHarqPrcStatus.resize(8, 0);
171 m_dlHarqProcessesStatus[params.m_rnti] = dlHarqPrcStatus;
172 DlHarqProcessesTimer_t dlHarqProcessesTimer;
173 dlHarqProcessesTimer.resize(8, 0);
174 m_dlHarqProcessesTimer[params.m_rnti] = dlHarqProcessesTimer;
176 dlHarqdci.resize(8);
177 m_dlHarqProcessesDciBuffer[params.m_rnti] = dlHarqdci;
178 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
179 dlHarqRlcPdu.resize(2);
180 dlHarqRlcPdu.at(0).resize(8);
181 dlHarqRlcPdu.at(1).resize(8);
182 m_dlHarqProcessesRlcPduListBuffer[params.m_rnti] = dlHarqRlcPdu;
183 m_ulHarqCurrentProcessId[params.m_rnti] = 0;
184 UlHarqProcessesStatus_t ulHarqPrcStatus;
185 ulHarqPrcStatus.resize(8, 0);
186 m_ulHarqProcessesStatus[params.m_rnti] = ulHarqPrcStatus;
188 ulHarqdci.resize(8);
189 m_ulHarqProcessesDciBuffer[params.m_rnti] = ulHarqdci;
190 }
191 else
192 {
193 (*it).second = params.m_transmissionMode;
194 }
195}
196
197void
200{
201 NS_LOG_FUNCTION(this);
202 // Not used at this stage (LCs updated by DoSchedDlRlcBufferReq)
203}
204
205void
208{
209 NS_LOG_FUNCTION(this);
210 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
211 {
212 auto it = m_rlcBufferReq.begin();
213 while (it != m_rlcBufferReq.end())
214 {
215 if (((*it).m_rnti == params.m_rnti) &&
216 ((*it).m_logicalChannelIdentity == params.m_logicalChannelIdentity.at(i)))
217 {
218 it = m_rlcBufferReq.erase(it);
219 }
220 else
221 {
222 it++;
223 }
224 }
225 }
226}
227
228void
231{
232 NS_LOG_FUNCTION(this << " Release RNTI " << params.m_rnti);
233
234 m_uesTxMode.erase(params.m_rnti);
235 m_dlHarqCurrentProcessId.erase(params.m_rnti);
236 m_dlHarqProcessesStatus.erase(params.m_rnti);
237 m_dlHarqProcessesTimer.erase(params.m_rnti);
238 m_dlHarqProcessesDciBuffer.erase(params.m_rnti);
239 m_dlHarqProcessesRlcPduListBuffer.erase(params.m_rnti);
240 m_ulHarqCurrentProcessId.erase(params.m_rnti);
241 m_ulHarqProcessesStatus.erase(params.m_rnti);
242 m_ulHarqProcessesDciBuffer.erase(params.m_rnti);
243 m_ceBsrRxed.erase(params.m_rnti);
244 auto it = m_rlcBufferReq.begin();
245 while (it != m_rlcBufferReq.end())
246 {
247 if ((*it).m_rnti == params.m_rnti)
248 {
249 NS_LOG_INFO(this << " Erase RNTI " << (*it).m_rnti << " LC "
250 << (uint16_t)(*it).m_logicalChannelIdentity);
251 it = m_rlcBufferReq.erase(it);
252 }
253 else
254 {
255 it++;
256 }
257 }
258 if (m_nextRntiUl == params.m_rnti)
259 {
260 m_nextRntiUl = 0;
261 }
262
263 if (m_nextRntiDl == params.m_rnti)
264 {
265 m_nextRntiDl = 0;
266 }
267}
268
269void
272{
273 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
274 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
275 auto it = m_rlcBufferReq.begin();
276 bool newLc = true;
277 while (it != m_rlcBufferReq.end())
278 {
279 // remove old entries of this UE-LC
280 if (((*it).m_rnti == params.m_rnti) &&
281 ((*it).m_logicalChannelIdentity == params.m_logicalChannelIdentity))
282 {
283 it = m_rlcBufferReq.erase(it);
284 newLc = false;
285 }
286 else
287 {
288 ++it;
289 }
290 }
291 // add the new parameters
292 m_rlcBufferReq.insert(it, params);
293 NS_LOG_INFO(this << " RNTI " << params.m_rnti << " LC "
294 << (uint16_t)params.m_logicalChannelIdentity << " RLC tx size "
295 << params.m_rlcTransmissionQueueSize << " RLC retx size "
296 << params.m_rlcRetransmissionQueueSize << " RLC stat size "
297 << params.m_rlcStatusPduSize);
298 // initialize statistics of the flow in case of new flows
299 if (newLc)
300 {
301 m_p10CqiRxed[params.m_rnti] = 1; // only codeword 0 at this stage (SISO)
302 // initialized to 1 (i.e., the lowest value for transmitting a signal)
303 m_p10CqiTimers[params.m_rnti] = m_cqiTimersThreshold;
304 }
305}
306
307void
310{
311 NS_LOG_FUNCTION(this);
312 NS_FATAL_ERROR("method not implemented");
313}
314
315void
318{
319 NS_LOG_FUNCTION(this);
320 NS_FATAL_ERROR("method not implemented");
321}
322
323int
325{
326 for (int i = 0; i < 4; i++)
327 {
328 if (dlbandwidth < Type0AllocationRbg[i])
329 {
330 return i + 1;
331 }
332 }
333
334 return -1;
335}
336
337bool
340{
341 return i.m_rnti < j.m_rnti;
342}
343
344bool
346{
347 NS_LOG_FUNCTION(this << rnti);
348
349 auto it = m_dlHarqCurrentProcessId.find(rnti);
350 if (it == m_dlHarqCurrentProcessId.end())
351 {
352 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
353 }
354 auto itStat = m_dlHarqProcessesStatus.find(rnti);
355 if (itStat == m_dlHarqProcessesStatus.end())
356 {
357 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
358 }
359 uint8_t i = (*it).second;
360 do
361 {
362 i = (i + 1) % HARQ_PROC_NUM;
363 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
364
365 return (*itStat).second.at(i) == 0;
366}
367
368uint8_t
370{
371 NS_LOG_FUNCTION(this << rnti);
372
373 if (!m_harqOn)
374 {
375 return 0;
376 }
377
378 auto it = m_dlHarqCurrentProcessId.find(rnti);
379 if (it == m_dlHarqCurrentProcessId.end())
380 {
381 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
382 }
383 auto itStat = m_dlHarqProcessesStatus.find(rnti);
384 if (itStat == m_dlHarqProcessesStatus.end())
385 {
386 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
387 }
388 uint8_t i = (*it).second;
389 do
390 {
391 i = (i + 1) % HARQ_PROC_NUM;
392 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
393 if ((*itStat).second.at(i) == 0)
394 {
395 (*it).second = i;
396 (*itStat).second.at(i) = 1;
397 }
398 else
399 {
400 return 9; // return a not valid harq proc id
401 }
402
403 return (*it).second;
404}
405
406void
408{
409 NS_LOG_FUNCTION(this);
410
411 for (auto itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
412 itTimers++)
413 {
414 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
415 {
416 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
417 {
418 // reset HARQ process
419
420 NS_LOG_INFO(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
421 auto itStat = m_dlHarqProcessesStatus.find((*itTimers).first);
422 if (itStat == m_dlHarqProcessesStatus.end())
423 {
424 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
425 << (*itTimers).first);
426 }
427 (*itStat).second.at(i) = 0;
428 (*itTimers).second.at(i) = 0;
429 }
430 else
431 {
432 (*itTimers).second.at(i)++;
433 }
434 }
435 }
436}
437
438void
441{
442 NS_LOG_FUNCTION(this << " DL Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
443 << (0xF & params.m_sfnSf));
444 // API generated by RLC for triggering the scheduling of a DL subframe
445
448 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
450
451 // Generate RBGs map
452 std::vector<bool> rbgMap;
453 uint16_t rbgAllocatedNum = 0;
454 std::set<uint16_t> rntiAllocated;
455 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
456
457 // update UL HARQ proc id
458 for (auto itProcId = m_ulHarqCurrentProcessId.begin();
459 itProcId != m_ulHarqCurrentProcessId.end();
460 itProcId++)
461 {
462 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
463 }
464
465 // RACH Allocation
467 uint16_t rbStart = 0;
468 for (auto itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
469 {
471 (*itRach).m_estimatedSize,
472 " Default UL Grant MCS does not allow to send RACH messages");
474 newRar.m_rnti = (*itRach).m_rnti;
475 // DL-RACH Allocation
476 // Ideal: no needs of configuring m_dci
477 // UL-RACH Allocation
478 newRar.m_grant.m_rnti = newRar.m_rnti;
479 newRar.m_grant.m_mcs = m_ulGrantMcs;
480 uint16_t rbLen = 1;
481 uint16_t tbSizeBits = 0;
482 // find lowest TB size that fits UL grant estimated size
483 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
484 (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
485 {
486 rbLen++;
487 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
488 }
489 if (tbSizeBits < (*itRach).m_estimatedSize)
490 {
491 // no more allocation space: finish allocation
492 break;
493 }
494 newRar.m_grant.m_rbStart = rbStart;
495 newRar.m_grant.m_rbLen = rbLen;
496 newRar.m_grant.m_tbSize = tbSizeBits / 8;
497 newRar.m_grant.m_hopping = false;
498 newRar.m_grant.m_tpc = 0;
499 newRar.m_grant.m_cqiRequest = false;
500 newRar.m_grant.m_ulDelay = false;
501 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
502 << rbStart << " rbLen " << rbLen << " MCS " << (uint16_t)m_ulGrantMcs
503 << " tbSize " << newRar.m_grant.m_tbSize);
504 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
505 {
506 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
507 }
508
509 if (m_harqOn)
510 {
511 // generate UL-DCI for HARQ retransmissions
512 UlDciListElement_s uldci;
513 uldci.m_rnti = newRar.m_rnti;
514 uldci.m_rbLen = rbLen;
515 uldci.m_rbStart = rbStart;
516 uldci.m_mcs = m_ulGrantMcs;
517 uldci.m_tbSize = tbSizeBits / 8;
518 uldci.m_ndi = 1;
519 uldci.m_cceIndex = 0;
520 uldci.m_aggrLevel = 1;
521 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
522 uldci.m_hopping = false;
523 uldci.m_n2Dmrs = 0;
524 uldci.m_tpc = 0; // no power control
525 uldci.m_cqiRequest = false; // only period CQI at this stage
526 uldci.m_ulIndex = 0; // TDD parameter
527 uldci.m_dai = 1; // TDD parameter
528 uldci.m_freqHopping = 0;
529 uldci.m_pdcchPowerOffset = 0; // not used
530
531 uint8_t harqId = 0;
532 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
533 if (itProcId == m_ulHarqCurrentProcessId.end())
534 {
535 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
536 }
537 harqId = (*itProcId).second;
538 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
539 if (itDci == m_ulHarqProcessesDciBuffer.end())
540 {
541 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
542 << uldci.m_rnti);
543 }
544 (*itDci).second.at(harqId) = uldci;
545 }
546
547 rbStart = rbStart + rbLen;
548 ret.m_buildRarList.push_back(newRar);
549 }
550 m_rachList.clear();
551
552 // Process DL HARQ feedback
554 // retrieve past HARQ retx buffered
555 if (!m_dlInfoListBuffered.empty())
556 {
557 if (!params.m_dlInfoList.empty())
558 {
559 NS_LOG_INFO(this << " Received DL-HARQ feedback");
561 params.m_dlInfoList.begin(),
562 params.m_dlInfoList.end());
563 }
564 }
565 else
566 {
567 if (!params.m_dlInfoList.empty())
568 {
569 m_dlInfoListBuffered = params.m_dlInfoList;
570 }
571 }
572 if (!m_harqOn)
573 {
574 // Ignore HARQ feedback
575 m_dlInfoListBuffered.clear();
576 }
577 std::vector<DlInfoListElement_s> dlInfoListUntxed;
578 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
579 {
580 auto itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
581 if (itRnti != rntiAllocated.end())
582 {
583 // RNTI already allocated for retx
584 continue;
585 }
586 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
587 std::vector<bool> retx;
588 NS_LOG_INFO(this << " Processing DLHARQ feedback");
589 if (nLayers == 1)
590 {
591 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
593 retx.push_back(false);
594 }
595 else
596 {
597 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
599 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
601 }
602 if (retx.at(0) || retx.at(1))
603 {
604 // retrieve HARQ process information
605 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
606 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
607 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
608 auto itHarq = m_dlHarqProcessesDciBuffer.find(rnti);
609 if (itHarq == m_dlHarqProcessesDciBuffer.end())
610 {
611 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
612 }
613
614 DlDciListElement_s dci = (*itHarq).second.at(harqId);
615 int rv = 0;
616 if (dci.m_rv.size() == 1)
617 {
618 rv = dci.m_rv.at(0);
619 }
620 else
621 {
622 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
623 }
624
625 if (rv == 3)
626 {
627 // maximum number of retx reached -> drop process
628 NS_LOG_INFO("Max number of retransmissions reached -> drop process");
629 auto it = m_dlHarqProcessesStatus.find(rnti);
630 if (it == m_dlHarqProcessesStatus.end())
631 {
632 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
633 << m_dlInfoListBuffered.at(i).m_rnti);
634 }
635 (*it).second.at(harqId) = 0;
636 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
637 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
638 {
639 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
640 << m_dlInfoListBuffered.at(i).m_rnti);
641 }
642 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
643 {
644 (*itRlcPdu).second.at(k).at(harqId).clear();
645 }
646 continue;
647 }
648 // check the feasibility of retransmitting on the same RBGs
649 // translate the DCI to Spectrum framework
650 std::vector<int> dciRbg;
651 uint32_t mask = 0x1;
652 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
653 for (int j = 0; j < 32; j++)
654 {
655 if (((dci.m_rbBitmap & mask) >> j) == 1)
656 {
657 dciRbg.push_back(j);
658 NS_LOG_INFO("\t" << j);
659 }
660 mask = (mask << 1);
661 }
662 bool free = true;
663 for (std::size_t j = 0; j < dciRbg.size(); j++)
664 {
665 if (rbgMap.at(dciRbg.at(j)))
666 {
667 free = false;
668 break;
669 }
670 }
671 if (free)
672 {
673 // use the same RBGs for the retx
674 // reserve RBGs
675 for (std::size_t j = 0; j < dciRbg.size(); j++)
676 {
677 rbgMap.at(dciRbg.at(j)) = true;
678 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
679 rbgAllocatedNum++;
680 }
681
682 NS_LOG_INFO(this << " Send retx in the same RBGs");
683 }
684 else
685 {
686 // find RBGs for sending HARQ retx
687 uint8_t j = 0;
688 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
689 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
690 std::vector<bool> rbgMapCopy = rbgMap;
691 while ((j < dciRbg.size()) && (startRbg != rbgId))
692 {
693 if (!rbgMapCopy.at(rbgId))
694 {
695 rbgMapCopy.at(rbgId) = true;
696 dciRbg.at(j) = rbgId;
697 j++;
698 }
699 rbgId = (rbgId + 1) % rbgNum;
700 }
701 if (j == dciRbg.size())
702 {
703 // find new RBGs -> update DCI map
704 uint32_t rbgMask = 0;
705 for (std::size_t k = 0; k < dciRbg.size(); k++)
706 {
707 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
708 NS_LOG_INFO(this << " New allocated RBG " << dciRbg.at(k));
709 rbgAllocatedNum++;
710 }
711 dci.m_rbBitmap = rbgMask;
712 rbgMap = rbgMapCopy;
713 }
714 else
715 {
716 // HARQ retx cannot be performed on this TTI -> store it
717 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
718 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
719 }
720 }
721 // retrieve RLC PDU list for retx TBsize and update DCI
723 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
724 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
725 {
726 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
727 }
728 for (std::size_t j = 0; j < nLayers; j++)
729 {
730 if (retx.at(j))
731 {
732 if (j >= dci.m_ndi.size())
733 {
734 // for avoiding errors in MIMO transient phases
735 dci.m_ndi.push_back(0);
736 dci.m_rv.push_back(0);
737 dci.m_mcs.push_back(0);
738 dci.m_tbsSize.push_back(0);
739 NS_LOG_INFO(this << " layer " << (uint16_t)j
740 << " no txed (MIMO transition)");
741 }
742 else
743 {
744 dci.m_ndi.at(j) = 0;
745 dci.m_rv.at(j)++;
746 (*itHarq).second.at(harqId).m_rv.at(j)++;
747 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
748 << (uint16_t)dci.m_rv.at(j));
749 }
750 }
751 else
752 {
753 // empty TB of layer j
754 dci.m_ndi.at(j) = 0;
755 dci.m_rv.at(j) = 0;
756 dci.m_mcs.at(j) = 0;
757 dci.m_tbsSize.at(j) = 0;
758 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
759 }
760 }
761
762 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
763 {
764 std::vector<RlcPduListElement_s> rlcPduListPerLc;
765 for (std::size_t j = 0; j < nLayers; j++)
766 {
767 if (retx.at(j))
768 {
769 if (j < dci.m_ndi.size())
770 {
771 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
772 << dci.m_tbsSize.at(j));
773 rlcPduListPerLc.push_back(
774 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
775 }
776 }
777 else
778 { // if no retx needed on layer j, push an RlcPduListElement_s object with
779 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
780 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
781 RlcPduListElement_s emptyElement;
782 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
783 .second.at(j)
784 .at(dci.m_harqProcess)
785 .at(k)
786 .m_logicalChannelIdentity;
787 emptyElement.m_size = 0;
788 rlcPduListPerLc.push_back(emptyElement);
789 }
790 }
791
792 if (!rlcPduListPerLc.empty())
793 {
794 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
795 }
796 }
797 newEl.m_rnti = rnti;
798 newEl.m_dci = dci;
799 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
800 // refresh timer
801 auto itHarqTimer = m_dlHarqProcessesTimer.find(rnti);
802 if (itHarqTimer == m_dlHarqProcessesTimer.end())
803 {
804 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
805 }
806 (*itHarqTimer).second.at(harqId) = 0;
807 ret.m_buildDataList.push_back(newEl);
808 rntiAllocated.insert(rnti);
809 }
810 else
811 {
812 // update HARQ process status
813 NS_LOG_INFO(this << " HARQ ACK UE " << m_dlInfoListBuffered.at(i).m_rnti);
814 auto it = m_dlHarqProcessesStatus.find(m_dlInfoListBuffered.at(i).m_rnti);
815 if (it == m_dlHarqProcessesStatus.end())
816 {
817 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
818 << m_dlInfoListBuffered.at(i).m_rnti);
819 }
820 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
821 auto itRlcPdu =
823 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
824 {
825 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
826 << m_dlInfoListBuffered.at(i).m_rnti);
827 }
828 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
829 {
830 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
831 }
832 }
833 }
834 m_dlInfoListBuffered.clear();
835 m_dlInfoListBuffered = dlInfoListUntxed;
836
837 if (rbgAllocatedNum == rbgNum)
838 {
839 // all the RBGs are already allocated -> exit
840 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
841 {
843 }
844 return;
845 }
846
847 // Get the actual active flows (queue!=0)
848 std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
850 int nflows = 0;
851 int nTbs = 0;
852 std::map<uint16_t, uint8_t> lcActivesPerRnti; // tracks how many active LCs per RNTI there are
853 for (it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
854 {
855 // remove old entries of this UE-LC
856 auto itRnti = rntiAllocated.find((*it).m_rnti);
857 if ((((*it).m_rlcTransmissionQueueSize > 0) || ((*it).m_rlcRetransmissionQueueSize > 0) ||
858 ((*it).m_rlcStatusPduSize > 0)) &&
859 (itRnti == rntiAllocated.end()) // UE must not be allocated for HARQ retx
860 && (HarqProcessAvailability((*it).m_rnti))) // UE needs HARQ proc free
861
862 {
863 NS_LOG_LOGIC(this << " User " << (*it).m_rnti << " LC "
864 << (uint16_t)(*it).m_logicalChannelIdentity << " is active, status "
865 << (*it).m_rlcStatusPduSize << " retx "
866 << (*it).m_rlcRetransmissionQueueSize << " tx "
867 << (*it).m_rlcTransmissionQueueSize);
868 auto itCqi = m_p10CqiRxed.find((*it).m_rnti);
869 uint8_t cqi = 0;
870 if (itCqi != m_p10CqiRxed.end())
871 {
872 cqi = (*itCqi).second;
873 }
874 else
875 {
876 cqi = 1; // lowest value for trying a transmission
877 }
878 if (cqi != 0)
879 {
880 // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
881 nflows++;
882 auto itLcRnti = lcActivesPerRnti.find((*it).m_rnti);
883 if (itLcRnti != lcActivesPerRnti.end())
884 {
885 (*itLcRnti).second++;
886 }
887 else
888 {
889 lcActivesPerRnti[(*it).m_rnti] = 1;
890 nTbs++;
891 }
892 }
893 }
894 }
895
896 if (nflows == 0)
897 {
898 if ((!ret.m_buildDataList.empty()) || (!ret.m_buildRarList.empty()))
899 {
901 }
902 return;
903 }
904 // Divide the resource equally among the active users according to
905 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
906
907 int rbgPerTb = (nTbs > 0) ? ((rbgNum - rbgAllocatedNum) / nTbs) : INT_MAX;
908 NS_LOG_INFO(this << " Flows to be transmitted " << nflows << " rbgPerTb " << rbgPerTb);
909 if (rbgPerTb == 0)
910 {
911 rbgPerTb = 1; // at least 1 rbg per TB (till available resource)
912 }
913 int rbgAllocated = 0;
914
915 // round robin assignment to all UEs registered starting from the subsequent of the one
916 // served last scheduling trigger event
917 if (m_nextRntiDl != 0)
918 {
919 NS_LOG_DEBUG("Start from the successive of " << (uint16_t)m_nextRntiDl);
920 for (it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
921 {
922 if ((*it).m_rnti == m_nextRntiDl)
923 {
924 // select the next RNTI to starting
925 it++;
926 if (it == m_rlcBufferReq.end())
927 {
928 it = m_rlcBufferReq.begin();
929 }
930 m_nextRntiDl = (*it).m_rnti;
931 break;
932 }
933 }
934
935 if (it == m_rlcBufferReq.end())
936 {
937 NS_LOG_ERROR(this << " no user found");
938 }
939 }
940 else
941 {
942 it = m_rlcBufferReq.begin();
943 m_nextRntiDl = (*it).m_rnti;
944 }
945 do
946 {
947 auto itLcRnti = lcActivesPerRnti.find((*it).m_rnti);
948 auto itRnti = rntiAllocated.find((*it).m_rnti);
949 if ((itLcRnti == lcActivesPerRnti.end()) || (itRnti != rntiAllocated.end()))
950 {
951 // skip this RNTI (no active queue or yet allocated for HARQ)
952 uint16_t rntiDiscarded = (*it).m_rnti;
953 while (it != m_rlcBufferReq.end())
954 {
955 if ((*it).m_rnti != rntiDiscarded)
956 {
957 break;
958 }
959 it++;
960 }
961 if (it == m_rlcBufferReq.end())
962 {
963 // restart from the first
964 it = m_rlcBufferReq.begin();
965 }
966 continue;
967 }
968 auto itTxMode = m_uesTxMode.find((*it).m_rnti);
969 if (itTxMode == m_uesTxMode.end())
970 {
971 NS_FATAL_ERROR("No Transmission Mode info on user " << (*it).m_rnti);
972 }
973 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
974 int lcNum = (*itLcRnti).second;
975 // create new BuildDataListElement_s for this RNTI
977 newEl.m_rnti = (*it).m_rnti;
978 // create the DlDciListElement_s
979 DlDciListElement_s newDci;
980 newDci.m_rnti = (*it).m_rnti;
981 newDci.m_harqProcess = UpdateHarqProcessId((*it).m_rnti);
982 newDci.m_resAlloc = 0;
983 newDci.m_rbBitmap = 0;
984 auto itCqi = m_p10CqiRxed.find(newEl.m_rnti);
985 for (uint8_t i = 0; i < nLayer; i++)
986 {
987 if (itCqi == m_p10CqiRxed.end())
988 {
989 newDci.m_mcs.push_back(0); // no info on this user -> lowest MCS
990 }
991 else
992 {
993 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
994 }
995 }
996 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(0), rbgPerTb * rbgSize) / 8);
997 uint16_t rlcPduSize = tbSize / lcNum;
998 while ((*it).m_rnti == newEl.m_rnti)
999 {
1000 if (((*it).m_rlcTransmissionQueueSize > 0) ||
1001 ((*it).m_rlcRetransmissionQueueSize > 0) || ((*it).m_rlcStatusPduSize > 0))
1002 {
1003 std::vector<RlcPduListElement_s> newRlcPduLe;
1004 for (uint8_t j = 0; j < nLayer; j++)
1005 {
1006 RlcPduListElement_s newRlcEl;
1007 newRlcEl.m_logicalChannelIdentity = (*it).m_logicalChannelIdentity;
1008 NS_LOG_INFO(this << "LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1009 << " size " << rlcPduSize << " ID " << (*it).m_rnti
1010 << " layer " << (uint16_t)j);
1011 newRlcEl.m_size = rlcPduSize;
1012 UpdateDlRlcBufferInfo((*it).m_rnti,
1013 newRlcEl.m_logicalChannelIdentity,
1014 rlcPduSize);
1015 newRlcPduLe.push_back(newRlcEl);
1016
1017 if (m_harqOn)
1018 {
1019 // store RLC PDU list for HARQ
1020 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find((*it).m_rnti);
1021 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1022 {
1023 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1024 << (*it).m_rnti);
1025 }
1026 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1027 }
1028 }
1029 newEl.m_rlcPduList.push_back(newRlcPduLe);
1030 lcNum--;
1031 }
1032 it++;
1033 if (it == m_rlcBufferReq.end())
1034 {
1035 // restart from the first
1036 it = m_rlcBufferReq.begin();
1037 break;
1038 }
1039 }
1040 uint32_t rbgMask = 0;
1041 uint16_t i = 0;
1042 NS_LOG_INFO(this << " DL - Allocate user " << newEl.m_rnti << " LCs "
1043 << (uint16_t)(*itLcRnti).second << " bytes " << tbSize << " mcs "
1044 << (uint16_t)newDci.m_mcs.at(0) << " harqId "
1045 << (uint16_t)newDci.m_harqProcess << " layers " << nLayer);
1046 NS_LOG_INFO("RBG:");
1047 while (i < rbgPerTb)
1048 {
1049 if (!rbgMap.at(rbgAllocated))
1050 {
1051 rbgMask = rbgMask + (0x1 << rbgAllocated);
1052 NS_LOG_INFO("\t " << rbgAllocated);
1053 i++;
1054 rbgMap.at(rbgAllocated) = true;
1055 rbgAllocatedNum++;
1056 }
1057 rbgAllocated++;
1058 }
1059 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1060
1061 for (std::size_t i = 0; i < nLayer; i++)
1062 {
1063 newDci.m_tbsSize.push_back(tbSize);
1064 newDci.m_ndi.push_back(1);
1065 newDci.m_rv.push_back(0);
1066 }
1067
1068 newDci.m_tpc = 1; // 1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1069
1070 newEl.m_dci = newDci;
1071 if (m_harqOn)
1072 {
1073 // store DCI for HARQ
1074 auto itDci = m_dlHarqProcessesDciBuffer.find(newEl.m_rnti);
1075 if (itDci == m_dlHarqProcessesDciBuffer.end())
1076 {
1077 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1078 << newEl.m_rnti);
1079 }
1080 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1081 // refresh timer
1082 auto itHarqTimer = m_dlHarqProcessesTimer.find(newEl.m_rnti);
1083 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1084 {
1085 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1086 }
1087 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1088 }
1089 // ...more parameters -> ignored in this version
1090
1091 ret.m_buildDataList.push_back(newEl);
1092 if (rbgAllocatedNum == rbgNum)
1093 {
1094 m_nextRntiDl = newEl.m_rnti; // store last RNTI served
1095 break; // no more RGB to be allocated
1096 }
1097 } while ((*it).m_rnti != m_nextRntiDl);
1098
1099 ret.m_nrOfPdcchOfdmSymbols = 1; /// \todo check correct value according the DCIs txed
1100
1102}
1103
1104void
1107{
1108 NS_LOG_FUNCTION(this);
1109
1110 m_rachList = params.m_rachList;
1111}
1112
1113void
1116{
1117 NS_LOG_FUNCTION(this);
1118
1119 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1120 {
1121 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1122 {
1123 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1124 << " reported");
1125 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1126 auto it = m_p10CqiRxed.find(rnti);
1127 if (it == m_p10CqiRxed.end())
1128 {
1129 // create the new entry
1130 m_p10CqiRxed[rnti] =
1131 params.m_cqiList.at(i).m_wbCqi.at(0); // only codeword 0 at this stage (SISO)
1132 // generate correspondent timer
1134 }
1135 else
1136 {
1137 // update the CQI value
1138 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1139 // update correspondent timer
1140 auto itTimers = m_p10CqiTimers.find(rnti);
1141 (*itTimers).second = m_cqiTimersThreshold;
1142 }
1143 }
1144 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1145 {
1146 // subband CQI reporting high layer configured
1147 // Not used by RR Scheduler
1148 }
1149 else
1150 {
1151 NS_LOG_ERROR(this << " CQI type unknown");
1152 }
1153 }
1154}
1155
1156void
1159{
1160 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1161 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1162
1164
1165 // Generate RBs map
1167 std::vector<bool> rbMap;
1168 std::set<uint16_t> rntiAllocated;
1169 std::vector<uint16_t> rbgAllocationMap;
1170 // update with RACH allocation map
1171 rbgAllocationMap = m_rachAllocationMap;
1172 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1173 m_rachAllocationMap.clear();
1175
1176 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1177 // remove RACH allocation
1178 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1179 {
1180 if (rbgAllocationMap.at(i) != 0)
1181 {
1182 rbMap.at(i) = true;
1183 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1184 }
1185 }
1186
1187 if (m_harqOn)
1188 {
1189 // Process UL HARQ feedback
1190 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1191 {
1192 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1193 {
1194 // retx correspondent block: retrieve the UL-DCI
1195 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1196 auto itProcId = m_ulHarqCurrentProcessId.find(rnti);
1197 if (itProcId == m_ulHarqCurrentProcessId.end())
1198 {
1199 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1200 }
1201 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1202 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId "
1203 << (uint16_t)harqId);
1204 auto itHarq = m_ulHarqProcessesDciBuffer.find(rnti);
1205 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1206 {
1207 NS_LOG_ERROR("No info find in UL-HARQ buffer for UE (might change eNB) "
1208 << rnti);
1209 }
1210 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1211 auto itStat = m_ulHarqProcessesStatus.find(rnti);
1212 if (itStat == m_ulHarqProcessesStatus.end())
1213 {
1214 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1215 }
1216 if ((*itStat).second.at(harqId) >= 3)
1217 {
1218 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1219 continue;
1220 }
1221 bool free = true;
1222 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1223 {
1224 if (rbMap.at(j))
1225 {
1226 free = false;
1227 NS_LOG_INFO(this << " BUSY " << j);
1228 }
1229 }
1230 if (free)
1231 {
1232 // retx on the same RBs
1233 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1234 {
1235 rbMap.at(j) = true;
1236 rbgAllocationMap.at(j) = dci.m_rnti;
1237 NS_LOG_INFO("\tRB " << j);
1238 }
1239 NS_LOG_INFO(this << " Send retx in the same RBGs " << (uint16_t)dci.m_rbStart
1240 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1241 << (*itStat).second.at(harqId) + 1);
1242 }
1243 else
1244 {
1245 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1246 continue;
1247 }
1248 dci.m_ndi = 0;
1249 // Update HARQ buffers with new HarqId
1250 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1251 (*itStat).second.at(harqId) = 0;
1252 (*itHarq).second.at((*itProcId).second) = dci;
1253 ret.m_dciList.push_back(dci);
1254 rntiAllocated.insert(dci.m_rnti);
1255 }
1256 }
1257 }
1258
1259 std::map<uint16_t, uint32_t>::iterator it;
1260 int nflows = 0;
1261
1262 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1263 {
1264 auto itRnti = rntiAllocated.find((*it).first);
1265 // select UEs with queues not empty and not yet allocated for HARQ
1266 NS_LOG_INFO(this << " UE " << (*it).first << " queue " << (*it).second);
1267 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1268 {
1269 nflows++;
1270 }
1271 }
1272
1273 if (nflows == 0)
1274 {
1275 if (!ret.m_dciList.empty())
1276 {
1277 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1279 }
1280 return; // no flows to be scheduled
1281 }
1282
1283 // Divide the remaining resources equally among the active users starting from the subsequent
1284 // one served last scheduling trigger
1285 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size());
1286 if (rbPerFlow < 3)
1287 {
1288 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1289 // >= 7 bytes
1290 }
1291 uint16_t rbAllocated = 0;
1292
1293 if (m_nextRntiUl != 0)
1294 {
1295 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1296 {
1297 if ((*it).first == m_nextRntiUl)
1298 {
1299 break;
1300 }
1301 }
1302 if (it == m_ceBsrRxed.end())
1303 {
1304 NS_LOG_ERROR(this << " no user found");
1305 }
1306 }
1307 else
1308 {
1309 it = m_ceBsrRxed.begin();
1310 m_nextRntiUl = (*it).first;
1311 }
1312 NS_LOG_INFO(this << " NFlows " << nflows << " RB per Flow " << rbPerFlow);
1313 do
1314 {
1315 auto itRnti = rntiAllocated.find((*it).first);
1316 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1317 {
1318 // UE already allocated for UL-HARQ -> skip it
1319 it++;
1320 if (it == m_ceBsrRxed.end())
1321 {
1322 // restart from the first
1323 it = m_ceBsrRxed.begin();
1324 }
1325 continue;
1326 }
1327 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1328 {
1329 // limit to physical resources last resource assignment
1330 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1331 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1332 if (rbPerFlow < 3)
1333 {
1334 // terminate allocation
1335 rbPerFlow = 0;
1336 }
1337 }
1338 NS_LOG_INFO(this << " try to allocate " << (*it).first);
1339 UlDciListElement_s uldci;
1340 uldci.m_rnti = (*it).first;
1341 uldci.m_rbLen = rbPerFlow;
1342 bool allocated = false;
1343 NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1344 << " flows " << nflows);
1345 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1346 (rbPerFlow != 0))
1347 {
1348 // check availability
1349 bool free = true;
1350 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1351 {
1352 if (rbMap.at(j))
1353 {
1354 free = false;
1355 break;
1356 }
1357 }
1358 if (free)
1359 {
1360 uldci.m_rbStart = rbAllocated;
1361
1362 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1363 {
1364 rbMap.at(j) = true;
1365 // store info on allocation for managing ul-cqi interpretation
1366 rbgAllocationMap.at(j) = (*it).first;
1367 NS_LOG_INFO("\t " << j);
1368 }
1369 rbAllocated += rbPerFlow;
1370 allocated = true;
1371 break;
1372 }
1373 rbAllocated++;
1374 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1375 {
1376 // limit to physical resources last resource assignment
1377 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1378 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1379 if (rbPerFlow < 3)
1380 {
1381 // terminate allocation
1382 rbPerFlow = 0;
1383 }
1384 }
1385 }
1386 if (!allocated)
1387 {
1388 // unable to allocate new resource: finish scheduling
1389 m_nextRntiUl = (*it).first;
1390 if (!ret.m_dciList.empty())
1391 {
1393 }
1394 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1395 return;
1396 }
1397 auto itCqi = m_ueCqi.find((*it).first);
1398 int cqi = 0;
1399 if (itCqi == m_ueCqi.end())
1400 {
1401 // no cqi info about this UE
1402 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1403 NS_LOG_INFO(this << " UE does not have ULCQI " << (*it).first);
1404 }
1405 else
1406 {
1407 // take the lowest CQI value (worst RB)
1408 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1409 "CQI of RNTI = " << (*it).first << " has expired");
1410 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1411 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1412 {
1413 if ((*itCqi).second.at(i) < minSinr)
1414 {
1415 minSinr = (*itCqi).second.at(i);
1416 }
1417 }
1418 // translate SINR -> cqi: WILD ACK: same as DL
1419 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1420
1421 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1422 if (cqi == 0)
1423 {
1424 it++;
1425 if (it == m_ceBsrRxed.end())
1426 {
1427 // restart from the first
1428 it = m_ceBsrRxed.begin();
1429 }
1430 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1431 // remove UE from allocation map
1432 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1433 {
1434 rbgAllocationMap.at(i) = 0;
1435 }
1436 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1437 }
1438 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1439 }
1440 uldci.m_tbSize =
1441 (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8); // MCS 0 -> UL-AMC TBD
1442
1444 uldci.m_ndi = 1;
1445 uldci.m_cceIndex = 0;
1446 uldci.m_aggrLevel = 1;
1447 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1448 uldci.m_hopping = false;
1449 uldci.m_n2Dmrs = 0;
1450 uldci.m_tpc = 0; // no power control
1451 uldci.m_cqiRequest = false; // only period CQI at this stage
1452 uldci.m_ulIndex = 0; // TDD parameter
1453 uldci.m_dai = 1; // TDD parameter
1454 uldci.m_freqHopping = 0;
1455 uldci.m_pdcchPowerOffset = 0; // not used
1456 ret.m_dciList.push_back(uldci);
1457 // store DCI for HARQ_PERIOD
1458 uint8_t harqId = 0;
1459 if (m_harqOn)
1460 {
1461 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1462 if (itProcId == m_ulHarqCurrentProcessId.end())
1463 {
1464 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1465 }
1466 harqId = (*itProcId).second;
1467 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
1468 if (itDci == m_ulHarqProcessesDciBuffer.end())
1469 {
1470 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1471 << uldci.m_rnti);
1472 }
1473 (*itDci).second.at(harqId) = uldci;
1474 // Update HARQ process status (RV 0)
1475 auto itStat = m_ulHarqProcessesStatus.find(uldci.m_rnti);
1476 if (itStat == m_ulHarqProcessesStatus.end())
1477 {
1478 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1479 << uldci.m_rnti);
1480 }
1481 (*itStat).second.at(harqId) = 0;
1482 }
1483
1484 NS_LOG_INFO(this << " UL Allocation - UE " << (*it).first << " startPRB "
1485 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1486 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1487 << uldci.m_tbSize << " harqId " << (uint16_t)harqId);
1488
1489 it++;
1490 if (it == m_ceBsrRxed.end())
1491 {
1492 // restart from the first
1493 it = m_ceBsrRxed.begin();
1494 }
1495 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1496 {
1497 // Stop allocation: no more PRBs
1498 m_nextRntiUl = (*it).first;
1499 break;
1500 }
1501 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1502
1503 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1504
1506}
1507
1508void
1511{
1512 NS_LOG_FUNCTION(this);
1513}
1514
1515void
1518{
1519 NS_LOG_FUNCTION(this);
1520}
1521
1522void
1525{
1526 NS_LOG_FUNCTION(this);
1527
1528 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1529 {
1530 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1531 {
1532 // buffer status report
1533 // note that this scheduler does not differentiate the
1534 // allocation according to which LCGs have more/less bytes
1535 // to send.
1536 // Hence the BSR of different LCGs are just summed up to get
1537 // a total queue size that is used for allocation purposes.
1538
1539 uint32_t buffer = 0;
1540 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1541 {
1542 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1543 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1544 }
1545
1546 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1547 auto it = m_ceBsrRxed.find(rnti);
1548 if (it == m_ceBsrRxed.end())
1549 {
1550 // create the new entry
1551 m_ceBsrRxed[rnti] = buffer;
1552 NS_LOG_INFO(this << " Insert RNTI " << rnti << " queue " << buffer);
1553 }
1554 else
1555 {
1556 // update the buffer size value
1557 (*it).second = buffer;
1558 NS_LOG_INFO(this << " Update RNTI " << rnti << " queue " << buffer);
1559 }
1560 }
1561 }
1562}
1563
1564void
1567{
1568 NS_LOG_FUNCTION(this);
1569
1570 switch (m_ulCqiFilter)
1571 {
1573 // filter all the CQIs that are not SRS based
1574 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1575 {
1576 return;
1577 }
1578 }
1579 break;
1581 // filter all the CQIs that are not SRS based
1582 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1583 {
1584 return;
1585 }
1586 }
1587 break;
1588 default:
1589 NS_FATAL_ERROR("Unknown UL CQI type");
1590 }
1591 switch (params.m_ulCqi.m_type)
1592 {
1593 case UlCqi_s::PUSCH: {
1594 auto itMap = m_allocationMaps.find(params.m_sfnSf);
1595 if (itMap == m_allocationMaps.end())
1596 {
1597 NS_LOG_INFO(this << " Does not find info on allocation, size : "
1598 << m_allocationMaps.size());
1599 return;
1600 }
1601 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1602 {
1603 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1604 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1605 auto itCqi = m_ueCqi.find((*itMap).second.at(i));
1606 if (itCqi == m_ueCqi.end())
1607 {
1608 // create a new entry
1609 std::vector<double> newCqi;
1610 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1611 {
1612 if (i == j)
1613 {
1614 newCqi.push_back(sinr);
1615 }
1616 else
1617 {
1618 // initialize with NO_SINR value.
1619 newCqi.push_back(30.0);
1620 }
1621 }
1622 m_ueCqi[(*itMap).second.at(i)] = newCqi;
1623 // generate correspondent timer
1624 m_ueCqiTimers[(*itMap).second.at(i)] = m_cqiTimersThreshold;
1625 }
1626 else
1627 {
1628 // update the value
1629 (*itCqi).second.at(i) = sinr;
1630 // update correspondent timer
1631 auto itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1632 (*itTimers).second = m_cqiTimersThreshold;
1633 }
1634 }
1635 // remove obsolete info on allocation
1636 m_allocationMaps.erase(itMap);
1637 }
1638 break;
1639 case UlCqi_s::SRS: {
1640 // get the RNTI from vendor specific parameters
1641 uint16_t rnti = 0;
1642 NS_ASSERT(!params.m_vendorSpecificList.empty());
1643 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1644 {
1645 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1646 {
1647 Ptr<SrsCqiRntiVsp> vsp =
1648 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1649 rnti = vsp->GetRnti();
1650 }
1651 }
1652 auto itCqi = m_ueCqi.find(rnti);
1653 if (itCqi == m_ueCqi.end())
1654 {
1655 // create a new entry
1656 std::vector<double> newCqi;
1657 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1658 {
1659 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1660 newCqi.push_back(sinr);
1661 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1662 << sinr);
1663 }
1664 m_ueCqi[rnti] = newCqi;
1665 // generate correspondent timer
1667 }
1668 else
1669 {
1670 // update the values
1671 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1672 {
1673 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1674 (*itCqi).second.at(j) = sinr;
1675 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1676 << sinr);
1677 }
1678 // update correspondent timer
1679 auto itTimers = m_ueCqiTimers.find(rnti);
1680 (*itTimers).second = m_cqiTimersThreshold;
1681 }
1682 }
1683 break;
1684 case UlCqi_s::PUCCH_1:
1685 case UlCqi_s::PUCCH_2:
1686 case UlCqi_s::PRACH: {
1687 NS_FATAL_ERROR("PfFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1688 }
1689 break;
1690 default:
1691 NS_FATAL_ERROR("Unknown type of UL-CQI");
1692 }
1693}
1694
1695void
1697{
1698 NS_LOG_FUNCTION(this << m_p10CqiTimers.size());
1699 // refresh DL CQI P01 Map
1700 auto itP10 = m_p10CqiTimers.begin();
1701 while (itP10 != m_p10CqiTimers.end())
1702 {
1703 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1704 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1705 if ((*itP10).second == 0)
1706 {
1707 // delete correspondent entries
1708 auto itMap = m_p10CqiRxed.find((*itP10).first);
1709 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1710 " Does not find CQI report for user " << (*itP10).first);
1711 NS_LOG_INFO(this << " P10-CQI exired for user " << (*itP10).first);
1712 m_p10CqiRxed.erase(itMap);
1713 auto temp = itP10;
1714 itP10++;
1715 m_p10CqiTimers.erase(temp);
1716 }
1717 else
1718 {
1719 (*itP10).second--;
1720 itP10++;
1721 }
1722 }
1723}
1724
1725void
1727{
1728 // refresh UL CQI Map
1729 auto itUl = m_ueCqiTimers.begin();
1730 while (itUl != m_ueCqiTimers.end())
1731 {
1732 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
1733 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1734 if ((*itUl).second == 0)
1735 {
1736 // delete correspondent entries
1737 auto itMap = m_ueCqi.find((*itUl).first);
1738 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
1739 " Does not find CQI report for user " << (*itUl).first);
1740 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
1741 (*itMap).second.clear();
1742 m_ueCqi.erase(itMap);
1743 auto temp = itUl;
1744 itUl++;
1745 m_ueCqiTimers.erase(temp);
1746 }
1747 else
1748 {
1749 (*itUl).second--;
1750 itUl++;
1751 }
1752 }
1753}
1754
1755void
1756RrFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
1757{
1758 NS_LOG_FUNCTION(this);
1759 for (auto it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
1760 {
1761 if (((*it).m_rnti == rnti) && ((*it).m_logicalChannelIdentity == lcid))
1762 {
1763 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
1764 << (*it).m_rlcTransmissionQueueSize << " retxqueue "
1765 << (*it).m_rlcRetransmissionQueueSize << " status "
1766 << (*it).m_rlcStatusPduSize << " decrease " << size);
1767 // Update queues: RLC tx order Status, ReTx, Tx
1768 // Update status queue
1769 if (((*it).m_rlcStatusPduSize > 0) && (size >= (*it).m_rlcStatusPduSize))
1770 {
1771 (*it).m_rlcStatusPduSize = 0;
1772 }
1773 else if (((*it).m_rlcRetransmissionQueueSize > 0) &&
1774 (size >= (*it).m_rlcRetransmissionQueueSize))
1775 {
1776 (*it).m_rlcRetransmissionQueueSize = 0;
1777 }
1778 else if ((*it).m_rlcTransmissionQueueSize > 0)
1779 {
1780 uint32_t rlcOverhead;
1781 if (lcid == 1)
1782 {
1783 // for SRB1 (using RLC AM) it's better to
1784 // overestimate RLC overhead rather than
1785 // underestimate it and risk unneeded
1786 // segmentation which increases delay
1787 rlcOverhead = 4;
1788 }
1789 else
1790 {
1791 // minimum RLC overhead due to header
1792 rlcOverhead = 2;
1793 }
1794 // update transmission queue
1795 if ((*it).m_rlcTransmissionQueueSize <= size - rlcOverhead)
1796 {
1797 (*it).m_rlcTransmissionQueueSize = 0;
1798 }
1799 else
1800 {
1801 (*it).m_rlcTransmissionQueueSize -= size - rlcOverhead;
1802 }
1803 }
1804 return;
1805 }
1806 }
1807}
1808
1809void
1810RrFfMacScheduler::UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
1811{
1812 size = size - 2; // remove the minimum RLC overhead
1813 auto it = m_ceBsrRxed.find(rnti);
1814 if (it != m_ceBsrRxed.end())
1815 {
1816 NS_LOG_INFO(this << " Update RLC BSR UE " << rnti << " size " << size << " BSR "
1817 << (*it).second);
1818 if ((*it).second >= size)
1819 {
1820 (*it).second -= size;
1821 }
1822 else
1823 {
1824 (*it).second = 0;
1825 }
1826 }
1827 else
1828 {
1829 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
1830 }
1831}
1832
1833void
1835{
1836 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
1838 params.m_rnti = rnti;
1839 params.m_transmissionMode = txMode;
1841}
1842
1843} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigCnf(const CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
virtual void CschedUeConfigUpdateInd(const CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:140
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
Implements the SCHED SAP and CSCHED SAP for a Round Robin scheduler.
friend class MemberCschedSapProvider< RrFfMacScheduler >
allow MemberCschedSapProvider<RrFfMacScheduler> class friend access
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
void DoSchedDlRlcBufferReq(const FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
void DoSchedUlCqiInfoReq(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
void DoSchedDlTriggerReq(const FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
friend class MemberSchedSapProvider< RrFfMacScheduler >
allow MemberSchedSapProvider<RrFfMacScheduler> class friend access
void DoCschedLcReleaseReq(const FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
void DoCschedLcConfigReq(const FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
void DoSchedUlSrInfoReq(const FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SRS info request.
~RrFfMacScheduler() override
Destructor.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
void DoCschedUeConfigReq(const FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
LteFfrSapUser * GetLteFfrSapUser() override
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
void DoSchedUlMacCtrlInfoReq(const FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
void DoSchedUlTriggerReq(const FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
void DoSchedUlNoiseInterferenceReq(const FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
void DoSchedDlMacBufferReq(const FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
void DoCschedUeReleaseReq(const FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
std::list< FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's RLC info.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
uint16_t m_nextRntiDl
RNTI of the next user to be served next scheduling in DL.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
std::vector< RachListElement_s > m_rachList
RACH list.
static bool SortRlcBufferReq(FfMacSchedSapProvider::SchedDlRlcBufferReqParameters i, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters j)
Sort RLC buffer request function.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void RefreshDlCqiMaps()
Refresh DL CQI maps function.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
void DoSchedDlCqiInfoReq(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
void DoCschedCellConfigReq(const FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
static TypeId GetTypeId()
Get the type ID.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
void DoSchedDlPagingBufferReq(const FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
void RefreshUlCqiMaps()
Refresh UL CQI maps function.
void DoSchedDlRachInfoReq(const FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
void DoDispose() override
Destructor implementation.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:932
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:81
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Vector of the 8 HARQ processes per UE.
@ SUCCESS
Definition: ff-mac-common.h:62
constexpr uint32_t HARQ_DL_TIMEOUT
HARQ DL timeout.
constexpr uint32_t HARQ_PROC_NUM
Number of HARQ processes.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector.
static const int Type0AllocationRbg[4]
Type 0 RGB allocation.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector.
See section 4.3.8 buildDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< BuildDataListElement_s > m_buildDataList
build data list
std::vector< BuildRarListElement_s > m_buildRarList
build rar list
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< UlDciListElement_s > m_dciList
DCI list.
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.