58 #include "ns3/gnuplot.h"    59 #include "ns3/command-line.h"    60 #include "ns3/config.h"    61 #include "ns3/uinteger.h"    62 #include "ns3/double.h"    64 #include "ns3/yans-wifi-helper.h"    66 #include "ns3/mobility-helper.h"    67 #include "ns3/internet-stack-helper.h"    68 #include "ns3/ipv4-address-helper.h"    69 #include "ns3/packet-sink-helper.h"    70 #include "ns3/on-off-helper.h"    71 #include "ns3/yans-wifi-channel.h"    72 #include "ns3/wifi-net-device.h"    73 #include "ns3/wifi-mac.h"    74 #include "ns3/wifi-mac-header.h"    75 #include "ns3/flow-monitor-helper.h"    76 #include "ns3/ipv4-flow-classifier.h"    91   void CheckStatistics (
double time);
   106   double GetBusyTime ();
   109   typedef std::vector<std::pair<Time, DataRate> > 
TxTime;
   113   std::map<Mac48Address, double> currentPower;
   114   std::map<Mac48Address, DataRate> currentRate;
   115   uint32_t m_bytesTotal;
   144   double power = 
phy->GetTxPowerEnd ();
   145   for (uint32_t j = 0; j < stas.
GetN (); j++)
   150       currentPower[addr] = power;
   151       currentRate[addr] = dataRate;
   153   currentRate[
Mac48Address (
"ff:ff:ff:ff:ff:ff")] = dataRate;
   165   m_output.SetTitle (
"Throughput Mbits/s");
   166   m_output_idle.SetTitle (
"Idle Time");
   167   m_output_busy.SetTitle (
"Busy Time");
   168   m_output_rx.SetTitle (
"RX Time");
   169   m_output_tx.SetTitle (
"TX Time");
   175   uint32_t nModes = 
phy->GetNModes ();
   176   for (uint32_t i = 0; i < nModes; i++)
   186       timeTable.push_back (std::make_pair (time, dataRate));
   193   for (TxTime::const_iterator i = timeTable.begin (); i != timeTable.end (); i++)
   195       if (rate == i->second)
   213       totalEnergy += pow (10.0, currentPower[dest] / 10.0) * GetCalcTxTime (currentRate[dest]).GetSeconds ();
   214       totalTime += GetCalcTxTime (currentRate[dest]).GetSeconds ();
   221   currentPower[dest] = newPower;
   227   currentRate[dest] = newRate;
   258   m_bytesTotal += packet->
GetSize ();
   264   double mbs = ((m_bytesTotal * 8.0) / (1000000 * time));
   266   double atp = totalEnergy / time;
   272   m_output_idle.Add ((
Simulator::Now ()).GetSeconds (), idleTime * 100);
   273   m_output_busy.Add ((
Simulator::Now ()).GetSeconds (), busyTime * 100);
   274   m_output_tx.Add ((
Simulator::Now ()).GetSeconds (), txTime * 100);
   275   m_output_rx.Add ((
Simulator::Now ()).GetSeconds (), rxTime * 100);
   293   return m_output_power;
   299   return m_output_idle;
   305   return m_output_busy;
   323   return totalBusyTime + totalRxTime;
   328   NS_LOG_INFO ((
Simulator::Now ()).GetSeconds () << 
" " << dest << 
" Old power=" << oldPower << 
" New power=" << newPower);
   336 int main (
int argc, 
char *argv[])
   340   double maxPower = 17;
   342   uint32_t powerLevels = 18;
   344   uint32_t rtsThreshold = 2346;
   345   std::string manager = 
"ns3::ParfWifiManager";
   346   std::string outputFileName = 
"parf";
   355   uint32_t simuTime = 100;
   358   cmd.AddValue (
"manager", 
"PRC Manager", manager);
   359   cmd.AddValue (
"rtsThreshold", 
"RTS threshold", rtsThreshold);
   360   cmd.AddValue (
"outputFileName", 
"Output filename", outputFileName);
   361   cmd.AddValue (
"simuTime", 
"Total simulation time (sec)", simuTime);
   362   cmd.AddValue (
"maxPower", 
"Maximum available transmission level (dbm).", maxPower);
   363   cmd.AddValue (
"minPower", 
"Minimum available transmission level (dbm).", minPower);
   364   cmd.AddValue (
"powerLevels", 
"Number of transmission power levels available between "   365                 "TxPowerStart and TxPowerEnd included.", powerLevels);
   366   cmd.AddValue (
"AP1_x", 
"Position of AP1 in x coordinate", ap1_x);
   367   cmd.AddValue (
"AP1_y", 
"Position of AP1 in y coordinate", ap1_y);
   368   cmd.AddValue (
"STA1_x", 
"Position of STA1 in x coordinate", sta1_x);
   369   cmd.AddValue (
"STA1_y", 
"Position of STA1 in y coordinate", sta1_y);
   370   cmd.AddValue (
"AP2_x", 
"Position of AP2 in x coordinate", ap2_x);
   371   cmd.AddValue (
"AP2_y", 
"Position of AP2 in y coordinate", ap2_y);
   372   cmd.AddValue (
"STA2_x", 
"Position of STA2 in x coordinate", sta2_x);
   373   cmd.AddValue (
"STA2_y", 
"Position of STA2 in y coordinate", sta2_y);
   374   cmd.Parse (argc, argv);
   397   wifi.SetRemoteStationManager (
"ns3::AarfWifiManager", 
"RtsCtsThreshold", 
UintegerValue (rtsThreshold));
   402   wifiMac.
SetType (
"ns3::StaWifiMac",
   408   wifiMac.
SetType (
"ns3::StaWifiMac",
   419   wifiMac.
SetType (
"ns3::ApWifiMac",
   421   wifiApDevices.
Add (
wifi.Install (wifiPhy, wifiMac, wifiApNodes.
Get (0)));
   424   wifiMac.
SetType (
"ns3::ApWifiMac",
   427   wifiApDevices.
Add (
wifi.Install (wifiPhy, wifiMac, wifiApNodes.
Get (1)));
   429   wifiDevices.
Add (wifiStaDevices);
   430   wifiDevices.
Add (wifiApDevices);
   435   positionAlloc->
Add (Vector (ap1_x, ap1_y, 0.0));
   436   positionAlloc->
Add (Vector (sta1_x, sta1_y, 0.0));
   437   positionAlloc->
Add (Vector (ap2_x, ap2_y, 0.0));
   438   positionAlloc->
Add (Vector (sta2_x, sta2_y, 0.0));
   439   mobility.SetPositionAllocator (positionAlloc);
   440   mobility.SetMobilityModel (
"ns3::ConstantPositionMobilityModel");
   449   stack.Install (wifiApNodes);
   452   address.SetBase (
"10.1.1.0", 
"255.255.255.0");
   475   apps_source.
Add (onoff1.Install (wifiApNodes.
Get (1)));
   495   Config::Connect (
"/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + 
"/PowerChange",
   497   Config::Connect (
"/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + 
"/RateChange",
   499   Config::Connect (
"/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + 
"/PowerChange",
   501   Config::Connect (
"/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + 
"/RateChange",
   504   Config::Connect (
"/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/Phy/PhyTxBegin",
   506   Config::Connect (
"/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/Phy/PhyTxBegin",
   510   Config::Connect (
"/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/Phy/$ns3::YansWifiPhy/State/State",
   512   Config::Connect (
"/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/Phy/$ns3::YansWifiPhy/State/State",
   519   Config::Connect (
"/NodeList/[0-1]/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + 
"/PowerChange",
   521   Config::Connect (
"/NodeList/[0-1]/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + 
"/RateChange",
   534   std::map<FlowId, FlowMonitor::FlowStats> stats = monitor->
GetFlowStats ();
   535   for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i = stats.begin (); i != stats.end (); ++i)
   541           NS_LOG_INFO (
"  Tx Bytes:   " << i->second.txBytes << 
"\n");
   542           NS_LOG_INFO (
"  Rx Bytes:   " << i->second.rxBytes << 
"\n");
   543           NS_LOG_UNCOND (
"  Throughput to 10.1.1.1: " << i->second.rxBytes * 8.0 / (i->second.timeLastRxPacket.GetSeconds () - i->second.timeFirstTxPacket.GetSeconds ()) / 1024 / 1024  << 
" Mbps\n");
   544           NS_LOG_INFO (
"  Mean delay:   " << i->second.delaySum.GetSeconds () / i->second.rxPackets << 
"\n");
   545           NS_LOG_INFO (
"  Mean jitter:   " << i->second.jitterSum.GetSeconds () / (i->second.rxPackets - 1) << 
"\n");
   551           NS_LOG_INFO (
"  Tx Bytes:   " << i->second.txBytes << 
"\n");
   552           NS_LOG_INFO (
"  Rx Bytes:   " << i->second.rxBytes << 
"\n");
   553           NS_LOG_UNCOND (
"  Throughput to 10.1.1.2: " << i->second.rxBytes * 8.0 / (i->second.timeLastRxPacket.GetSeconds () - i->second.timeFirstTxPacket.GetSeconds ()) / 1024 / 1024  << 
" Mbps\n");
   554           NS_LOG_INFO (
"  Mean delay:   " << i->second.delaySum.GetSeconds () / i->second.rxPackets << 
"\n");
   555           NS_LOG_INFO (
"  Mean jitter:   " << i->second.jitterSum.GetSeconds () / (i->second.rxPackets - 1) << 
"\n");
   561   std::ofstream outfileTh0 ((
"throughput-" + outputFileName + 
"-0.plt").c_str ());
   562   Gnuplot gnuplot = 
Gnuplot ((
"throughput-" + outputFileName + 
"-0.eps").c_str (), 
"Throughput");
   564   gnuplot.
SetLegend (
"Time (seconds)", 
"Throughput (Mb/s)");
   565   gnuplot.
SetTitle (
"Throughput (AP0 to STA) vs time");
   569   if (manager.compare (
"ns3::ParfWifiManager") == 0
   570       || manager.compare (
"ns3::AparfWifiManager") == 0
   571       || manager.compare (
"ns3::RrpaaWifiManager") == 0)
   573       std::ofstream outfilePower0 ((
"power-" + outputFileName + 
"-0.plt").c_str ());
   574       gnuplot = 
Gnuplot ((
"power-" + outputFileName + 
"-0.eps").c_str (), 
"Average Transmit Power");
   576       gnuplot.
SetLegend (
"Time (seconds)", 
"Power (mW)");
   577       gnuplot.
SetTitle (
"Average transmit power (AP0 to STA) vs time");
   582   std::ofstream outfileTx0 ((
"tx-" + outputFileName + 
"-0.plt").c_str ());
   583   gnuplot = 
Gnuplot ((
"tx-" + outputFileName + 
"-0.eps").c_str (), 
"Time in TX State");
   585   gnuplot.
SetLegend (
"Time (seconds)", 
"Percent");
   586   gnuplot.
SetTitle (
"Percentage time AP0 in TX state vs time");
   590   std::ofstream outfileRx0 ((
"rx-" + outputFileName + 
"-0.plt").c_str ());
   591   gnuplot = 
Gnuplot ((
"rx-" + outputFileName + 
"-0.eps").c_str (), 
"Time in RX State");
   593   gnuplot.
SetLegend (
"Time (seconds)", 
"Percent");
   594   gnuplot.
SetTitle (
"Percentage time AP0 in RX state vs time");
   598   std::ofstream outfileBusy0 ((
"busy-" + outputFileName + 
"-0.plt").c_str ());
   599   gnuplot = 
Gnuplot ((
"busy-" + outputFileName + 
"-0.eps").c_str (), 
"Time in Busy State");
   601   gnuplot.
SetLegend (
"Time (seconds)", 
"Percent");
   602   gnuplot.
SetTitle (
"Percentage time AP0 in Busy state vs time");
   606   std::ofstream outfileIdle0 ((
"idle-" + outputFileName + 
"-0.plt").c_str ());
   607   gnuplot = 
Gnuplot ((
"idle-" + outputFileName + 
"-0.eps").c_str (), 
"Time in Idle State");
   609   gnuplot.
SetLegend (
"Time (seconds)", 
"Percent");
   610   gnuplot.
SetTitle (
"Percentage time AP0 in Idle state vs time");
   615   std::ofstream outfileTh1 ((
"throughput-" + outputFileName + 
"-1.plt").c_str ());
   616   gnuplot = 
Gnuplot ((
"throughput-" + outputFileName + 
"-1.eps").c_str (), 
"Throughput");
   618   gnuplot.
SetLegend (
"Time (seconds)", 
"Throughput (Mb/s)");
   619   gnuplot.
SetTitle (
"Throughput (AP1 to STA) vs time");
   623   if (manager.compare (
"ns3::ParfWifiManager") == 0
   624       || manager.compare (
"ns3::AparfWifiManager") == 0
   625       || manager.compare (
"ns3::RrpaaWifiManager") == 0)
   627       std::ofstream outfilePower1 ((
"power-" + outputFileName + 
"-1.plt").c_str ());
   628       gnuplot = 
Gnuplot ((
"power-" + outputFileName + 
"-1.eps").c_str (), 
"Average Transmit Power");
   630       gnuplot.
SetLegend (
"Time (seconds)", 
"Power (mW)");
   631       gnuplot.
SetTitle (
"Average transmit power (AP1 to STA) vs time");
   636   std::ofstream outfileTx1 ((
"tx-" + outputFileName + 
"-1.plt").c_str ());
   637   gnuplot = 
Gnuplot ((
"tx-" + outputFileName + 
"-1.eps").c_str (), 
"Time in TX State");
   639   gnuplot.
SetLegend (
"Time (seconds)", 
"Percent");
   640   gnuplot.
SetTitle (
"Percentage time AP1 in TX state vs time");
   644   std::ofstream outfileRx1 ((
"rx-" + outputFileName + 
"-1.plt").c_str ());
   645   gnuplot = 
Gnuplot ((
"rx-" + outputFileName + 
"-1.eps").c_str (), 
"Time in RX State");
   647   gnuplot.
SetLegend (
"Time (seconds)", 
"Percent");
   648   gnuplot.
SetTitle (
"Percentage time AP1 in RX state vs time");
   652   std::ofstream outfileBusy1 ((
"busy-" + outputFileName + 
"-1.plt").c_str ());
   653   gnuplot = 
Gnuplot ((
"busy-" + outputFileName + 
"-1.eps").c_str (), 
"Time in Busy State");
   655   gnuplot.
SetLegend (
"Time (seconds)", 
"Percent");
   656   gnuplot.
SetTitle (
"Percentage time AP1 in Busy state vs time");
   660   std::ofstream outfileIdle1 ((
"idle-" + outputFileName + 
"-1.plt").c_str ());
   661   gnuplot = 
Gnuplot ((
"idle-" + outputFileName + 
"-1.eps").c_str (), 
"Time in Idle State");
   663   gnuplot.
SetLegend (
"Time (seconds)", 
"Percent");
   664   gnuplot.
SetTitle (
"Percentage time AP1 in Idle state vs time");
 Gnuplot2dDataset m_output_idle
 
void Set(std::string name, const AttributeValue &v)
 
holds a vector of ns3::Application pointers. 
 
void SetupPhy(Ptr< WifiPhy > phy)
 
Ptr< NetDevice > Get(uint32_t i) const
Get the Ptr<NetDevice> stored in this container at a given index. 
 
Simulation virtual time values and global simulation resolution. 
 
Gnuplot2dDataset m_output_busy
 
Gnuplot2dDataset m_output_tx
 
This class mimics the TXVECTOR which is to be passed to the PHY in order to define the parameters whi...
 
Class to represent a 2D points plot. 
 
holds a vector of std::pair of Ptr<Ipv4> and interface index. 
 
void SetChannelWidth(uint16_t channelWidth)
Sets the selected channelWidth (in MHz) 
 
uint32_t GetSize(void) const
Returns the the size in bytes of the packet (including the zero-filled initial payload). 
 
Make it easy to create and manage PHY objects for the yans model. 
 
static YansWifiChannelHelper Default(void)
Create a channel helper in a default working state. 
 
void Add(ApplicationContainer other)
Append the contents of another ApplicationContainer to the end of this container. ...
 
Ipv4Address destinationAddress
Destination address. 
 
double GetSeconds(void) const
Get an approximation of the time stored in this instance in the indicated unit. 
 
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file...
 
static void Run(void)
Run the simulation. 
 
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name. 
 
const FlowStatsContainer & GetFlowStats() const
Retrieve all collected the flow statistics. 
 
aggregate IP/TCP/UDP functionality to existing Nodes. 
 
void RateCallback(std::string path, DataRate oldRate, DataRate newRate, Mac48Address dest)
 
void AddDataset(const GnuplotDataset &dataset)
 
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO. 
 
A helper to make it easier to instantiate an ns3::PacketSinkApplication on a set of nodes...
 
static YansWifiPhyHelper Default(void)
Create a phy helper in a default working state. 
 
helps to create WifiNetDevice objects 
 
represent a single transmission modeA WifiMode is implemented by a single integer which is used to lo...
 
A helper to make it easier to instantiate an ns3::OnOffApplication on a set of nodes. 
 
Gnuplot2dDataset GetPowerDatafile()
 
void RateCallback(std::string path, DataRate oldRate, DataRate newRate, Mac48Address dest)
 
a polymophic address class 
 
Ptr< YansWifiChannel > Create(void) const
 
Gnuplot2dDataset GetDatafile()
 
void RxCallback(std::string path, Ptr< const Packet > packet, const Address &from)
 
void StateCallback(std::string path, Time init, Time duration, WifiPhyState state)
 
Class for representing data rates. 
 
void SetChannel(Ptr< YansWifiChannel > channel)
 
Time GetCalcTxTime(DataRate rate)
 
void PhyCallback(std::string path, Ptr< const Packet > packet, double powerW)
 
void PowerCallback(std::string path, double oldPower, double newPower, Mac48Address dest)
 
Gnuplot2dDataset GetRxDatafile()
 
static EventId Schedule(Time const &delay, MEM mem_ptr, OBJ obj)
Schedule an event to expire after delay. 
 
a simple class to generate gnuplot-ready plotting commands from a set of datasets. 
 
  AttributeValue implementation for Time. 
 
Ipv4Address GetAddress(uint32_t i, uint32_t j=0) const
 
void SetTitle(const std::string &title)
 
void Add(NetDeviceContainer other)
Append the contents of another NetDeviceContainer to the end of this container. 
 
Hold an unsigned integer type. 
 
holds a vector of ns3::NetDevice pointers 
 
static const uint32_t packetSize
 
The PHY layer has sense the medium busy through the CCA mechanism. 
 
uint32_t PeekHeader(Header &header) const
Deserialize but does not remove the header from the internal buffer. 
 
Callback< R > MakeCallback(R(T::*memPtr)(void), OBJ objPtr)
 
void GenerateOutput(std::ostream &os)
Writes gnuplot commands and data values to a single output stream. 
 
Ptr< FlowMonitor > InstallAll()
Enable flow monitoring on all nodes. 
 
void Start(Time start)
Arrange for all of the Applications in this container to Start() at the Time given as a parameter...
 
Parse command-line arguments. 
 
void Connect(std::string path, const CallbackBase &cb)
 
void SetLegend(const std::string &xLegend, const std::string &yLegend)
 
static void Destroy(void)
Execute the events scheduled with ScheduleDestroy(). 
 
Ptr< WifiPhy > GetPhy(void) const
 
Ptr< FlowClassifier > GetClassifier()
Retrieve the FlowClassifier object for IPv4 created by the Install* methods. 
 
OFDM PHY for the 5 GHz band (Clause 17) 
 
Every class exported by the ns3 library is enclosed in the ns3 namespace. 
 
keep track of a set of node pointers. 
 
void SetPreambleType(WifiPreamble preamble)
Sets the preamble type. 
 
WifiPhyState
The state of the PHY layer. 
 
std::vector< std::pair< Time, DataRate > > TxTime
 
#define NS_LOG_UNCOND(msg)
Output the requested message unconditionally. 
 
Helper to enable IP flow monitoring on a set of Nodes. 
 
manage and create wifi channel objects for the yans model. 
 
void PowerCallback(std::string path, double oldPower, double newPower, Mac48Address dest)
 
create MAC layers for a ns3::WifiNetDevice. 
 
Structure to classify a packet. 
 
static Time Now(void)
Return the current simulation virtual time. 
 
Gnuplot2dDataset GetIdleDatafile()
 
The IEEE 802.11 SSID Information Element. 
 
void SetMode(WifiMode mode)
Sets the selected payload transmission mode. 
 
virtual void SetType(std::string type, std::string n0="", const AttributeValue &v0=EmptyAttributeValue(), std::string n1="", const AttributeValue &v1=EmptyAttributeValue(), std::string n2="", const AttributeValue &v2=EmptyAttributeValue(), std::string n3="", const AttributeValue &v3=EmptyAttributeValue(), std::string n4="", const AttributeValue &v4=EmptyAttributeValue(), std::string n5="", const AttributeValue &v5=EmptyAttributeValue(), std::string n6="", const AttributeValue &v6=EmptyAttributeValue(), std::string n7="", const AttributeValue &v7=EmptyAttributeValue(), std::string n8="", const AttributeValue &v8=EmptyAttributeValue(), std::string n9="", const AttributeValue &v9=EmptyAttributeValue(), std::string n10="", const AttributeValue &v10=EmptyAttributeValue())
 
Gnuplot2dDataset m_output_rx
 
Helper class used to assign positions and mobility models to nodes. 
 
FiveTuple FindFlow(FlowId flowId) const
Searches for the FiveTuple corresponding to the given flowId. 
 
Ipv4 addresses are stored in host order in this class. 
 
void Stop(Time stop)
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter...
 
Ptr< WifiMac > GetMac(void) const
 
The PHY layer is sending a packet. 
 
Gnuplot2dDataset GetBusyDatafile()
 
static void Stop(void)
Tell the Simulator the calling event should be the last one executed. 
 
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG. 
 
Time Seconds(double value)
Construct a Time in the indicated unit. 
 
uint32_t GetN(void) const
Get the number of Ptr<NetDevice> stored in this container. 
 
  AttributeValue implementation for Ssid. 
 
The PHY layer is receiving a packet. 
 
void Add(Vector v)
Add a position to the list of positions. 
 
NodeStatistics(NetDeviceContainer aps, NetDeviceContainer stas)
 
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index. 
 
void CheckStatistics(double time)
 
A helper class to make life easier while doing simple IPv4 address assignment in scripts. 
 
Time MicroSeconds(uint64_t value)
Construct a Time in the indicated unit. 
 
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer. 
 
void SetTerminal(const std::string &terminal)
 
This class can be used to hold variables of floating point type such as 'double' or 'float'...
 
Gnuplot2dDataset GetTxDatafile()
 
Ipv4Address sourceAddress
Source address. 
 
uint64_t GetDataRate(uint16_t channelWidth, uint16_t guardInterval, uint8_t nss) const