Difference between revisions of "GSOC2024Projects"

From Nsnam
Jump to: navigation, search
(Mesh Link Establishment (MLE) protocol)
(Medium sized projects (175 hours))
Line 117: Line 117:
 
Possible tasks to fulfill the patch requirement:
 
Possible tasks to fulfill the patch requirement:
 
* [[GSOC2023PatchRequirement]]
 
* [[GSOC2023PatchRequirement]]
 
  
 
===== 6LoWPAN mesh-under routing enhancements =====
 
===== 6LoWPAN mesh-under routing enhancements =====
Line 139: Line 138:
 
Possible tasks to fulfill the patch requirement:
 
Possible tasks to fulfill the patch requirement:
 
* TBD
 
* TBD
 
  
 
===== 6LoWPAN neighbor discovery protocol =====
 
===== 6LoWPAN neighbor discovery protocol =====

Revision as of 04:29, 1 February 2024

Main Page - Current Development - Developer FAQ - Tools - Related Projects - Project Ideas - Summer Projects

Installation - Troubleshooting - User FAQ - HOWTOs - Samples - Models - Education - Contributed Code - Papers

This page contains 2024 Google Summer of Code project ideas for ns-3.

About the ns-3 project

ns-3 is a discrete-event network simulator, with a particular emphasis on network research and education.

Users of ns-3 can construct simulations of computer networks using models of traffic generators, protocols such as TCP/IP, and devices and channels such as WiFi, and analyze or visualize the results. Simulation plays a vital role in the research and education process, because of the ability for simulations to obtain reproducible results (particularly for wireless protocol design), scale to large networks, and study systems that have not yet been implemented. A particular emphasis in ns-3 is the high degree of realism in the models (including frameworks for real application and kernel code) and integration of the tool with virtual machine environments and testbeds; we view that researchers need to move more effortlessly between simulation, testbeds, and live experiments, and ns-3 is designed to facilitate that.

ns-3 has participated in past GSoCs during 2008-10, 2012-15, and 2017-23. We seek contributors interested in the intersection of wireless and computer networking, performance analysis, and open source software.

Org admins

Google Summer of Code organizational admins for ns-3 are Tommaso Pecorella, Mohit P. Tahiliani, and Tom Henderson; contact them with any questions. They also hang out on Zulip.

Mentors

Mentors will be paired with contributors based on the projects that are selected. Mentors from companies are welcome, if the employer will permit the mentor sufficient time to perform the mentoring. Prospective mentors should notify Mohit P. Tahiliani or Tommaso Pecorella of interest. Mentors familiar with ns-3 development practices will be preferred, to improve the chances of code merge. We are going to be seeking two-person or multiple-person mentoring teams for projects, to help with the mentoring workload and bring more expertise.

The current list of prospective mentors can be found among the ideas listed below.

How to apply

For students or contributors interested in applying to ns-3 for GSoC, please go through the following list to get started:

  • Read the official GSoC contributor guide.
  • Read ns-3's GSoC contributor guide
  • Look through our #Project Ideas below to see if you find a project that interests you.
  • Review the tutorial and contributing guide thoroughly, if you have not already done so.
  • Once it is posted, look through the GSoC application template to start preparing your proposal. We will wait to see whether we are actually part of GSoC before posting this.
  • Next, proceed to get in touch with the developers on the mailing list or chat room and refine your proposal.
  • In parallel, make sure you prepare a patch as per the patch requirement guidelines. Your application to ns-3 will not be considered if you do not fulfill this requirement.

Below is a list of #Project Ideas proposed by the ns-3 team for Google Summer of Code 2023. Please note that these ideas are not limited to GSoC; anyone is welcome to work on them. Please email the ns-developers list if you have a different idea that you'd like to work on, to see if a mentor may be interested. Applicants are encouraged to look over this list, pick one that especially interests them, think about it, and discuss potential approaches on the ns-developers list. Previous experience with the Google Summer of Code programs suggest that the more you discuss and refine your proposal on the mailing list beforehand, the stronger the proposal it will develop into, and the higher your chances of being accepted into the program.

Each project idea within a particular priority has been tagged with the following properties:

  • Required Experience: Languages, concepts, or packages with which applicants must be familiar.
  • Bonus Experience: Other experience or familiarity which would be greatly helpful to applicants for this project.
  • Interests: Areas of particular relevance to this project, and an indicator of where successful contributors might apply their experiences coming out of this project.
  • Difficulty: easy, medium or difficult
  • Recommended reading: pointers to documentation, papers, specific bugs, etc.

Note that all of the projects require some experience and comfort with C++. Project ideas for which C++ is noted as a required experience will require more and deeper familiarity with the language. A similar notion applies to computer networking, BSD sockets, etc: Familiarity is strongly preferred, but is not required except where explicitly noted due to the topic being more advanced in that regard. A few projects are more Python-centric.

Patch requirement guidelines

Each project idea has either a suggested task, or a link to a generic task, that a contributor must do to demonstrate some ability to carry out a GSoC project successfully. Performing one task is necessary for a successful application, and performing more than one task is not necessary.

Contributors that already contributed to the ns-3 codebase with non-trivial bug fixing or features additions might be exempted from performing a task. If you have doubts about if your contributions made you eligible for the task exemption contact the mentors.

Mentors: how to participate

The ns-3 project is open to the proposal of new project ideas by developers interested in being a GSoC mentor. For mentors who're adding project ideas to the list below, please ensure that:

  • The projects are sized such that there can be a code merge by the end of the coding period. The scope of the project should be such that it is very difficult to *not* have a code merge by the end of the summer.
  • The proposed projects are not too open-ended. That is, if the deliverables or a clear path to the same are not well understood, it is better kept outside GSOC.
  • There should be a clear merge path to one of the main project code repositories (ns-3-dev, ns-3-dce, bake) by the end of the summer, either because the patches directly apply to these repositories, or because they apply to an ns-3 module that is in the process of being merged with ns-3-dev.

Project Ideas

Note to contributors: These ideas are not listed in any priority order. If an idea doesn't have a mentor yet, it means that if you are interested, you should announce your interest and see if there is a mentor who might pick it up.

The projects can be grouped depending on their scope and/or their size. Below they are organized according to their scope.

Internet models enhancements

IoT models enhancements

Medium sized projects (175 hours)

ICMP socket and generate/handle ICMP messages (host/net unreachable)

Mentors: Tommaso Pecorella, Manoj K. Rana.

The current IP stack in ns-3 does not provide an ICMP socket, and in order to send or receive ICMP packets (either IPV4 or IPv6) it is necessary to use a "RAW" socket. This approach works, but has a severe limitation: it does not work if the packet has been fragmented. Moreover, using a RAW socket is far more complex than a normal socket, as the receiver application must filter the incoming packets according to specific rules.

The goal of the idea is to create, test, and document an ICMP socket that works both for IPv4 and IPv6, mimicking the Linux sockets socket(AF_INET, SOCK_DGRAM, IPPROTO_ICMP) and socket(AF_INET6, SOCK_DGRAM, IPPROTO_ICMPV6). Note that the choice of SOCK_DGRAM or SOCK_RAW (i.e., with or without the IP header) is totally left to the proposal.

The most important point of the implementation should be code duplicate minimization, in order to have the minimize maintenance efforts.

Once the sockets are in place, beside the "normal" tests, it will be necessary to modify the code that is actually made obsolete by the new sockets, e.g.:

  • IPv6 ICMP messages (RA, RS, NA, NS, etc.),
  • IPv4 ICMP messages,
  • ICMP Echo and ICMPv6 Echo messages.

and to handle properly ICMP error messages like Destination Unreachable in the Ping application.

Possible tasks to fulfill the patch requirement:

6LoWPAN mesh-under routing enhancements

Mentors: Tommaso Pecorella, [TBD].

The 6LoWPAN module offers a simple option to implement a multi-hop topology by using a contolled flooding. However, the implemented controlled flooding is very simple, and is not efficient in complex networks. This is mainly due to the lack of congestion control, or rather its naive implementation. A better approach would be to borrow some concepts and ideas from RFC 7731 Multicast Protocol for Low-Power and Lossy Networks (MPL), so that messages do not generate network congestions when the network is large.

The candidate should outline what parts of code are going to be affected, and how they can be enhanced thanks to RFC 7731.

Possible tasks to fulfill the patch requirement:

  • TBD
6LoWPAN neighbor discovery protocol

Mentors: Tommaso Pecorella, [TBD].

The 6LoWPAN-ND (RFCs 4944, 6775, and 8505) is a replacement for IPv6 DAD and NDP for 6LoWPAN networks, and it is important to ensure address uniquness across a network that can potentially use different MAC/PHY layers.

There is a model for 6LoWPAN-ND, but it still not merged in the main ns-3 branch. The goal is to cleanup the implementation, remove an actual limitation due to a questionble assumption, and to add the support for multi-hop operations (EDAR and EDAC messages).

The candidate should outline in the proposal the parts of the code should be modified, and how. The repository for 6LoWPAN-ND is necessary, and the link will be shared upon request.

  • Required Experience: Fundamentals of IPv6 addressing, C++ programming.
  • Bonus Experience: Familiarity with 6LoWPAN and 6LoWPAN-ND
  • Interests: IPv6 and IoT networks
  • Difficulty: Easy.
  • Patch requirement: GSOC2023PatchRequirement
  • Recommended reading:

Possible tasks to fulfil the patch requirement:

  • Patch the actual 6LoWPAN-ND to remove the limitation about concurrent address registrations.
DHCPv6 (DHCP for IPv6)

Mentors: Tommaso Pecorella, [TBD].

DHCP is extremely important for IPv4 networks, because IPv4 lacks the address auto-configuration. Hence, DHCP is practically always used in IPv4. IPv6 does have the address auto-configuration (SLAAC), but it also does have DHCPv6. The two techniques are equally useful, and each have its pros and cons.

ns-3 does have a model for DHCP, but it does not have one for DHCPv6. The goal is to add this functionality.

The candidate should outline in the proposal the approach to the implementation (e.g., new application, extension of the current DHCP model, etc.).

  • Required Experience: Fundamentals of IPv6 addressing, C++ programming.
  • Bonus Experience: Familiarity with DHCP and/or DHCPv6
  • Interests: IPv6
  • Difficulty: Easy.
  • Patch requirement: GSOC2023PatchRequirement
  • Recommended reading:

Possible tasks to fulfil the patch requirement:

  • TBD

Large projects (350 hours)

IPv6 global routing

Mentors: Tommaso Pecorella, [TBD].

Creating a complex topology can be a problem, and sometimes the user do not want to be (also) concerned about setting up dynamic routing protocols (e.g., RIP, RIPng). For IPv4, ns-3 provides two alternatives: GlobalRouting, and NixRouting, which just "do the trick" - they simply fill the routing tables in intermediate nodes, GlobalRouting using an approach similar to OSPF, NixRouting by leveraging the "abstract" knowledge of the network. Neither actually use any message between the nodes, so they also reduce the network overhead - something that is useful in many cases.

The problem is that GlobalRouting don't work for IPv6 (NixRouting was migrated to IPv6 recently), and that's a huge limitation. The goal of the project is to fix that limitation. Note that the project must cope with different IPv6 address kinds (link-local, global, scoped multicast, etc.).

The most important point of the implementation should be code duplicate minimization, in order to have the minimize maintenance efforts. The proposer is advised to check the approach used for NixRouting, as it might be a starting point.

Possible tasks to fulfill the patch requirement:

  • Add a function to print the path that a packet will use (according to Ipv4GlobalRouting), i.e., given source and destination IP print the IP addresses of the nodes that Ipv4GlobalRouting will use.

IPv6 support in Ad hoc Routing Protocols

Mentors: Tommaso Pecorella, [TBD].

ns-3 contains models for proactive (DSDV and OLSR) and reactive (AODV and DSR) ad hoc routing protocols. However, these models are IPv4-only and do not provide support of IPv6 addressing. This project aims to enable IPv6 support for ad hoc routing protocols in ns-3, mainly for AODV. There are out-of-tree implementations of OLSR and DSDV that provide support for IPv6 addressing, and can be used as references to get started with this project.

The most important point of the implementation should be code duplicate minimization, in order to have the minimize maintenance efforts.

Note: Enabling IPv6 support for these protocols is not a matter of simply changing out an IPv4-formatted address for an IPv6-formatted address. The IPv6 addressing architecture emphasizes scoping much more than does IPv4 (RFC 4007). Please suggest in your application how IPv6 address configuration (and possibly auto-configuration?) and address scopes (e.g. link-local vs. global) should be used in these protocols. Consulting the RFCs is highly recommended.

Possible tasks to fulfill the patch requirement:

  • Issue #271 - olsr header and messages are not printing either their size or their content.
  • Issue #368 - aodv: aodv parameters can be set to "impossible" values

Mesh Link Establishment (MLE) protocol

Mentors: Tommaso Pecorella, TBD.

The Mesh Link Establishment (MLE) is a proposed IETF protocol for establishing and configuring secure radio links in IoT networks. It was originally proposed for IEEE 802.15.4, and the IETF draft seems to be not progressing. However, MLE is being used in Thread, and it can be useful to implement it.

The goal of the project is to study the differences between the IETF version of MLE and the one being used in Thread, and propose an implementation that complies with either, or both.

  • Required Experience: Fundamentals of IPv4 and IPv6 sockets, C++ programming.
  • Interests: Sockets and API interface implementation.
  • Difficulty: Hard.
  • Recommended reading:

Possible tasks to fulfill the patch requirement: