A Discrete-Event Network Simulator
API
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
tdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/tdmt-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <set>
32 #include <cfloat>
33 
34 NS_LOG_COMPONENT_DEFINE ("TdMtFfMacScheduler");
35 
36 namespace ns3 {
37 
38 static const int TdMtType0AllocationRbg[4] = {
39  10, // RGB size 1
40  26, // RGB size 2
41  63, // RGB size 3
42  110 // RGB size 4
43 }; // see table 7.1.6.1-1 of 36.213
44 
45 
46 NS_OBJECT_ENSURE_REGISTERED (TdMtFfMacScheduler);
47 
48 
49 
51 {
52 public:
54 
55  // inherited from FfMacCschedSapProvider
56  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
57  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
58  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
59  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
60  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
61 
62 private:
65 };
66 
68 {
69 }
70 
72 {
73 }
74 
75 
76 void
78 {
80 }
81 
82 void
84 {
86 }
87 
88 
89 void
91 {
93 }
94 
95 void
97 {
99 }
100 
101 void
103 {
105 }
106 
107 
108 
109 
111 {
112 public:
114 
115  // inherited from FfMacSchedSapProvider
116  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
117  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
118  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
119  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
120  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
121  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
122  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
123  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
124  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
125  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
126  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
127 
128 
129 private:
132 };
133 
134 
135 
137 {
138 }
139 
140 
142  : m_scheduler (scheduler)
143 {
144 }
145 
146 void
148 {
150 }
151 
152 void
154 {
156 }
157 
158 void
160 {
162 }
163 
164 void
166 {
168 }
169 
170 void
172 {
174 }
175 
176 void
178 {
180 }
181 
182 void
184 {
186 }
187 
188 void
190 {
192 }
193 
194 void
196 {
198 }
199 
200 void
202 {
204 }
205 
206 void
208 {
210 }
211 
212 
213 
214 
215 
217  : m_cschedSapUser (0),
218  m_schedSapUser (0),
219  m_nextRntiUl (0)
220 {
221  m_amc = CreateObject <LteAmc> ();
224 }
225 
227 {
228  NS_LOG_FUNCTION (this);
229 }
230 
231 void
233 {
234  NS_LOG_FUNCTION (this);
236  m_dlHarqProcessesTimer.clear ();
238  m_dlInfoListBuffered.clear ();
239  m_ulHarqCurrentProcessId.clear ();
240  m_ulHarqProcessesStatus.clear ();
242  delete m_cschedSapProvider;
243  delete m_schedSapProvider;
244 }
245 
246 TypeId
248 {
249  static TypeId tid = TypeId ("ns3::TdMtFfMacScheduler")
251  .AddConstructor<TdMtFfMacScheduler> ()
252  .AddAttribute ("CqiTimerThreshold",
253  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
254  UintegerValue (1000),
255  MakeUintegerAccessor (&TdMtFfMacScheduler::m_cqiTimersThreshold),
256  MakeUintegerChecker<uint32_t> ())
257  .AddAttribute ("HarqEnabled",
258  "Activate/Deactivate the HARQ [by default is active].",
259  BooleanValue (true),
260  MakeBooleanAccessor (&TdMtFfMacScheduler::m_harqOn),
261  MakeBooleanChecker ())
262  .AddAttribute ("UlGrantMcs",
263  "The MCS of the UL grant, must be [0..15] (default 0)",
264  UintegerValue (0),
265  MakeUintegerAccessor (&TdMtFfMacScheduler::m_ulGrantMcs),
266  MakeUintegerChecker<uint8_t> ())
267  ;
268  return tid;
269 }
270 
271 
272 
273 void
275 {
276  m_cschedSapUser = s;
277 }
278 
279 void
281 {
282  m_schedSapUser = s;
283 }
284 
287 {
288  return m_cschedSapProvider;
289 }
290 
293 {
294  return m_schedSapProvider;
295 }
296 
297 void
299 {
300  NS_LOG_FUNCTION (this);
301  // Read the subset of parameters used
302  m_cschedCellConfig = params;
305  cnf.m_result = SUCCESS;
307  return;
308 }
309 
310 void
312 {
313  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
314  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
315  if (it == m_uesTxMode.end ())
316  {
317  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
318  // generate HARQ buffers
319  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
320  DlHarqProcessesStatus_t dlHarqPrcStatus;
321  dlHarqPrcStatus.resize (8,0);
322  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
323  DlHarqProcessesTimer_t dlHarqProcessesTimer;
324  dlHarqProcessesTimer.resize (8,0);
325  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
326  DlHarqProcessesDciBuffer_t dlHarqdci;
327  dlHarqdci.resize (8);
328  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
329  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
330  dlHarqRlcPdu.resize (2);
331  dlHarqRlcPdu.at (0).resize (8);
332  dlHarqRlcPdu.at (1).resize (8);
333  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
334  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
335  UlHarqProcessesStatus_t ulHarqPrcStatus;
336  ulHarqPrcStatus.resize (8,0);
337  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
338  UlHarqProcessesDciBuffer_t ulHarqdci;
339  ulHarqdci.resize (8);
340  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
341  }
342  else
343  {
344  (*it).second = params.m_transmissionMode;
345  }
346  return;
347 }
348 
349 void
351 {
352  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
353 
354  std::set <uint16_t>::iterator it;
355  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
356  {
357  it = m_flowStatsDl.find (params.m_rnti);
358 
359  if (it == m_flowStatsDl.end ())
360  {
361  m_flowStatsDl.insert (params.m_rnti);
362  m_flowStatsUl.insert (params.m_rnti);
363  }
364  }
365 
366  return;
367 }
368 
369 void
371 {
372  NS_LOG_FUNCTION (this);
373  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
374  {
375  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
376  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
377  while (it!=m_rlcBufferReq.end ())
378  {
379  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
380  {
381  temp = it;
382  it++;
383  m_rlcBufferReq.erase (temp);
384  }
385  else
386  {
387  it++;
388  }
389  }
390  }
391  return;
392 }
393 
394 void
396 {
397  NS_LOG_FUNCTION (this);
398 
399  m_uesTxMode.erase (params.m_rnti);
400  m_dlHarqCurrentProcessId.erase (params.m_rnti);
401  m_dlHarqProcessesStatus.erase (params.m_rnti);
402  m_dlHarqProcessesTimer.erase (params.m_rnti);
403  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
405  m_ulHarqCurrentProcessId.erase (params.m_rnti);
406  m_ulHarqProcessesStatus.erase (params.m_rnti);
407  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
408  m_flowStatsDl.erase (params.m_rnti);
409  m_flowStatsUl.erase (params.m_rnti);
410  m_ceBsrRxed.erase (params.m_rnti);
411  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
412  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
413  while (it!=m_rlcBufferReq.end ())
414  {
415  if ((*it).first.m_rnti == params.m_rnti)
416  {
417  temp = it;
418  it++;
419  m_rlcBufferReq.erase (temp);
420  }
421  else
422  {
423  it++;
424  }
425  }
426  if (m_nextRntiUl == params.m_rnti)
427  {
428  m_nextRntiUl = 0;
429  }
430 
431  return;
432 }
433 
434 
435 void
437 {
438  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
439  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
440 
441  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
442 
443  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
444 
445  it = m_rlcBufferReq.find (flow);
446 
447  if (it == m_rlcBufferReq.end ())
448  {
449  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
450  }
451  else
452  {
453  (*it).second = params;
454  }
455 
456  return;
457 }
458 
459 void
461 {
462  NS_LOG_FUNCTION (this);
463  NS_FATAL_ERROR ("method not implemented");
464  return;
465 }
466 
467 void
469 {
470  NS_LOG_FUNCTION (this);
471  NS_FATAL_ERROR ("method not implemented");
472  return;
473 }
474 
475 int
477 {
478  for (int i = 0; i < 4; i++)
479  {
480  if (dlbandwidth < TdMtType0AllocationRbg[i])
481  {
482  return (i + 1);
483  }
484  }
485 
486  return (-1);
487 }
488 
489 
490 int
492 {
493  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
494  int lcActive = 0;
495  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
496  {
497  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
498  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
499  || ((*it).second.m_rlcStatusPduSize > 0) ))
500  {
501  lcActive++;
502  }
503  if ((*it).first.m_rnti > rnti)
504  {
505  break;
506  }
507  }
508  return (lcActive);
509 
510 }
511 
512 
513 uint8_t
515 {
516  NS_LOG_FUNCTION (this << rnti);
517 
518  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
519  if (it == m_dlHarqCurrentProcessId.end ())
520  {
521  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
522  }
523  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
524  if (itStat == m_dlHarqProcessesStatus.end ())
525  {
526  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
527  }
528  uint8_t i = (*it).second;
529  do
530  {
531  i = (i + 1) % HARQ_PROC_NUM;
532  }
533  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
534  if ((*itStat).second.at (i) == 0)
535  {
536  return (true);
537  }
538  else
539  {
540  return (false); // return a not valid harq proc id
541  }
542 }
543 
544 
545 
546 uint8_t
548 {
549  NS_LOG_FUNCTION (this << rnti);
550 
551  if (m_harqOn == false)
552  {
553  return (0);
554  }
555 
556 
557  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
558  if (it == m_dlHarqCurrentProcessId.end ())
559  {
560  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
561  }
562  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
563  if (itStat == m_dlHarqProcessesStatus.end ())
564  {
565  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
566  }
567  uint8_t i = (*it).second;
568  do
569  {
570  i = (i + 1) % HARQ_PROC_NUM;
571  }
572  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
573  if ((*itStat).second.at (i) == 0)
574  {
575  (*it).second = i;
576  (*itStat).second.at (i) = 1;
577  }
578  else
579  {
580  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
581  }
582 
583  return ((*it).second);
584 }
585 
586 
587 void
589 {
590  NS_LOG_FUNCTION (this);
591 
592  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
593  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
594  {
595  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
596  {
597  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
598  {
599  // reset HARQ process
600 
601  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
602  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
603  if (itStat == m_dlHarqProcessesStatus.end ())
604  {
605  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
606  }
607  (*itStat).second.at (i) = 0;
608  (*itTimers).second.at (i) = 0;
609  }
610  else
611  {
612  (*itTimers).second.at (i)++;
613  }
614  }
615  }
616 
617 }
618 
619 
620 void
622 {
623  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
624  // API generated by RLC for triggering the scheduling of a DL subframe
625 
626 
627  // evaluate the relative channel quality indicator for each UE per each RBG
628  // (since we are using allocation type 0 the small unit of allocation is RBG)
629  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
630 
631  RefreshDlCqiMaps ();
632 
634  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
635  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
636  std::vector <bool> rbgMap; // global RBGs map
637  uint16_t rbgAllocatedNum = 0;
638  std::set <uint16_t> rntiAllocated;
639  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
641 
642  // update UL HARQ proc id
643  std::map <uint16_t, uint8_t>::iterator itProcId;
644  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
645  {
646  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
647  }
648 
649  // RACH Allocation
651  uint16_t rbStart = 0;
652  std::vector <struct RachListElement_s>::iterator itRach;
653  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
654  {
655  NS_ASSERT_MSG (m_amc->GetTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
656  BuildRarListElement_s newRar;
657  newRar.m_rnti = (*itRach).m_rnti;
658  // DL-RACH Allocation
659  // Ideal: no needs of configuring m_dci
660  // UL-RACH Allocation
661  newRar.m_grant.m_rnti = newRar.m_rnti;
662  newRar.m_grant.m_mcs = m_ulGrantMcs;
663  uint16_t rbLen = 1;
664  uint16_t tbSizeBits = 0;
665  // find lowest TB size that fits UL grant estimated size
666  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
667  {
668  rbLen++;
669  tbSizeBits = m_amc->GetTbSizeFromMcs (m_ulGrantMcs, rbLen);
670  }
671  if (tbSizeBits < (*itRach).m_estimatedSize)
672  {
673  // no more allocation space: finish allocation
674  break;
675  }
676  newRar.m_grant.m_rbStart = rbStart;
677  newRar.m_grant.m_rbLen = rbLen;
678  newRar.m_grant.m_tbSize = tbSizeBits / 8;
679  newRar.m_grant.m_hopping = false;
680  newRar.m_grant.m_tpc = 0;
681  newRar.m_grant.m_cqiRequest = false;
682  newRar.m_grant.m_ulDelay = false;
683  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
684  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
685  {
686  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
687  }
688  rbStart = rbStart + rbLen;
689 
690  if (m_harqOn == true)
691  {
692  // generate UL-DCI for HARQ retransmissions
693  UlDciListElement_s uldci;
694  uldci.m_rnti = newRar.m_rnti;
695  uldci.m_rbLen = rbLen;
696  uldci.m_rbStart = rbStart;
697  uldci.m_mcs = m_ulGrantMcs;
698  uldci.m_tbSize = tbSizeBits / 8;
699  uldci.m_ndi = 1;
700  uldci.m_cceIndex = 0;
701  uldci.m_aggrLevel = 1;
702  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
703  uldci.m_hopping = false;
704  uldci.m_n2Dmrs = 0;
705  uldci.m_tpc = 0; // no power control
706  uldci.m_cqiRequest = false; // only period CQI at this stage
707  uldci.m_ulIndex = 0; // TDD parameter
708  uldci.m_dai = 1; // TDD parameter
709  uldci.m_freqHopping = 0;
710  uldci.m_pdcchPowerOffset = 0; // not used
711 
712  uint8_t harqId = 0;
713  std::map <uint16_t, uint8_t>::iterator itProcId;
714  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
715  if (itProcId == m_ulHarqCurrentProcessId.end ())
716  {
717  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
718  }
719  harqId = (*itProcId).second;
720  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
721  if (itDci == m_ulHarqProcessesDciBuffer.end ())
722  {
723  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
724  }
725  (*itDci).second.at (harqId) = uldci;
726  }
727 
728  ret.m_buildRarList.push_back (newRar);
729  }
730  m_rachList.clear ();
731 
732 
733  // Process DL HARQ feedback
735  // retrieve past HARQ retx buffered
736  if (m_dlInfoListBuffered.size () > 0)
737  {
738  if (params.m_dlInfoList.size () > 0)
739  {
740  NS_LOG_INFO (this << " Received DL-HARQ feedback");
741  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
742  }
743  }
744  else
745  {
746  if (params.m_dlInfoList.size () > 0)
747  {
749  }
750  }
751  if (m_harqOn == false)
752  {
753  // Ignore HARQ feedback
754  m_dlInfoListBuffered.clear ();
755  }
756  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
757  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
758  {
759  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
760  if (itRnti != rntiAllocated.end ())
761  {
762  // RNTI already allocated for retx
763  continue;
764  }
765  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
766  std::vector <bool> retx;
767  NS_LOG_INFO (this << " Processing DLHARQ feedback");
768  if (nLayers == 1)
769  {
770  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
771  retx.push_back (false);
772  }
773  else
774  {
775  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
776  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
777  }
778  if (retx.at (0) || retx.at (1))
779  {
780  // retrieve HARQ process information
781  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
782  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
783  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
784  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
785  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
786  {
787  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
788  }
789 
790  DlDciListElement_s dci = (*itHarq).second.at (harqId);
791  int rv = 0;
792  if (dci.m_rv.size () == 1)
793  {
794  rv = dci.m_rv.at (0);
795  }
796  else
797  {
798  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
799  }
800 
801  if (rv == 3)
802  {
803  // maximum number of retx reached -> drop process
804  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
805  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
806  if (it == m_dlHarqProcessesStatus.end ())
807  {
808  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
809  }
810  (*it).second.at (harqId) = 0;
811  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
812  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
813  {
814  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
815  }
816  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
817  {
818  (*itRlcPdu).second.at (k).at (harqId).clear ();
819  }
820  continue;
821  }
822  // check the feasibility of retransmitting on the same RBGs
823  // translate the DCI to Spectrum framework
824  std::vector <int> dciRbg;
825  uint32_t mask = 0x1;
826  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
827  for (int j = 0; j < 32; j++)
828  {
829  if (((dci.m_rbBitmap & mask) >> j) == 1)
830  {
831  dciRbg.push_back (j);
832  NS_LOG_INFO ("\t" << j);
833  }
834  mask = (mask << 1);
835  }
836  bool free = true;
837  for (uint8_t j = 0; j < dciRbg.size (); j++)
838  {
839  if (rbgMap.at (dciRbg.at (j)) == true)
840  {
841  free = false;
842  break;
843  }
844  }
845  if (free)
846  {
847  // use the same RBGs for the retx
848  // reserve RBGs
849  for (uint8_t j = 0; j < dciRbg.size (); j++)
850  {
851  rbgMap.at (dciRbg.at (j)) = true;
852  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
853  rbgAllocatedNum++;
854  }
855 
856  NS_LOG_INFO (this << " Send retx in the same RBGs");
857  }
858  else
859  {
860  // find RBGs for sending HARQ retx
861  uint8_t j = 0;
862  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
863  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
864  std::vector <bool> rbgMapCopy = rbgMap;
865  while ((j < dciRbg.size ())&&(startRbg != rbgId))
866  {
867  if (rbgMapCopy.at (rbgId) == false)
868  {
869  rbgMapCopy.at (rbgId) = true;
870  dciRbg.at (j) = rbgId;
871  j++;
872  }
873  rbgId++;
874  }
875  if (j == dciRbg.size ())
876  {
877  // find new RBGs -> update DCI map
878  uint32_t rbgMask = 0;
879  for (uint16_t k = 0; k < dciRbg.size (); k++)
880  {
881  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
882  rbgAllocatedNum++;
883  }
884  dci.m_rbBitmap = rbgMask;
885  rbgMap = rbgMapCopy;
886  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
887  }
888  else
889  {
890  // HARQ retx cannot be performed on this TTI -> store it
891  dlInfoListUntxed.push_back (params.m_dlInfoList.at (i));
892  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
893  }
894  }
895  // retrieve RLC PDU list for retx TBsize and update DCI
897  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
898  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
899  {
900  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
901  }
902  for (uint8_t j = 0; j < nLayers; j++)
903  {
904  if (retx.at (j))
905  {
906  if (j >= dci.m_ndi.size ())
907  {
908  // for avoiding errors in MIMO transient phases
909  dci.m_ndi.push_back (0);
910  dci.m_rv.push_back (0);
911  dci.m_mcs.push_back (0);
912  dci.m_tbsSize.push_back (0);
913  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
914  }
915  else
916  {
917  dci.m_ndi.at (j) = 0;
918  dci.m_rv.at (j)++;
919  (*itHarq).second.at (harqId).m_rv.at (j)++;
920  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
921  }
922  }
923  else
924  {
925  // empty TB of layer j
926  dci.m_ndi.at (j) = 0;
927  dci.m_rv.at (j) = 0;
928  dci.m_mcs.at (j) = 0;
929  dci.m_tbsSize.at (j) = 0;
930  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
931  }
932  }
933  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
934  {
935  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
936  for (uint8_t j = 0; j < nLayers; j++)
937  {
938  if (retx.at (j))
939  {
940  if (j < dci.m_ndi.size ())
941  {
942  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
943  }
944  }
945  }
946 
947  if (rlcPduListPerLc.size () > 0)
948  {
949  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
950  }
951  }
952  newEl.m_rnti = rnti;
953  newEl.m_dci = dci;
954  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
955  // refresh timer
956  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
957  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
958  {
959  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
960  }
961  (*itHarqTimer).second.at (harqId) = 0;
962  ret.m_buildDataList.push_back (newEl);
963  rntiAllocated.insert (rnti);
964  }
965  else
966  {
967  // update HARQ process status
968  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
969  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
970  if (it == m_dlHarqProcessesStatus.end ())
971  {
972  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
973  }
974  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
975  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
976  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
977  {
978  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
979  }
980  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
981  {
982  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
983  }
984  }
985  }
986  m_dlInfoListBuffered.clear ();
987  m_dlInfoListBuffered = dlInfoListUntxed;
988 
989  if (rbgAllocatedNum == rbgNum)
990  {
991  // all the RBGs are already allocated -> exit
992  if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
993  {
995  }
996  return;
997  }
998 
999 
1000  std::set <uint16_t>::iterator it;
1001  std::set <uint16_t>::iterator itMax = m_flowStatsDl.end ();
1002  double metricMax = 0.0;
1003  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
1004  {
1005  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it));
1006  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it))))
1007  {
1008  // UE already allocated for HARQ or without HARQ process available -> drop it
1009  if (itRnti != rntiAllocated.end ())
1010  {
1011  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it));
1012  }
1013  if (!HarqProcessAvailability ((*it)))
1014  {
1015  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it));
1016  }
1017 
1018  continue;
1019  }
1020 
1021  std::map <uint16_t,uint8_t>::iterator itTxMode;
1022  itTxMode = m_uesTxMode.find ((*it));
1023  if (itTxMode == m_uesTxMode.end ())
1024  {
1025  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it));
1026  }
1027  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1028  std::map <uint16_t,uint8_t>::iterator itCqi = m_p10CqiRxed.find ((*it));
1029  uint8_t wbCqi = 0;
1030  if (itCqi != m_p10CqiRxed.end ())
1031  {
1032  wbCqi = (*itCqi).second;
1033  }
1034  else
1035  {
1036  wbCqi = 1; // lowest value fro trying a transmission
1037  }
1038 
1039  if (wbCqi != 0)
1040  {
1041  // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1042  if (LcActivePerFlow (*it) > 0)
1043  {
1044  // this UE has data to transmit
1045  double achievableRate = 0.0;
1046  for (uint8_t k = 0; k < nLayer; k++)
1047  {
1048  uint8_t mcs = 0;
1049  mcs = m_amc->GetMcsFromCqi (wbCqi);
1050  achievableRate += ((m_amc->GetTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
1051 
1052  NS_LOG_DEBUG (this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate );
1053  }
1054 
1055  double metric = achievableRate;
1056 
1057  if (metric > metricMax)
1058  {
1059  metricMax = metric;
1060  itMax = it;
1061  }
1062  } // LcActivePerFlow
1063 
1064  } // cqi
1065 
1066  } // end for m_flowStatsDl
1067 
1068  if (itMax == m_flowStatsDl.end ())
1069  {
1070  // no UE available for downlink
1071  NS_LOG_INFO (this << " any UE found");
1072  }
1073  else
1074  {
1075  // assign all free RBGs to this UE
1076  std::vector <uint16_t> tempMap;
1077  for (int i = 0; i < rbgNum; i++)
1078  {
1079  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1080  NS_LOG_DEBUG (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1081  if (rbgMap.at (i) == false)
1082  {
1083  rbgMap.at (i) = true;
1084  tempMap.push_back (i);
1085  } // end for RBG free
1086 
1087  } // end for RBGs
1088 
1089  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax), tempMap));
1090  }
1091 
1092  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1093  // creating the correspondent DCIs
1094  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1095  while (itMap != allocationMap.end ())
1096  {
1097  // create new BuildDataListElement_s for this LC
1098  BuildDataListElement_s newEl;
1099  newEl.m_rnti = (*itMap).first;
1100  // create the DlDciListElement_s
1101  DlDciListElement_s newDci;
1102  newDci.m_rnti = (*itMap).first;
1103  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1104 
1105  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1106  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1107  if (lcActives == 0)
1108  {
1109  // Set to max value, to avoid divide by 0 below
1110  lcActives = (uint16_t)65535; // UINT16_MAX;
1111  }
1112  uint16_t RgbPerRnti = (*itMap).second.size ();
1113  std::map <uint16_t,uint8_t>::iterator itCqi;
1114  itCqi = m_p10CqiRxed.find ((*itMap).first);
1115  std::map <uint16_t,uint8_t>::iterator itTxMode;
1116  itTxMode = m_uesTxMode.find ((*itMap).first);
1117  if (itTxMode == m_uesTxMode.end ())
1118  {
1119  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1120  }
1121  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1122  for (uint8_t j = 0; j < nLayer; j++)
1123  {
1124  if (itCqi == m_p10CqiRxed.end ())
1125  {
1126  newDci.m_mcs.push_back (0); // no info on this user -> lowest MCS
1127  }
1128  else
1129  {
1130  newDci.m_mcs.push_back ( m_amc->GetMcsFromCqi ((*itCqi).second) );
1131  }
1132 
1133  int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1134  newDci.m_tbsSize.push_back (tbSize);
1135  }
1136 
1137  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1138  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1139  uint32_t rbgMask = 0;
1140  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1141  {
1142  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1143  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1144  }
1145  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1146 
1147  // create the rlc PDUs -> equally divide resources among actives LCs
1148  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1149  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1150  {
1151  if (((*itBufReq).first.m_rnti == (*itMap).first)
1152  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1153  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1154  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1155  {
1156  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1157  for (uint8_t j = 0; j < nLayer; j++)
1158  {
1159  RlcPduListElement_s newRlcEl;
1160  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1161  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1162  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1163  newRlcPduLe.push_back (newRlcEl);
1164  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1165  if (m_harqOn == true)
1166  {
1167  // store RLC PDU list for HARQ
1168  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1169  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1170  {
1171  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1172  }
1173  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1174  }
1175  }
1176  newEl.m_rlcPduList.push_back (newRlcPduLe);
1177  }
1178  if ((*itBufReq).first.m_rnti > (*itMap).first)
1179  {
1180  break;
1181  }
1182  }
1183  for (uint8_t j = 0; j < nLayer; j++)
1184  {
1185  newDci.m_ndi.push_back (1);
1186  newDci.m_rv.push_back (0);
1187  }
1188 
1189  newEl.m_dci = newDci;
1190 
1191  if (m_harqOn == true)
1192  {
1193  // store DCI for HARQ
1194  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1195  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1196  {
1197  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1198  }
1199  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1200  // refresh timer
1201  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1202  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1203  {
1204  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1205  }
1206  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1207  }
1208 
1209  // ...more parameters -> ingored in this version
1210 
1211  ret.m_buildDataList.push_back (newEl);
1212 
1213  itMap++;
1214  } // end while allocation
1215  ret.m_nrOfPdcchOfdmSymbols = 1;
1216 
1218 
1219 
1220  return;
1221 }
1222 
1223 void
1225 {
1226  NS_LOG_FUNCTION (this);
1227 
1228  m_rachList = params.m_rachList;
1229 
1230  return;
1231 }
1232 
1233 void
1235 {
1236  NS_LOG_FUNCTION (this);
1237 
1238  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1239  {
1240  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1241  {
1242  // wideband CQI reporting
1243  std::map <uint16_t,uint8_t>::iterator it;
1244  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1245  it = m_p10CqiRxed.find (rnti);
1246  if (it == m_p10CqiRxed.end ())
1247  {
1248  // create the new entry
1249  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1250  // generate correspondent timer
1251  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1252  }
1253  else
1254  {
1255  // update the CQI value and refresh correspondent timer
1256  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1257  // update correspondent timer
1258  std::map <uint16_t,uint32_t>::iterator itTimers;
1259  itTimers = m_p10CqiTimers.find (rnti);
1260  (*itTimers).second = m_cqiTimersThreshold;
1261  }
1262  }
1263  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1264  {
1265  // subband CQI reporting high layer configured
1266  std::map <uint16_t,SbMeasResult_s>::iterator it;
1267  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1268  it = m_a30CqiRxed.find (rnti);
1269  if (it == m_a30CqiRxed.end ())
1270  {
1271  // create the new entry
1272  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1273  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1274  }
1275  else
1276  {
1277  // update the CQI value and refresh correspondent timer
1278  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1279  std::map <uint16_t,uint32_t>::iterator itTimers;
1280  itTimers = m_a30CqiTimers.find (rnti);
1281  (*itTimers).second = m_cqiTimersThreshold;
1282  }
1283  }
1284  else
1285  {
1286  NS_LOG_ERROR (this << " CQI type unknown");
1287  }
1288  }
1289 
1290  return;
1291 }
1292 
1293 
1294 double
1295 TdMtFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1296 {
1297  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1298  if (itCqi == m_ueCqi.end ())
1299  {
1300  // no cqi info about this UE
1301  return (NO_SINR);
1302 
1303  }
1304  else
1305  {
1306  // take the average SINR value among the available
1307  double sinrSum = 0;
1308  int sinrNum = 0;
1309  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1310  {
1311  double sinr = (*itCqi).second.at (i);
1312  if (sinr != NO_SINR)
1313  {
1314  sinrSum += sinr;
1315  sinrNum++;
1316  }
1317  }
1318  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1319  // store the value
1320  (*itCqi).second.at (rb) = estimatedSinr;
1321  return (estimatedSinr);
1322  }
1323 }
1324 
1325 void
1327 {
1328  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1329 
1330  RefreshUlCqiMaps ();
1331 
1332  // Generate RBs map
1334  std::vector <bool> rbMap;
1335  uint16_t rbAllocatedNum = 0;
1336  std::set <uint16_t> rntiAllocated;
1337  std::vector <uint16_t> rbgAllocationMap;
1338  // update with RACH allocation map
1339  rbgAllocationMap = m_rachAllocationMap;
1340  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1341  m_rachAllocationMap.clear ();
1343 
1344  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1345  // remove RACH allocation
1346  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1347  {
1348  if (rbgAllocationMap.at (i) != 0)
1349  {
1350  rbMap.at (i) = true;
1351  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1352  }
1353  }
1354 
1355 
1356  if (m_harqOn == true)
1357  {
1358  // Process UL HARQ feedback
1359  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1360  {
1361  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1362  {
1363  // retx correspondent block: retrieve the UL-DCI
1364  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1365  std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1366  if (itProcId == m_ulHarqCurrentProcessId.end ())
1367  {
1368  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1369  }
1370  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1371  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1372  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1373  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1374  {
1375  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1376  continue;
1377  }
1378  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1379  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1380  if (itStat == m_ulHarqProcessesStatus.end ())
1381  {
1382  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1383  }
1384  if ((*itStat).second.at (harqId) >= 3)
1385  {
1386  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1387  continue;
1388  }
1389  bool free = true;
1390  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1391  {
1392  if (rbMap.at (j) == true)
1393  {
1394  free = false;
1395  NS_LOG_INFO (this << " BUSY " << j);
1396  }
1397  }
1398  if (free)
1399  {
1400  // retx on the same RBs
1401  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1402  {
1403  rbMap.at (j) = true;
1404  rbgAllocationMap.at (j) = dci.m_rnti;
1405  NS_LOG_INFO ("\tRB " << j);
1406  rbAllocatedNum++;
1407  }
1408  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1409  }
1410  else
1411  {
1412  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1413  continue;
1414  }
1415  dci.m_ndi = 0;
1416  // Update HARQ buffers with new HarqId
1417  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1418  (*itStat).second.at (harqId) = 0;
1419  (*itHarq).second.at ((*itProcId).second) = dci;
1420  ret.m_dciList.push_back (dci);
1421  rntiAllocated.insert (dci.m_rnti);
1422  }
1423  else
1424  {
1425  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1426  }
1427  }
1428  }
1429 
1430  std::map <uint16_t,uint32_t>::iterator it;
1431  int nflows = 0;
1432 
1433  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1434  {
1435  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1436  // select UEs with queues not empty and not yet allocated for HARQ
1437  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1438  {
1439  nflows++;
1440  }
1441  }
1442 
1443  if (nflows == 0)
1444  {
1445  if (ret.m_dciList.size () > 0)
1446  {
1447  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1449  }
1450 
1451  return; // no flows to be scheduled
1452  }
1453 
1454 
1455  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1456  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1457  if (rbPerFlow < 3)
1458  {
1459  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1460  }
1461  int rbAllocated = 0;
1462 
1463  if (m_nextRntiUl != 0)
1464  {
1465  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1466  {
1467  if ((*it).first == m_nextRntiUl)
1468  {
1469  break;
1470  }
1471  }
1472  if (it == m_ceBsrRxed.end ())
1473  {
1474  NS_LOG_ERROR (this << " no user found");
1475  }
1476  }
1477  else
1478  {
1479  it = m_ceBsrRxed.begin ();
1480  m_nextRntiUl = (*it).first;
1481  }
1482  do
1483  {
1484  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1485  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1486  {
1487  // UE already allocated for UL-HARQ -> skip it
1488  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1489  it++;
1490  if (it == m_ceBsrRxed.end ())
1491  {
1492  // restart from the first
1493  it = m_ceBsrRxed.begin ();
1494  }
1495  continue;
1496  }
1497  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1498  {
1499  // limit to physical resources last resource assignment
1500  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1501  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1502  if (rbPerFlow < 3)
1503  {
1504  // terminate allocation
1505  rbPerFlow = 0;
1506  }
1507  }
1508 
1509  UlDciListElement_s uldci;
1510  uldci.m_rnti = (*it).first;
1511  uldci.m_rbLen = rbPerFlow;
1512  bool allocated = false;
1513  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1514  while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1515  {
1516  // check availability
1517  bool free = true;
1518  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1519  {
1520  if (rbMap.at (j) == true)
1521  {
1522  free = false;
1523  break;
1524  }
1525  }
1526  if (free)
1527  {
1528  uldci.m_rbStart = rbAllocated;
1529 
1530  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1531  {
1532  rbMap.at (j) = true;
1533  // store info on allocation for managing ul-cqi interpretation
1534  rbgAllocationMap.at (j) = (*it).first;
1535  }
1536  rbAllocated += rbPerFlow;
1537  allocated = true;
1538  break;
1539  }
1540  rbAllocated++;
1541  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1542  {
1543  // limit to physical resources last resource assignment
1544  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1545  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1546  if (rbPerFlow < 3)
1547  {
1548  // terminate allocation
1549  rbPerFlow = 0;
1550  }
1551  }
1552  }
1553  if (!allocated)
1554  {
1555  // unable to allocate new resource: finish scheduling
1556  m_nextRntiUl = (*it).first;
1557  if (ret.m_dciList.size () > 0)
1558  {
1560  }
1561  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1562  return;
1563  }
1564 
1565 
1566 
1567  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1568  int cqi = 0;
1569  if (itCqi == m_ueCqi.end ())
1570  {
1571  // no cqi info about this UE
1572  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1573  }
1574  else
1575  {
1576  // take the lowest CQI value (worst RB)
1577  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1578  if (minSinr == NO_SINR)
1579  {
1580  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1581  }
1582  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1583  {
1584  double sinr = (*itCqi).second.at (i);
1585  if (sinr == NO_SINR)
1586  {
1587  sinr = EstimateUlSinr ((*it).first, i);
1588  }
1589  if ((*itCqi).second.at (i) < minSinr)
1590  {
1591  minSinr = (*itCqi).second.at (i);
1592  }
1593  }
1594 
1595  // translate SINR -> cqi: WILD ACK: same as DL
1596  double s = log2 ( 1 + (
1597  std::pow (10, minSinr / 10 ) /
1598  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1599  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1600  if (cqi == 0)
1601  {
1602  it++;
1603  if (it == m_ceBsrRxed.end ())
1604  {
1605  // restart from the first
1606  it = m_ceBsrRxed.begin ();
1607  }
1608  NS_LOG_DEBUG (this << " UE discared for CQI=0, RNTI " << uldci.m_rnti);
1609  // remove UE from allocation map
1610  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1611  {
1612  rbgAllocationMap.at (i) = 0;
1613  }
1614  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1615  }
1616  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1617  }
1618 
1619  uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1620  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1621  uldci.m_ndi = 1;
1622  uldci.m_cceIndex = 0;
1623  uldci.m_aggrLevel = 1;
1624  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1625  uldci.m_hopping = false;
1626  uldci.m_n2Dmrs = 0;
1627  uldci.m_tpc = 0; // no power control
1628  uldci.m_cqiRequest = false; // only period CQI at this stage
1629  uldci.m_ulIndex = 0; // TDD parameter
1630  uldci.m_dai = 1; // TDD parameter
1631  uldci.m_freqHopping = 0;
1632  uldci.m_pdcchPowerOffset = 0; // not used
1633  ret.m_dciList.push_back (uldci);
1634  // store DCI for HARQ_PERIOD
1635  uint8_t harqId = 0;
1636  if (m_harqOn == true)
1637  {
1638  std::map <uint16_t, uint8_t>::iterator itProcId;
1639  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1640  if (itProcId == m_ulHarqCurrentProcessId.end ())
1641  {
1642  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1643  }
1644  harqId = (*itProcId).second;
1645  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1646  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1647  {
1648  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1649  }
1650  (*itDci).second.at (harqId) = uldci;
1651  }
1652 
1653  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1654 
1655 
1656  it++;
1657  if (it == m_ceBsrRxed.end ())
1658  {
1659  // restart from the first
1660  it = m_ceBsrRxed.begin ();
1661  }
1662  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1663  {
1664  // Stop allocation: no more PRBs
1665  m_nextRntiUl = (*it).first;
1666  break;
1667  }
1668  }
1669  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1670 
1671 
1672  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1674 
1675  return;
1676 }
1677 
1678 void
1680 {
1681  NS_LOG_FUNCTION (this);
1682  return;
1683 }
1684 
1685 void
1687 {
1688  NS_LOG_FUNCTION (this);
1689  return;
1690 }
1691 
1692 void
1694 {
1695  NS_LOG_FUNCTION (this);
1696 
1697  std::map <uint16_t,uint32_t>::iterator it;
1698 
1699  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1700  {
1701  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1702  {
1703  // buffer status report
1704  // note that this scheduler does not differentiate the
1705  // allocation according to which LCGs have more/less bytes
1706  // to send.
1707  // Hence the BSR of different LCGs are just summed up to get
1708  // a total queue size that is used for allocation purposes.
1709 
1710  uint32_t buffer = 0;
1711  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1712  {
1713  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1714  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1715  }
1716 
1717  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1718  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1719  it = m_ceBsrRxed.find (rnti);
1720  if (it == m_ceBsrRxed.end ())
1721  {
1722  // create the new entry
1723  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1724  }
1725  else
1726  {
1727  // update the buffer size value
1728  (*it).second = buffer;
1729  }
1730  }
1731  }
1732 
1733  return;
1734 }
1735 
1736 void
1738 {
1739  NS_LOG_FUNCTION (this);
1740 // retrieve the allocation for this subframe
1741  switch (m_ulCqiFilter)
1742  {
1744  {
1745  // filter all the CQIs that are not SRS based
1746  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1747  {
1748  return;
1749  }
1750  }
1751  break;
1753  {
1754  // filter all the CQIs that are not SRS based
1755  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1756  {
1757  return;
1758  }
1759  }
1761  break;
1762 
1763  default:
1764  NS_FATAL_ERROR ("Unknown UL CQI type");
1765  }
1766 
1767  switch (params.m_ulCqi.m_type)
1768  {
1769  case UlCqi_s::PUSCH:
1770  {
1771  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1772  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1773  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1774  itMap = m_allocationMaps.find (params.m_sfnSf);
1775  if (itMap == m_allocationMaps.end ())
1776  {
1777  return;
1778  }
1779  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1780  {
1781  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1782  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1783  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1784  if (itCqi == m_ueCqi.end ())
1785  {
1786  // create a new entry
1787  std::vector <double> newCqi;
1788  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1789  {
1790  if (i == j)
1791  {
1792  newCqi.push_back (sinr);
1793  }
1794  else
1795  {
1796  // initialize with NO_SINR value.
1797  newCqi.push_back (NO_SINR);
1798  }
1799 
1800  }
1801  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1802  // generate correspondent timer
1803  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1804  }
1805  else
1806  {
1807  // update the value
1808  (*itCqi).second.at (i) = sinr;
1809  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1810  // update correspondent timer
1811  std::map <uint16_t, uint32_t>::iterator itTimers;
1812  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1813  (*itTimers).second = m_cqiTimersThreshold;
1814 
1815  }
1816 
1817  }
1818  // remove obsolete info on allocation
1819  m_allocationMaps.erase (itMap);
1820  }
1821  break;
1822  case UlCqi_s::SRS:
1823  {
1824  // get the RNTI from vendor specific parameters
1825  uint16_t rnti = 0;
1826  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1827  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1828  {
1829  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1830  {
1831  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1832  rnti = vsp->GetRnti ();
1833  }
1834  }
1835  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1836  itCqi = m_ueCqi.find (rnti);
1837  if (itCqi == m_ueCqi.end ())
1838  {
1839  // create a new entry
1840  std::vector <double> newCqi;
1841  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1842  {
1843  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1844  newCqi.push_back (sinr);
1845  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1846 
1847  }
1848  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1849  // generate correspondent timer
1850  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1851  }
1852  else
1853  {
1854  // update the values
1855  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1856  {
1857  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1858  (*itCqi).second.at (j) = sinr;
1859  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1860  }
1861  // update correspondent timer
1862  std::map <uint16_t, uint32_t>::iterator itTimers;
1863  itTimers = m_ueCqiTimers.find (rnti);
1864  (*itTimers).second = m_cqiTimersThreshold;
1865 
1866  }
1867 
1868 
1869  }
1870  break;
1871  case UlCqi_s::PUCCH_1:
1872  case UlCqi_s::PUCCH_2:
1873  case UlCqi_s::PRACH:
1874  {
1875  NS_FATAL_ERROR ("TdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1876  }
1877  break;
1878  default:
1879  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1880  }
1881  return;
1882 }
1883 
1884 void
1886 {
1887  // refresh DL CQI P01 Map
1888  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1889  while (itP10 != m_p10CqiTimers.end ())
1890  {
1891  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1892  if ((*itP10).second == 0)
1893  {
1894  // delete correspondent entries
1895  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1896  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1897  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1898  m_p10CqiRxed.erase (itMap);
1899  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1900  itP10++;
1901  m_p10CqiTimers.erase (temp);
1902  }
1903  else
1904  {
1905  (*itP10).second--;
1906  itP10++;
1907  }
1908  }
1909 
1910  // refresh DL CQI A30 Map
1911  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1912  while (itA30 != m_a30CqiTimers.end ())
1913  {
1914  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1915  if ((*itA30).second == 0)
1916  {
1917  // delete correspondent entries
1918  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1919  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1920  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
1921  m_a30CqiRxed.erase (itMap);
1922  std::map <uint16_t,uint32_t>::iterator temp = itA30;
1923  itA30++;
1924  m_a30CqiTimers.erase (temp);
1925  }
1926  else
1927  {
1928  (*itA30).second--;
1929  itA30++;
1930  }
1931  }
1932 
1933  return;
1934 }
1935 
1936 
1937 void
1939 {
1940  // refresh UL CQI Map
1941  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
1942  while (itUl != m_ueCqiTimers.end ())
1943  {
1944  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1945  if ((*itUl).second == 0)
1946  {
1947  // delete correspondent entries
1948  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
1949  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
1950  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
1951  (*itMap).second.clear ();
1952  m_ueCqi.erase (itMap);
1953  std::map <uint16_t,uint32_t>::iterator temp = itUl;
1954  itUl++;
1955  m_ueCqiTimers.erase (temp);
1956  }
1957  else
1958  {
1959  (*itUl).second--;
1960  itUl++;
1961  }
1962  }
1963 
1964  return;
1965 }
1966 
1967 void
1968 TdMtFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
1969 {
1970  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1971  LteFlowId_t flow (rnti, lcid);
1972  it = m_rlcBufferReq.find (flow);
1973  if (it != m_rlcBufferReq.end ())
1974  {
1975  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1976  // Update queues: RLC tx order Status, ReTx, Tx
1977  // Update status queue
1978  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1979  {
1980  (*it).second.m_rlcStatusPduSize = 0;
1981  }
1982  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
1983  {
1984  (*it).second.m_rlcRetransmissionQueueSize = 0;
1985  }
1986  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1987  {
1988  uint32_t rlcOverhead;
1989  if (lcid == 1)
1990  {
1991  // for SRB1 (using RLC AM) it's better to
1992  // overestimate RLC overhead rather than
1993  // underestimate it and risk unneeded
1994  // segmentation which increases delay
1995  rlcOverhead = 4;
1996  }
1997  else
1998  {
1999  // minimum RLC overhead due to header
2000  rlcOverhead = 2;
2001  }
2002  // update transmission queue
2003  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2004  {
2005  (*it).second.m_rlcTransmissionQueueSize = 0;
2006  }
2007  else
2008  {
2009  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2010  }
2011  }
2012  }
2013  else
2014  {
2015  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2016  }
2017 }
2018 
2019 void
2020 TdMtFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2021 {
2022 
2023  size = size - 2; // remove the minimum RLC overhead
2024  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2025  if (it != m_ceBsrRxed.end ())
2026  {
2027  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2028  if ((*it).second >= size)
2029  {
2030  (*it).second -= size;
2031  }
2032  else
2033  {
2034  (*it).second = 0;
2035  }
2036  }
2037  else
2038  {
2039  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2040  }
2041 
2042 }
2043 
2044 void
2046 {
2047  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2049  params.m_rnti = rnti;
2050  params.m_transmissionMode = txMode;
2052 }
2053 
2054 
2055 }
virtual void SchedDlTriggerReq(const struct SchedDlTriggerReqParameters &params)
std::vector< struct UlInfoListElement_s > m_ulInfoList
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:88
std::set< uint16_t > m_flowStatsDl
virtual void CschedLcConfigReq(const struct CschedLcConfigReqParameters &params)
std::map< uint16_t, uint8_t > m_uesTxMode
smart pointer class similar to boost::intrusive_ptr
Definition: ptr.h:60
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by "...
#define HARQ_PERIOD
Definition: lte-common.h:30
Hold a bool native type.
Definition: boolean.h:38
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
std::map< uint16_t, uint32_t > m_ceBsrRxed
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register the class in the ns-3 factory.
Definition: object-base.h:38
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
virtual void SchedUlCqiInfoReq(const struct SchedUlCqiInfoReqParameters &params)
std::map< uint16_t, std::vector< double > > m_ueCqi
enum ns3::UlCqi_s::Type_e m_type
virtual void CschedCellConfigReq(const struct CschedCellConfigReqParameters &params)
CSCHED_CELL_CONFIG_REQ.
friend class TdMtSchedulerMemberSchedSapProvider
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
std::vector< uint16_t > m_sinr
std::vector< uint8_t > DlHarqProcessesTimer_t
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file...
Definition: assert.h:61
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:170
std::vector< uint8_t > m_mcs
Definition: ff-mac-common.h:95
virtual ~TdMtFfMacScheduler()
Destructor.
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
std::vector< struct UlDciListElement_s > m_dciList
std::set< uint16_t > m_flowStatsUl
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:223
#define NS_FATAL_ERROR(msg)
fatal error handling
Definition: fatal-error.h:95
See section 4.3.10 buildRARListElement.
FfMacCschedSapProvider * m_cschedSapProvider
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
virtual void SchedUlMacCtrlInfoReq(const struct SchedUlMacCtrlInfoReqParameters &params)
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
std::map< uint16_t, uint32_t > m_p10CqiTimers
std::vector< struct RachListElement_s > m_rachList
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
virtual void SchedUlTriggerReq(const struct SchedUlTriggerReqParameters &params)
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
bool m_harqOn
m_harqOn when false inhibit te HARQ mechanisms (by default active)
friend class TdMtSchedulerMemberCschedSapProvider
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
virtual void SchedDlRachInfoReq(const struct SchedDlRachInfoReqParameters &params)
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
Hold an unsigned integer type.
Definition: uinteger.h:46
static uint8_t TxMode2LayerNum(uint8_t txMode)
Definition: lte-common.cc:170
Ptr< SampleEmitter > s
std::vector< uint8_t > m_ndi
Definition: ff-mac-common.h:96
Provides the SCHED SAP.
int LcActivePerFlow(uint16_t rnti)
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
virtual void SchedUlNoiseInterferenceReq(const struct SchedUlNoiseInterferenceReqParameters &params)
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:233
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
std::vector< struct DlInfoListElement_s > m_dlInfoList
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
virtual void CschedLcReleaseReq(const struct CschedLcReleaseReqParameters &params)
virtual void SchedUlSrInfoReq(const struct SchedUlSrInfoReqParameters &params)
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
std::vector< uint16_t > m_tbsSize
Definition: ff-mac-common.h:94
See section 4.3.9 rlcPDU_ListElement.
virtual void SchedDlMacBufferReq(const struct SchedDlMacBufferReqParameters &params)
static const int TdMtType0AllocationRbg[4]
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
virtual void SchedDlRlcBufferReq(const struct SchedDlRlcBufferReqParameters &params)
std::map< uint16_t, uint32_t > m_a30CqiTimers
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
std::vector< uint8_t > m_rv
Definition: ff-mac-common.h:97
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
UlCqiFilter_t m_ulCqiFilter
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
#define SRS_CQI_RNTI_VSP
This abstract base class identifies the interface by means of which the helper object can plug on the...
std::vector< uint16_t > m_rachAllocationMap
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:84
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
std::vector< struct RachListElement_s > m_rachList
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
static double fpS11dot3toDouble(uint16_t val)
Definition: lte-common.cc:114
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
FfMacCschedSapUser * m_cschedSapUser
std::vector< uint8_t > UlHarqProcessesStatus_t
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
std::vector< uint8_t > DlHarqProcessesStatus_t
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
static uint32_t BsrId2BufferSize(uint8_t val)
Definition: lte-common.cc:142
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
virtual void CschedUeConfigReq(const struct CschedUeConfigReqParameters &params)
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:213
virtual void SchedDlPagingBufferReq(const struct SchedDlPagingBufferReqParameters &params)
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
virtual void CschedUeReleaseReq(const struct CschedUeReleaseReqParameters &params)
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
std::map< uint16_t, uint8_t > m_p10CqiRxed
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:193
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_UL_CONFIG_IND primitive.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
virtual void DoDispose(void)
This method is called by Object::Dispose or by the object's destructor, whichever comes first...
#define HARQ_DL_TIMEOUT
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
#define NO_SINR
FfMacSchedSapProvider * m_schedSapProvider
Implements the SCHED SAP and CSCHED SAP for a Time Domain Maximize Throughput scheduler.
struct DlDciListElement_s m_dci
std::vector< struct BuildRarListElement_s > m_buildRarList
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
a unique identifier for an interface.
Definition: type-id.h:49
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
TypeId SetParent(TypeId tid)
Definition: type-id.cc:610
#define HARQ_PROC_NUM
virtual void SchedDlCqiInfoReq(const struct SchedDlCqiInfoReqParameters &params)
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
int GetRbgSize(int dlbandwidth)
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
FfMacSchedSapUser * m_schedSapUser
std::vector< struct BuildDataListElement_s > m_buildDataList
See section 4.3.8 builDataListElement.
std::map< uint16_t, uint32_t > m_ueCqiTimers