A Discrete-Event Network Simulator
API
wifi-power-adaptation-interference.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2014 Universidad de la República - Uruguay
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Matias Richart <mrichart@fing.edu.uy>
19  */
20 
58 #include "ns3/gnuplot.h"
59 #include "ns3/command-line.h"
60 #include "ns3/config.h"
61 #include "ns3/uinteger.h"
62 #include "ns3/double.h"
63 #include "ns3/log.h"
64 #include "ns3/yans-wifi-helper.h"
65 #include "ns3/ssid.h"
66 #include "ns3/mobility-helper.h"
67 #include "ns3/internet-stack-helper.h"
68 #include "ns3/ipv4-address-helper.h"
69 #include "ns3/packet-sink-helper.h"
70 #include "ns3/on-off-helper.h"
71 #include "ns3/yans-wifi-channel.h"
72 #include "ns3/wifi-net-device.h"
73 #include "ns3/wifi-mac.h"
74 #include "ns3/wifi-mac-header.h"
75 #include "ns3/flow-monitor-helper.h"
76 #include "ns3/ipv4-flow-classifier.h"
77 
78 using namespace ns3;
79 using namespace std;
80 
81 NS_LOG_COMPONENT_DEFINE ("PowerAdaptationInterference");
82 
83 //Packet size generated at the AP.
84 static const uint32_t packetSize = 1420;
85 
86 class NodeStatistics
87 {
88 public:
90 
91  void CheckStatistics (double time);
92 
93  void PhyCallback (std::string path, Ptr<const Packet> packet, double powerW);
94  void RxCallback (std::string path, Ptr<const Packet> packet, const Address &from);
95  void PowerCallback (std::string path, double oldPower, double newPower, Mac48Address dest);
96  void RateCallback (std::string path, DataRate oldRate, DataRate newRate, Mac48Address dest);
97  void StateCallback (std::string path, Time init, Time duration, WifiPhyState state);
98 
99  Gnuplot2dDataset GetDatafile ();
100  Gnuplot2dDataset GetPowerDatafile ();
101  Gnuplot2dDataset GetIdleDatafile ();
102  Gnuplot2dDataset GetBusyDatafile ();
103  Gnuplot2dDataset GetTxDatafile ();
104  Gnuplot2dDataset GetRxDatafile ();
105 
106  double GetBusyTime ();
107 
108 private:
109  typedef std::vector<std::pair<Time, DataRate> > TxTime;
110  void SetupPhy (Ptr<WifiPhy> phy);
111  Time GetCalcTxTime (DataRate rate);
112 
113  std::map<Mac48Address, double> currentPower;
114  std::map<Mac48Address, DataRate> currentRate;
115  uint32_t m_bytesTotal;
116  double totalEnergy;
117  double totalTime;
118  double busyTime;
119  double idleTime;
120  double txTime;
121  double rxTime;
124  double totalTxTime;
125  double totalRxTime;
126  Ptr<WifiPhy> myPhy;
127  TxTime timeTable;
128  Gnuplot2dDataset m_output;
129  Gnuplot2dDataset m_output_power;
134 };
135 
137 {
138  Ptr<NetDevice> device = aps.Get (0);
139  Ptr<WifiNetDevice> wifiDevice = DynamicCast<WifiNetDevice> (device);
140  Ptr<WifiPhy> phy = wifiDevice->GetPhy ();
141  myPhy = phy;
142  SetupPhy (phy);
143  DataRate dataRate = DataRate (phy->GetDefaultMode ().GetDataRate (phy->GetChannelWidth ()));
144  double power = phy->GetTxPowerEnd ();
145  for (uint32_t j = 0; j < stas.GetN (); j++)
146  {
147  Ptr<NetDevice> staDevice = stas.Get (j);
148  Ptr<WifiNetDevice> wifiStaDevice = DynamicCast<WifiNetDevice> (staDevice);
149  Mac48Address addr = wifiStaDevice->GetMac ()->GetAddress ();
150  currentPower[addr] = power;
151  currentRate[addr] = dataRate;
152  }
153  currentRate[Mac48Address ("ff:ff:ff:ff:ff:ff")] = dataRate;
154  totalEnergy = 0;
155  totalTime = 0;
156  busyTime = 0;
157  idleTime = 0;
158  txTime = 0;
159  rxTime = 0;
160  totalBusyTime = 0;
161  totalIdleTime = 0;
162  totalTxTime = 0;
163  totalRxTime = 0;
164  m_bytesTotal = 0;
165  m_output.SetTitle ("Throughput Mbits/s");
166  m_output_idle.SetTitle ("Idle Time");
167  m_output_busy.SetTitle ("Busy Time");
168  m_output_rx.SetTitle ("RX Time");
169  m_output_tx.SetTitle ("TX Time");
170 }
171 
172 void
174 {
175  for (const auto & mode : phy->GetModeList ())
176  {
177  WifiTxVector txVector;
178  txVector.SetMode (mode);
180  txVector.SetChannelWidth (phy->GetChannelWidth ());
181  DataRate dataRate = DataRate (mode.GetDataRate (phy->GetChannelWidth ()));
182  Time time = phy->CalculateTxDuration (packetSize, txVector, phy->GetPhyBand ());
183  NS_LOG_DEBUG (mode.GetUniqueName () << " " << time.GetSeconds () << " " << dataRate);
184  timeTable.push_back (std::make_pair (time, dataRate));
185  }
186 }
187 
188 Time
190 {
191  for (TxTime::const_iterator i = timeTable.begin (); i != timeTable.end (); i++)
192  {
193  if (rate == i->second)
194  {
195  return i->first;
196  }
197  }
198  NS_ASSERT (false);
199  return Seconds (0);
200 }
201 
202 void
203 NodeStatistics::PhyCallback (std::string path, Ptr<const Packet> packet, double powerW)
204 {
205  WifiMacHeader head;
206  packet->PeekHeader (head);
207  Mac48Address dest = head.GetAddr1 ();
208 
209  if (head.GetType () == WIFI_MAC_DATA)
210  {
211  totalEnergy += pow (10.0, currentPower[dest] / 10.0) * GetCalcTxTime (currentRate[dest]).GetSeconds ();
212  totalTime += GetCalcTxTime (currentRate[dest]).GetSeconds ();
213  }
214 }
215 
216 void
217 NodeStatistics::PowerCallback (std::string path, double oldPower, double newPower, Mac48Address dest)
218 {
219  currentPower[dest] = newPower;
220 }
221 
222 void
223 NodeStatistics::RateCallback (std::string path, DataRate oldRate, DataRate newRate, Mac48Address dest)
224 {
225  currentRate[dest] = newRate;
226 }
227 
228 void
229 NodeStatistics::StateCallback (std::string path, Time init, Time duration, WifiPhyState state)
230 {
231  if (state == WifiPhyState::CCA_BUSY)
232  {
233  busyTime += duration.GetSeconds ();
234  totalBusyTime += duration.GetSeconds ();
235  }
236  else if (state == WifiPhyState::IDLE)
237  {
238  idleTime += duration.GetSeconds ();
239  totalIdleTime += duration.GetSeconds ();
240  }
241  else if (state == WifiPhyState::TX)
242  {
243  txTime += duration.GetSeconds ();
244  totalTxTime += duration.GetSeconds ();
245  }
246  else if (state == WifiPhyState::RX)
247  {
248  rxTime += duration.GetSeconds ();
249  totalRxTime += duration.GetSeconds ();
250  }
251 }
252 
253 void
254 NodeStatistics::RxCallback (std::string path, Ptr<const Packet> packet, const Address &from)
255 {
256  m_bytesTotal += packet->GetSize ();
257 }
258 
259 void
261 {
262  double mbs = ((m_bytesTotal * 8.0) / (1000000 * time));
263  m_bytesTotal = 0;
264  double atp = totalEnergy / time;
265  totalEnergy = 0;
266  totalTime = 0;
267  m_output_power.Add ((Simulator::Now ()).GetSeconds (), atp);
268  m_output.Add ((Simulator::Now ()).GetSeconds (), mbs);
269 
270  m_output_idle.Add ((Simulator::Now ()).GetSeconds (), idleTime * 100);
271  m_output_busy.Add ((Simulator::Now ()).GetSeconds (), busyTime * 100);
272  m_output_tx.Add ((Simulator::Now ()).GetSeconds (), txTime * 100);
273  m_output_rx.Add ((Simulator::Now ()).GetSeconds (), rxTime * 100);
274  busyTime = 0;
275  idleTime = 0;
276  txTime = 0;
277  rxTime = 0;
278 
280 }
281 
284 {
285  return m_output;
286 }
287 
290 {
291  return m_output_power;
292 }
293 
296 {
297  return m_output_idle;
298 }
299 
302 {
303  return m_output_busy;
304 }
305 
308 {
309  return m_output_rx;
310 }
311 
314 {
315  return m_output_tx;
316 }
317 
318 double
320 {
321  return totalBusyTime + totalRxTime;
322 }
323 
324 void PowerCallback (std::string path, double oldPower, double newPower, Mac48Address dest)
325 {
326  NS_LOG_INFO ((Simulator::Now ()).GetSeconds () << " " << dest << " Old power=" << oldPower << " New power=" << newPower);
327 }
328 
329 void RateCallback (std::string path, DataRate oldRate, DataRate newRate, Mac48Address dest)
330 {
331  NS_LOG_INFO ((Simulator::Now ()).GetSeconds () << " " << dest << " Old rate=" << oldRate << " New rate=" << newRate);
332 }
333 
334 int main (int argc, char *argv[])
335 {
336  //LogComponentEnable("ConstantRateWifiManager", LOG_LEVEL_FUNCTION);
337 
338  double maxPower = 17;
339  double minPower = 0;
340  uint32_t powerLevels = 18;
341 
342  uint32_t rtsThreshold = 2346;
343  std::string manager = "ns3::ParfWifiManager";
344  std::string outputFileName = "parf";
345  int ap1_x = 0;
346  int ap1_y = 0;
347  int sta1_x = 10;
348  int sta1_y = 0;
349  int ap2_x = 200;
350  int ap2_y = 0;
351  int sta2_x = 180;
352  int sta2_y = 0;
353  uint32_t simuTime = 100;
354 
355  CommandLine cmd (__FILE__);
356  cmd.AddValue ("manager", "PRC Manager", manager);
357  cmd.AddValue ("rtsThreshold", "RTS threshold", rtsThreshold);
358  cmd.AddValue ("outputFileName", "Output filename", outputFileName);
359  cmd.AddValue ("simuTime", "Total simulation time (sec)", simuTime);
360  cmd.AddValue ("maxPower", "Maximum available transmission level (dbm).", maxPower);
361  cmd.AddValue ("minPower", "Minimum available transmission level (dbm).", minPower);
362  cmd.AddValue ("powerLevels", "Number of transmission power levels available between "
363  "TxPowerStart and TxPowerEnd included.", powerLevels);
364  cmd.AddValue ("AP1_x", "Position of AP1 in x coordinate", ap1_x);
365  cmd.AddValue ("AP1_y", "Position of AP1 in y coordinate", ap1_y);
366  cmd.AddValue ("STA1_x", "Position of STA1 in x coordinate", sta1_x);
367  cmd.AddValue ("STA1_y", "Position of STA1 in y coordinate", sta1_y);
368  cmd.AddValue ("AP2_x", "Position of AP2 in x coordinate", ap2_x);
369  cmd.AddValue ("AP2_y", "Position of AP2 in y coordinate", ap2_y);
370  cmd.AddValue ("STA2_x", "Position of STA2 in x coordinate", sta2_x);
371  cmd.AddValue ("STA2_y", "Position of STA2 in y coordinate", sta2_y);
372  cmd.Parse (argc, argv);
373 
374  //Define the APs
375  NodeContainer wifiApNodes;
376  wifiApNodes.Create (2);
377 
378  //Define the STAs
380  wifiStaNodes.Create (2);
381 
383  wifi.SetStandard (WIFI_STANDARD_80211a);
384  WifiMacHelper wifiMac;
385  YansWifiPhyHelper wifiPhy;
387 
388  wifiPhy.SetChannel (wifiChannel.Create ());
389 
390  NetDeviceContainer wifiApDevices;
391  NetDeviceContainer wifiStaDevices;
392  NetDeviceContainer wifiDevices;
393 
394  //Configure the STA nodes
395  wifi.SetRemoteStationManager ("ns3::AarfWifiManager", "RtsCtsThreshold", UintegerValue (rtsThreshold));
396  wifiPhy.Set ("TxPowerStart", DoubleValue (maxPower));
397  wifiPhy.Set ("TxPowerEnd", DoubleValue (maxPower));
398 
399  Ssid ssid = Ssid ("AP0");
400  wifiMac.SetType ("ns3::StaWifiMac",
401  "Ssid", SsidValue (ssid),
402  "MaxMissedBeacons", UintegerValue (1000));
403  wifiStaDevices.Add (wifi.Install (wifiPhy, wifiMac, wifiStaNodes.Get (0)));
404 
405  ssid = Ssid ("AP1");
406  wifiMac.SetType ("ns3::StaWifiMac",
407  "Ssid", SsidValue (ssid));
408  wifiStaDevices.Add (wifi.Install (wifiPhy, wifiMac, wifiStaNodes.Get (1)));
409 
410  //Configure the AP nodes
411  wifi.SetRemoteStationManager (manager, "DefaultTxPowerLevel", UintegerValue (powerLevels - 1), "RtsCtsThreshold", UintegerValue (rtsThreshold));
412  wifiPhy.Set ("TxPowerStart", DoubleValue (minPower));
413  wifiPhy.Set ("TxPowerEnd", DoubleValue (maxPower));
414  wifiPhy.Set ("TxPowerLevels", UintegerValue (powerLevels));
415 
416  ssid = Ssid ("AP0");
417  wifiMac.SetType ("ns3::ApWifiMac",
418  "Ssid", SsidValue (ssid));
419  wifiApDevices.Add (wifi.Install (wifiPhy, wifiMac, wifiApNodes.Get (0)));
420 
421  ssid = Ssid ("AP1");
422  wifiMac.SetType ("ns3::ApWifiMac",
423  "Ssid", SsidValue (ssid),
424  "BeaconInterval", TimeValue (MicroSeconds (103424))); //for avoiding collisions);
425  wifiApDevices.Add (wifi.Install (wifiPhy, wifiMac, wifiApNodes.Get (1)));
426 
427  wifiDevices.Add (wifiStaDevices);
428  wifiDevices.Add (wifiApDevices);
429 
430  //Configure the mobility.
432  Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
433  positionAlloc->Add (Vector (ap1_x, ap1_y, 0.0));
434  positionAlloc->Add (Vector (sta1_x, sta1_y, 0.0));
435  positionAlloc->Add (Vector (ap2_x, ap2_y, 0.0));
436  positionAlloc->Add (Vector (sta2_x, sta2_y, 0.0));
437  mobility.SetPositionAllocator (positionAlloc);
438  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
439  mobility.Install (wifiApNodes.Get (0));
440  mobility.Install (wifiStaNodes.Get (0));
441  mobility.Install (wifiApNodes.Get (1));
442  mobility.Install (wifiStaNodes.Get (1));
443 
444 
445  //Configure the IP stack
447  stack.Install (wifiApNodes);
448  stack.Install (wifiStaNodes);
450  address.SetBase ("10.1.1.0", "255.255.255.0");
451  Ipv4InterfaceContainer i = address.Assign (wifiDevices);
452  Ipv4Address sinkAddress = i.GetAddress (0);
453  Ipv4Address sinkAddress1 = i.GetAddress (1);
454  uint16_t port = 9;
455 
456  //Configure the CBR generator
457  PacketSinkHelper sink ("ns3::UdpSocketFactory", InetSocketAddress (sinkAddress, port));
458  ApplicationContainer apps_sink = sink.Install (wifiStaNodes.Get (0));
459 
460  OnOffHelper onoff ("ns3::UdpSocketFactory", InetSocketAddress (sinkAddress, port));
461  onoff.SetConstantRate (DataRate ("54Mb/s"), packetSize);
462  onoff.SetAttribute ("StartTime", TimeValue (Seconds (0.0)));
463  onoff.SetAttribute ("StopTime", TimeValue (Seconds (100.0)));
464  ApplicationContainer apps_source = onoff.Install (wifiApNodes.Get (0));
465 
466  PacketSinkHelper sink1 ("ns3::UdpSocketFactory", InetSocketAddress (sinkAddress1, port));
467  apps_sink.Add (sink1.Install (wifiStaNodes.Get (1)));
468 
469  OnOffHelper onoff1 ("ns3::UdpSocketFactory", InetSocketAddress (sinkAddress1, port));
470  onoff1.SetConstantRate (DataRate ("54Mb/s"), packetSize);
471  onoff1.SetAttribute ("StartTime", TimeValue (Seconds (0.0)));
472  onoff1.SetAttribute ("StopTime", TimeValue (Seconds (100.0)));
473  apps_source.Add (onoff1.Install (wifiApNodes.Get (1)));
474 
475  apps_sink.Start (Seconds (0.5));
476  apps_sink.Stop (Seconds (simuTime));
477 
478  //------------------------------------------------------------
479  //-- Setup stats and data collection
480  //--------------------------------------------
481 
482  //Statistics counters
483  NodeStatistics statisticsAp0 = NodeStatistics (wifiApDevices, wifiStaDevices);
484  NodeStatistics statisticsAp1 = NodeStatistics (wifiApDevices, wifiStaDevices);
485 
486  //Register packet receptions to calculate throughput
487  Config::Connect ("/NodeList/2/ApplicationList/*/$ns3::PacketSink/Rx",
488  MakeCallback (&NodeStatistics::RxCallback, &statisticsAp0));
489  Config::Connect ("/NodeList/3/ApplicationList/*/$ns3::PacketSink/Rx",
490  MakeCallback (&NodeStatistics::RxCallback, &statisticsAp1));
491 
492  //Register power and rate changes to calculate the Average Transmit Power
493  Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/PowerChange",
494  MakeCallback (&NodeStatistics::PowerCallback, &statisticsAp0));
495  Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/RateChange",
496  MakeCallback (&NodeStatistics::RateCallback, &statisticsAp0));
497  Config::Connect ("/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/PowerChange",
498  MakeCallback (&NodeStatistics::PowerCallback, &statisticsAp1));
499  Config::Connect ("/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/RateChange",
500  MakeCallback (&NodeStatistics::RateCallback, &statisticsAp1));
501 
502  Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/Phy/PhyTxBegin",
503  MakeCallback (&NodeStatistics::PhyCallback, &statisticsAp0));
504  Config::Connect ("/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/Phy/PhyTxBegin",
505  MakeCallback (&NodeStatistics::PhyCallback, &statisticsAp1));
506 
507  //Register States
508  Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/Phy/$ns3::YansWifiPhy/State/State",
509  MakeCallback (&NodeStatistics::StateCallback, &statisticsAp0));
510  Config::Connect ("/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/Phy/$ns3::YansWifiPhy/State/State",
511  MakeCallback (&NodeStatistics::StateCallback, &statisticsAp1));
512 
513  statisticsAp0.CheckStatistics (1);
514  statisticsAp1.CheckStatistics (1);
515 
516  //Callbacks to print every change of power and rate
517  Config::Connect ("/NodeList/[0-1]/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/PowerChange",
519  Config::Connect ("/NodeList/[0-1]/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager + "/RateChange",
521 
522 
523  //Calculate Throughput using Flowmonitor
524 
525  FlowMonitorHelper flowmon;
526  Ptr<FlowMonitor> monitor = flowmon.InstallAll ();
527 
528  Simulator::Stop (Seconds (simuTime));
529  Simulator::Run ();
530 
531  Ptr<Ipv4FlowClassifier> classifier = DynamicCast<Ipv4FlowClassifier> (flowmon.GetClassifier ());
532  std::map<FlowId, FlowMonitor::FlowStats> stats = monitor->GetFlowStats ();
533  for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i = stats.begin (); i != stats.end (); ++i)
534  {
535  Ipv4FlowClassifier::FiveTuple t = classifier->FindFlow (i->first);
536  if ((t.sourceAddress == "10.1.1.3" && t.destinationAddress == "10.1.1.1"))
537  {
538  NS_LOG_INFO ("Flow " << i->first << " (" << t.sourceAddress << " -> " << t.destinationAddress << ")\n");
539  NS_LOG_INFO (" Tx Bytes: " << i->second.txBytes << "\n");
540  NS_LOG_INFO (" Rx Bytes: " << i->second.rxBytes << "\n");
541  NS_LOG_UNCOND (" Throughput to 10.1.1.1: " << i->second.rxBytes * 8.0 / (i->second.timeLastRxPacket.GetSeconds () - i->second.timeFirstTxPacket.GetSeconds ()) / 1024 / 1024 << " Mbps\n");
542  NS_LOG_INFO (" Mean delay: " << i->second.delaySum.GetSeconds () / i->second.rxPackets << "\n");
543  NS_LOG_INFO (" Mean jitter: " << i->second.jitterSum.GetSeconds () / (i->second.rxPackets - 1) << "\n");
544  NS_LOG_INFO (" Tx Opp: " << 1 - (statisticsAp0.GetBusyTime () / simuTime));
545  }
546  if ((t.sourceAddress == "10.1.1.4" && t.destinationAddress == "10.1.1.2"))
547  {
548  NS_LOG_INFO ("Flow " << i->first << " (" << t.sourceAddress << " -> " << t.destinationAddress << ")\n");
549  NS_LOG_INFO (" Tx Bytes: " << i->second.txBytes << "\n");
550  NS_LOG_INFO (" Rx Bytes: " << i->second.rxBytes << "\n");
551  NS_LOG_UNCOND (" Throughput to 10.1.1.2: " << i->second.rxBytes * 8.0 / (i->second.timeLastRxPacket.GetSeconds () - i->second.timeFirstTxPacket.GetSeconds ()) / 1024 / 1024 << " Mbps\n");
552  NS_LOG_INFO (" Mean delay: " << i->second.delaySum.GetSeconds () / i->second.rxPackets << "\n");
553  NS_LOG_INFO (" Mean jitter: " << i->second.jitterSum.GetSeconds () / (i->second.rxPackets - 1) << "\n");
554  NS_LOG_INFO (" Tx Opp: " << 1 - (statisticsAp1.GetBusyTime () / simuTime));
555  }
556  }
557 
558  //Plots for AP0
559  std::ofstream outfileTh0 (("throughput-" + outputFileName + "-0.plt").c_str ());
560  Gnuplot gnuplot = Gnuplot (("throughput-" + outputFileName + "-0.eps").c_str (), "Throughput");
561  gnuplot.SetTerminal ("post eps color enhanced");
562  gnuplot.SetLegend ("Time (seconds)", "Throughput (Mb/s)");
563  gnuplot.SetTitle ("Throughput (AP0 to STA) vs time");
564  gnuplot.AddDataset (statisticsAp0.GetDatafile ());
565  gnuplot.GenerateOutput (outfileTh0);
566 
567  if (manager.compare ("ns3::ParfWifiManager") == 0
568  || manager.compare ("ns3::AparfWifiManager") == 0
569  || manager.compare ("ns3::RrpaaWifiManager") == 0)
570  {
571  std::ofstream outfilePower0 (("power-" + outputFileName + "-0.plt").c_str ());
572  gnuplot = Gnuplot (("power-" + outputFileName + "-0.eps").c_str (), "Average Transmit Power");
573  gnuplot.SetTerminal ("post eps color enhanced");
574  gnuplot.SetLegend ("Time (seconds)", "Power (mW)");
575  gnuplot.SetTitle ("Average transmit power (AP0 to STA) vs time");
576  gnuplot.AddDataset (statisticsAp0.GetPowerDatafile ());
577  gnuplot.GenerateOutput (outfilePower0);
578  }
579 
580  std::ofstream outfileTx0 (("tx-" + outputFileName + "-0.plt").c_str ());
581  gnuplot = Gnuplot (("tx-" + outputFileName + "-0.eps").c_str (), "Time in TX State");
582  gnuplot.SetTerminal ("post eps color enhanced");
583  gnuplot.SetLegend ("Time (seconds)", "Percent");
584  gnuplot.SetTitle ("Percentage time AP0 in TX state vs time");
585  gnuplot.AddDataset (statisticsAp0.GetTxDatafile ());
586  gnuplot.GenerateOutput (outfileTx0);
587 
588  std::ofstream outfileRx0 (("rx-" + outputFileName + "-0.plt").c_str ());
589  gnuplot = Gnuplot (("rx-" + outputFileName + "-0.eps").c_str (), "Time in RX State");
590  gnuplot.SetTerminal ("post eps color enhanced");
591  gnuplot.SetLegend ("Time (seconds)", "Percent");
592  gnuplot.SetTitle ("Percentage time AP0 in RX state vs time");
593  gnuplot.AddDataset (statisticsAp0.GetRxDatafile ());
594  gnuplot.GenerateOutput (outfileRx0);
595 
596  std::ofstream outfileBusy0 (("busy-" + outputFileName + "-0.plt").c_str ());
597  gnuplot = Gnuplot (("busy-" + outputFileName + "-0.eps").c_str (), "Time in Busy State");
598  gnuplot.SetTerminal ("post eps color enhanced");
599  gnuplot.SetLegend ("Time (seconds)", "Percent");
600  gnuplot.SetTitle ("Percentage time AP0 in Busy state vs time");
601  gnuplot.AddDataset (statisticsAp0.GetBusyDatafile ());
602  gnuplot.GenerateOutput (outfileBusy0);
603 
604  std::ofstream outfileIdle0 (("idle-" + outputFileName + "-0.plt").c_str ());
605  gnuplot = Gnuplot (("idle-" + outputFileName + "-0.eps").c_str (), "Time in Idle State");
606  gnuplot.SetTerminal ("post eps color enhanced");
607  gnuplot.SetLegend ("Time (seconds)", "Percent");
608  gnuplot.SetTitle ("Percentage time AP0 in Idle state vs time");
609  gnuplot.AddDataset (statisticsAp0.GetIdleDatafile ());
610  gnuplot.GenerateOutput (outfileIdle0);
611 
612  //Plots for AP1
613  std::ofstream outfileTh1 (("throughput-" + outputFileName + "-1.plt").c_str ());
614  gnuplot = Gnuplot (("throughput-" + outputFileName + "-1.eps").c_str (), "Throughput");
615  gnuplot.SetTerminal ("post eps color enhanced");
616  gnuplot.SetLegend ("Time (seconds)", "Throughput (Mb/s)");
617  gnuplot.SetTitle ("Throughput (AP1 to STA) vs time");
618  gnuplot.AddDataset (statisticsAp1.GetDatafile ());
619  gnuplot.GenerateOutput (outfileTh1);
620 
621  if (manager.compare ("ns3::ParfWifiManager") == 0
622  || manager.compare ("ns3::AparfWifiManager") == 0
623  || manager.compare ("ns3::RrpaaWifiManager") == 0)
624  {
625  std::ofstream outfilePower1 (("power-" + outputFileName + "-1.plt").c_str ());
626  gnuplot = Gnuplot (("power-" + outputFileName + "-1.eps").c_str (), "Average Transmit Power");
627  gnuplot.SetTerminal ("post eps color enhanced");
628  gnuplot.SetLegend ("Time (seconds)", "Power (mW)");
629  gnuplot.SetTitle ("Average transmit power (AP1 to STA) vs time");
630  gnuplot.AddDataset (statisticsAp1.GetPowerDatafile ());
631  gnuplot.GenerateOutput (outfilePower1);
632  }
633 
634  std::ofstream outfileTx1 (("tx-" + outputFileName + "-1.plt").c_str ());
635  gnuplot = Gnuplot (("tx-" + outputFileName + "-1.eps").c_str (), "Time in TX State");
636  gnuplot.SetTerminal ("post eps color enhanced");
637  gnuplot.SetLegend ("Time (seconds)", "Percent");
638  gnuplot.SetTitle ("Percentage time AP1 in TX state vs time");
639  gnuplot.AddDataset (statisticsAp1.GetTxDatafile ());
640  gnuplot.GenerateOutput (outfileTx1);
641 
642  std::ofstream outfileRx1 (("rx-" + outputFileName + "-1.plt").c_str ());
643  gnuplot = Gnuplot (("rx-" + outputFileName + "-1.eps").c_str (), "Time in RX State");
644  gnuplot.SetTerminal ("post eps color enhanced");
645  gnuplot.SetLegend ("Time (seconds)", "Percent");
646  gnuplot.SetTitle ("Percentage time AP1 in RX state vs time");
647  gnuplot.AddDataset (statisticsAp1.GetRxDatafile ());
648  gnuplot.GenerateOutput (outfileRx1);
649 
650  std::ofstream outfileBusy1 (("busy-" + outputFileName + "-1.plt").c_str ());
651  gnuplot = Gnuplot (("busy-" + outputFileName + "-1.eps").c_str (), "Time in Busy State");
652  gnuplot.SetTerminal ("post eps color enhanced");
653  gnuplot.SetLegend ("Time (seconds)", "Percent");
654  gnuplot.SetTitle ("Percentage time AP1 in Busy state vs time");
655  gnuplot.AddDataset (statisticsAp1.GetBusyDatafile ());
656  gnuplot.GenerateOutput (outfileBusy1);
657 
658  std::ofstream outfileIdle1 (("idle-" + outputFileName + "-1.plt").c_str ());
659  gnuplot = Gnuplot (("idle-" + outputFileName + "-1.eps").c_str (), "Time in Idle State");
660  gnuplot.SetTerminal ("post eps color enhanced");
661  gnuplot.SetLegend ("Time (seconds)", "Percent");
662  gnuplot.SetTitle ("Percentage time AP1 in Idle state vs time");
663  gnuplot.AddDataset (statisticsAp1.GetIdleDatafile ());
664  gnuplot.GenerateOutput (outfileIdle1);
665 
667 
668  return 0;
669 }
Ptr< PacketSink > sink
Definition: wifi-tcp.cc:56
void Set(std::string name, const AttributeValue &v)
Definition: wifi-helper.cc:140
holds a vector of ns3::Application pointers.
static EventId Schedule(Time const &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:557
void SetupPhy(Ptr< WifiPhy > phy)
Ptr< NetDevice > Get(uint32_t i) const
Get the Ptr<NetDevice> stored in this container at a given index.
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:103
an Inet address class
void SetType(std::string type, Args &&... args)
This class mimics the TXVECTOR which is to be passed to the PHY in order to define the parameters whi...
Class to represent a 2D points plot.
Definition: gnuplot.h:117
holds a vector of std::pair of Ptr<Ipv4> and interface index.
void SetChannelWidth(uint16_t channelWidth)
Sets the selected channelWidth (in MHz)
uint32_t GetSize(void) const
Returns the the size in bytes of the packet (including the zero-filled initial payload).
Definition: packet.h:852
Make it easy to create and manage PHY objects for the YANS model.
static YansWifiChannelHelper Default(void)
Create a channel helper in a default working state.
void Add(ApplicationContainer other)
Append the contents of another ApplicationContainer to the end of this container. ...
Ipv4Address destinationAddress
Destination address.
double GetSeconds(void) const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:380
Mac48Address GetAddr1(void) const
Return the address in the Address 1 field.
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file...
Definition: assert.h:67
static void Run(void)
Run the simulation.
Definition: simulator.cc:172
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
const FlowStatsContainer & GetFlowStats() const
Retrieve all collected the flow statistics.
aggregate IP/TCP/UDP functionality to existing Nodes.
void RateCallback(std::string path, DataRate oldRate, DataRate newRate, Mac48Address dest)
void AddDataset(const GnuplotDataset &dataset)
Definition: gnuplot.cc:756
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
A helper to make it easier to instantiate an ns3::PacketSinkApplication on a set of nodes...
cmd
Definition: second.py:35
WifiMacType GetType(void) const
Return the type (enum WifiMacType)
STL namespace.
helps to create WifiNetDevice objects
Definition: wifi-helper.h:326
A helper to make it easier to instantiate an ns3::OnOffApplication on a set of nodes.
Definition: on-off-helper.h:42
stack
Definition: first.py:41
Gnuplot2dDataset GetPowerDatafile()
uint16_t port
Definition: dsdv-manet.cc:45
a polymophic address class
Definition: address.h:90
Ptr< YansWifiChannel > Create(void) const
mobility
Definition: third.py:108
phy
Definition: third.py:93
void RxCallback(std::string path, Ptr< const Packet > packet, const Address &from)
void StateCallback(std::string path, Time init, Time duration, WifiPhyState state)
Class for representing data rates.
Definition: data-rate.h:88
void SetChannel(Ptr< YansWifiChannel > channel)
Time GetCalcTxTime(DataRate rate)
void PhyCallback(std::string path, Ptr< const Packet > packet, double powerW)
void PowerCallback(std::string path, double oldPower, double newPower, Mac48Address dest)
a simple class to generate gnuplot-ready plotting commands from a set of datasets.
Definition: gnuplot.h:371
AttributeValue implementation for Time.
Definition: nstime.h:1353
Ipv4Address GetAddress(uint32_t i, uint32_t j=0) const
void SetTitle(const std::string &title)
Definition: gnuplot.cc:730
void Add(NetDeviceContainer other)
Append the contents of another NetDeviceContainer to the end of this container.
Hold an unsigned integer type.
Definition: uinteger.h:44
ssid
Definition: third.py:100
holds a vector of ns3::NetDevice pointers
The PHY layer has sense the medium busy through the CCA mechanism.
uint32_t PeekHeader(Header &header) const
Deserialize but does not remove the header from the internal buffer.
Definition: packet.cc:290
void GenerateOutput(std::ostream &os)
Writes gnuplot commands and data values to a single output stream.
Definition: gnuplot.cc:762
Ptr< FlowMonitor > InstallAll()
Enable flow monitoring on all nodes.
void Start(Time start)
Arrange for all of the Applications in this container to Start() at the Time given as a parameter...
Parse command-line arguments.
Definition: command-line.h:227
void Connect(std::string path, const CallbackBase &cb)
Definition: config.cc:920
void SetLegend(const std::string &xLegend, const std::string &yLegend)
Definition: gnuplot.cc:736
static void Destroy(void)
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:136
Ptr< WifiPhy > GetPhy(void) const
Ptr< FlowClassifier > GetClassifier()
Retrieve the FlowClassifier object for IPv4 created by the Install* methods.
void RateCallback(std::string path, DataRate oldRate, DataRate newRate, Mac48Address dest)
Every class exported by the ns3 library is enclosed in the ns3 namespace.
keep track of a set of node pointers.
address
Definition: first.py:44
void SetPreambleType(WifiPreamble preamble)
Sets the preamble type.
The PHY layer is IDLE.
void PowerCallback(std::string path, double oldPower, double newPower, Mac48Address dest)
WifiPhyState
The state of the PHY layer.
std::vector< std::pair< Time, DataRate > > TxTime
#define NS_LOG_UNCOND(msg)
Output the requested message unconditionally.
an EUI-48 address
Definition: mac48-address.h:43
Helper to enable IP flow monitoring on a set of Nodes.
manage and create wifi channel objects for the YANS model.
create MAC layers for a ns3::WifiNetDevice.
Structure to classify a packet.
static Time Now(void)
Return the current simulation virtual time.
Definition: simulator.cc:195
The IEEE 802.11 SSID Information Element.
Definition: ssid.h:35
void SetMode(WifiMode mode)
Sets the selected payload transmission mode.
static const uint32_t packetSize
wifi
Definition: third.py:96
Helper class used to assign positions and mobility models to nodes.
FiveTuple FindFlow(FlowId flowId) const
Searches for the FiveTuple corresponding to the given flowId.
Ipv4 addresses are stored in host order in this class.
Definition: ipv4-address.h:41
void Stop(Time stop)
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter...
Ptr< WifiMac > GetMac(void) const
The PHY layer is sending a packet.
static void Stop(void)
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:180
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1289
uint32_t GetN(void) const
Get the number of Ptr<NetDevice> stored in this container.
AttributeValue implementation for Ssid.
Definition: ssid.h:105
The PHY layer is receiving a packet.
void Add(Vector v)
Add a position to the list of positions.
NodeStatistics(NetDeviceContainer aps, NetDeviceContainer stas)
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
Time MicroSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1305
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
wifiStaNodes
Definition: third.py:88
void SetTerminal(const std::string &terminal)
Definition: gnuplot.cc:724
This class can be used to hold variables of floating point type such as &#39;double&#39; or &#39;float&#39;...
Definition: double.h:41
void(* DataRate)(DataRate oldValue, DataRate newValue)
TracedValue callback signature for DataRate.
Definition: data-rate.h:329
Ipv4Address sourceAddress
Source address.
Callback< R, Ts... > MakeCallback(R(T::*memPtr)(Ts...), OBJ objPtr)
Build Callbacks for class method members which take varying numbers of arguments and potentially retu...
Definition: callback.h:1642
Implements the IEEE 802.11 MAC header.