A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
lte-ue-phy.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2010 TELEMATICS LAB, DEE - Politecnico di Bari
3 * Copyright (c) 2018 Fraunhofer ESK : RLF extensions
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Giuseppe Piro <g.piro@poliba.it>
19 * Marco Miozzo <marco.miozzo@cttc.es>
20 * Nicola Baldo <nbaldo@cttc.es>
21 * Modified by:
22 * Vignesh Babu <ns3-dev@esk.fraunhofer.de> (RLF extensions)
23 */
24
25#include "lte-ue-phy.h"
26
27#include "ff-mac-common.h"
28#include "lte-amc.h"
29#include "lte-chunk-processor.h"
30#include "lte-enb-net-device.h"
31#include "lte-enb-phy.h"
32#include "lte-net-device.h"
34#include "lte-ue-mac.h"
35#include "lte-ue-net-device.h"
36
37#include <ns3/boolean.h>
38#include <ns3/double.h>
39#include <ns3/log.h>
40#include <ns3/lte-common.h>
41#include <ns3/lte-ue-power-control.h>
42#include <ns3/node.h>
43#include <ns3/object-factory.h>
44#include <ns3/pointer.h>
45#include <ns3/simulator.h>
46
47#include <cfloat>
48#include <cmath>
49
50namespace ns3
51{
52
53NS_LOG_COMPONENT_DEFINE("LteUePhy");
54
62static const Time UL_DATA_DURATION = NanoSeconds(1e6 - 71429 - 1);
63
69
71// member SAP forwarders
73
76{
77 public:
84
85 // inherited from LtePhySapProvider
86 void SendMacPdu(Ptr<Packet> p) override;
88 void SendRachPreamble(uint32_t prachId, uint32_t raRnti) override;
89 void NotifyConnectionSuccessful() override;
90
91 private:
93};
94
96 : m_phy(phy)
97{
98}
99
100void
102{
104}
105
106void
108{
110}
111
112void
114{
115 m_phy->DoSendRachPreamble(prachId, raRnti);
116}
117
118void
120{
122}
123
125// LteUePhy methods
127
129static const std::string g_uePhyStateName[LteUePhy::NUM_STATES] = {
130 "CELL_SEARCH",
131 "SYNCHRONIZED",
132};
133
138static inline const std::string&
140{
141 return g_uePhyStateName[s];
142}
143
145
147{
148 NS_LOG_FUNCTION(this);
149 NS_FATAL_ERROR("This constructor should not be called");
150}
151
153 : LtePhy(dlPhy, ulPhy),
154 m_uePhySapUser(nullptr),
155 m_ueCphySapUser(nullptr),
156 m_state(CELL_SEARCH),
157 m_subframeNo(0),
158 m_rsReceivedPowerUpdated(false),
159 m_rsInterferencePowerUpdated(false),
160 m_dataInterferencePowerUpdated(false),
161 m_pssReceived(false),
162 m_ueMeasurementsFilterPeriod(MilliSeconds(200)),
163 m_ueMeasurementsFilterLast(MilliSeconds(0)),
164 m_rsrpSinrSampleCounter(0),
165 m_imsi(0)
166{
167 m_amc = CreateObject<LteAmc>();
168 m_powerControl = CreateObject<LteUePowerControl>();
172
173 NS_ASSERT_MSG(Simulator::Now().GetNanoSeconds() == 0,
174 "Cannot create UE devices after simulation started");
176
177 DoReset();
178}
179
181{
182 m_txModeGain.clear();
183}
184
185void
187{
188 NS_LOG_FUNCTION(this);
189 delete m_uePhySapProvider;
190 delete m_ueCphySapProvider;
192}
193
194TypeId
196{
197 static TypeId tid =
198 TypeId("ns3::LteUePhy")
199 .SetParent<LtePhy>()
200 .SetGroupName("Lte")
201 .AddConstructor<LteUePhy>()
202 .AddAttribute("TxPower",
203 "Transmission power in dBm",
204 DoubleValue(10.0),
206 MakeDoubleChecker<double>())
207 .AddAttribute(
208 "NoiseFigure",
209 "Loss (dB) in the Signal-to-Noise-Ratio due to non-idealities in the receiver."
210 " According to Wikipedia (http://en.wikipedia.org/wiki/Noise_figure), this is "
211 "\"the difference in decibels (dB) between"
212 " the noise output of the actual receiver to the noise output of an "
213 " ideal receiver with the same overall gain and bandwidth when the receivers "
214 " are connected to sources at the standard noise temperature T0.\" "
215 "In this model, we consider T0 = 290K.",
216 DoubleValue(9.0),
218 MakeDoubleChecker<double>())
219 .AddAttribute("TxMode1Gain",
220 "Transmission mode 1 gain in dB",
221 DoubleValue(0.0),
223 MakeDoubleChecker<double>())
224 .AddAttribute("TxMode2Gain",
225 "Transmission mode 2 gain in dB",
226 DoubleValue(4.2),
228 MakeDoubleChecker<double>())
229 .AddAttribute("TxMode3Gain",
230 "Transmission mode 3 gain in dB",
231 DoubleValue(-2.8),
233 MakeDoubleChecker<double>())
234 .AddAttribute("TxMode4Gain",
235 "Transmission mode 4 gain in dB",
236 DoubleValue(0.0),
238 MakeDoubleChecker<double>())
239 .AddAttribute("TxMode5Gain",
240 "Transmission mode 5 gain in dB",
241 DoubleValue(0.0),
243 MakeDoubleChecker<double>())
244 .AddAttribute("TxMode6Gain",
245 "Transmission mode 6 gain in dB",
246 DoubleValue(0.0),
248 MakeDoubleChecker<double>())
249 .AddAttribute("TxMode7Gain",
250 "Transmission mode 7 gain in dB",
251 DoubleValue(0.0),
253 MakeDoubleChecker<double>())
254 .AddTraceSource("ReportCurrentCellRsrpSinr",
255 "RSRP and SINR statistics.",
257 "ns3::LteUePhy::RsrpSinrTracedCallback")
258 .AddAttribute("RsrpSinrSamplePeriod",
259 "The sampling period for reporting RSRP-SINR stats (default value 1)",
260 UintegerValue(1),
262 MakeUintegerChecker<uint16_t>())
263 .AddTraceSource("ReportUlPhyResourceBlocks",
264 "UL transmission PHY layer resource blocks.",
266 "ns3::LteUePhy::UlPhyResourceBlocksTracedCallback")
267 .AddTraceSource("ReportPowerSpectralDensity",
268 "Power Spectral Density data.",
270 "ns3::LteUePhy::PowerSpectralDensityTracedCallback")
271 .AddTraceSource("UlPhyTransmission",
272 "DL transmission PHY layer statistics.",
274 "ns3::PhyTransmissionStatParameters::TracedCallback")
275 .AddAttribute("DlSpectrumPhy",
276 "The downlink LteSpectrumPhy associated to this LtePhy",
278 PointerValue(),
280 MakePointerChecker<LteSpectrumPhy>())
281 .AddAttribute("UlSpectrumPhy",
282 "The uplink LteSpectrumPhy associated to this LtePhy",
284 PointerValue(),
286 MakePointerChecker<LteSpectrumPhy>())
287 .AddAttribute("RsrqUeMeasThreshold",
288 "Receive threshold for PSS on RSRQ [dB]",
289 DoubleValue(-1000.0),
291 MakeDoubleChecker<double>())
292 .AddAttribute("UeMeasurementsFilterPeriod",
293 "Time period for reporting UE measurements, i.e., the"
294 "length of layer-1 filtering.",
298 .AddAttribute("DownlinkCqiPeriodicity",
299 "Periodicity in milliseconds for reporting the"
300 "wideband and subband downlink CQIs to the eNB",
304 .AddTraceSource("ReportUeMeasurements",
305 "Report UE measurements RSRP (dBm) and RSRQ (dB).",
307 "ns3::LteUePhy::RsrpRsrqTracedCallback")
308 .AddTraceSource("StateTransition",
309 "Trace fired upon every UE PHY state transition",
311 "ns3::LteUePhy::StateTracedCallback")
312 .AddAttribute("EnableUplinkPowerControl",
313 "If true, Uplink Power Control will be enabled.",
314 BooleanValue(true),
317 .AddAttribute("Qout",
318 "corresponds to 10% block error rate of a hypothetical PDCCH transmission"
319 "taking into account the PCFICH errors with transmission parameters."
320 "see 3GPP TS 36.213 4.2.1 and TS 36.133 7.6",
321 DoubleValue(-5),
323 MakeDoubleChecker<double>())
324 .AddAttribute("Qin",
325 "corresponds to 2% block error rate of a hypothetical PDCCH transmission"
326 "taking into account the PCFICH errors with transmission parameters."
327 "see 3GPP TS 36.213 4.2.1 and TS 36.133 7.6",
328 DoubleValue(-3.9),
330 MakeDoubleChecker<double>())
331 .AddAttribute(
332 "NumQoutEvalSf",
333 "This specifies the total number of consecutive subframes"
334 "which corresponds to the Qout evaluation period",
335 UintegerValue(200), // see 3GPP 3GPP TS 36.133 7.6.2.1
337 MakeUintegerChecker<uint16_t>())
338 .AddAttribute(
339 "NumQinEvalSf",
340 "This specifies the total number of consecutive subframes"
341 "which corresponds to the Qin evaluation period",
342 UintegerValue(100), // see 3GPP 3GPP TS 36.133 7.6.2.1
344 MakeUintegerChecker<uint16_t>())
345 .AddAttribute("EnableRlfDetection",
346 "If true, RLF detection will be enabled.",
347 BooleanValue(true),
350 return tid;
351}
352
353void
355{
356 NS_LOG_FUNCTION(this);
357
358 NS_ABORT_MSG_IF(!m_netDevice, "LteNetDevice is not available in LteUePhy");
359 Ptr<Node> node = m_netDevice->GetNode();
360 NS_ABORT_MSG_IF(!node, "Node is not available in the LteNetDevice of LteUePhy");
361 uint32_t nodeId = node->GetId();
362
363 // ScheduleWithContext() is needed here to set context for logs,
364 // because Initialize() is called outside of Node::AddDevice().
365
367
369}
370
371void
373{
374 NS_LOG_FUNCTION(this);
375 m_uePhySapUser = s;
376}
377
380{
381 NS_LOG_FUNCTION(this);
382 return (m_uePhySapProvider);
383}
384
385void
387{
388 NS_LOG_FUNCTION(this);
389 m_ueCphySapUser = s;
390}
391
394{
395 NS_LOG_FUNCTION(this);
396 return (m_ueCphySapProvider);
397}
398
399void
401{
402 NS_LOG_FUNCTION(this << nf);
403 m_noiseFigure = nf;
404}
405
406double
408{
409 NS_LOG_FUNCTION(this);
410 return m_noiseFigure;
411}
412
413void
415{
416 NS_LOG_FUNCTION(this << pow);
417 m_txPower = pow;
419}
420
421double
423{
424 NS_LOG_FUNCTION(this);
425 return m_txPower;
426}
427
430{
431 NS_LOG_FUNCTION(this);
432 return m_powerControl;
433}
434
435uint8_t
437{
438 return (m_macChTtiDelay);
439}
440
443{
445}
446
449{
450 return m_uplinkSpectrumPhy;
451}
452
453void
454LteUePhy::SetNumQoutEvalSf(uint16_t numSubframes)
455{
456 NS_LOG_FUNCTION(this << numSubframes);
457 NS_ABORT_MSG_IF(numSubframes % 10 != 0,
458 "Number of subframes used for Qout "
459 "evaluation must be multiple of 10");
460 m_numOfQoutEvalSf = numSubframes;
461}
462
463void
464LteUePhy::SetNumQinEvalSf(uint16_t numSubframes)
465{
466 NS_LOG_FUNCTION(this << numSubframes);
467 NS_ABORT_MSG_IF(numSubframes % 10 != 0,
468 "Number of subframes used for Qin "
469 "evaluation must be multiple of 10");
470 m_numOfQinEvalSf = numSubframes;
471}
472
473uint16_t
475{
476 NS_LOG_FUNCTION(this);
477 return m_numOfQoutEvalSf;
478}
479
480uint16_t
482{
483 NS_LOG_FUNCTION(this);
484 return m_numOfQinEvalSf;
485}
486
487void
489{
490 NS_LOG_FUNCTION(this);
491
492 SetMacPdu(p);
493}
494
495void
497{
499}
500
501void
503{
504 NS_LOG_FUNCTION(this);
505
507
509 m_uplinkSpectrumPhy->SetTxPowerSpectralDensity(txPsd);
510}
511
512void
514{
515 NS_LOG_FUNCTION(this);
517}
518
519std::vector<int>
521{
522 NS_LOG_FUNCTION(this);
524}
525
526std::vector<int>
528{
529 NS_LOG_FUNCTION(this);
531}
532
535{
536 NS_LOG_FUNCTION(this);
540 m_txPower,
543
544 return psd;
545}
546
547void
549{
550 NS_LOG_FUNCTION(this);
560 if (m_cellId == 0)
561 {
562 return;
563 }
564 m_ctrlSinrForRlf = sinr;
566}
567
568void
570{
571 NS_LOG_FUNCTION(this << sinr);
572
574 NS_ASSERT(m_cellId > 0);
575
576 if (m_dlConfigured && m_ulConfigured && (m_rnti > 0))
577 {
578 // check periodic wideband CQI
580 {
581 NS_LOG_DEBUG("Reporting P10 CQI at : " << Simulator::Now().As(Time::MS)
582 << ". Last reported at : "
584 Ptr<LteUeNetDevice> thisDevice = GetDevice()->GetObject<LteUeNetDevice>();
586 if (msg)
587 {
589 }
591 }
592 // check aperiodic high-layer configured subband CQI
594 {
595 NS_LOG_DEBUG("Reporting A30 CQI at : " << Simulator::Now().As(Time::MS)
596 << ". Last reported at : "
598 Ptr<LteUeNetDevice> thisDevice = GetDevice()->GetObject<LteUeNetDevice>();
600 if (msg)
601 {
603 }
605 }
606 }
607
608 // Generate PHY trace
611 {
612 NS_ASSERT_MSG(m_rsReceivedPowerUpdated, " RS received power info obsolete");
613 // RSRP evaluated as averaged received power among RBs
614 double sum = 0.0;
615 uint8_t rbNum = 0;
616 Values::const_iterator it;
618 it++)
619 {
620 // convert PSD [W/Hz] to linear power [W] for the single RE
621 // we consider only one RE for the RS since the channel is
622 // flat within the same RB
623 double powerTxW = ((*it) * 180000.0) / 12.0;
624 sum += powerTxW;
625 rbNum++;
626 }
627 double rsrp = (rbNum > 0) ? (sum / rbNum) : DBL_MAX;
628 // averaged SINR among RBs
629 double avSinr = ComputeAvgSinr(sinr);
630
631 NS_LOG_INFO(this << " cellId " << m_cellId << " rnti " << m_rnti << " RSRP " << rsrp
632 << " SINR " << avSinr << " ComponentCarrierId "
633 << (uint16_t)m_componentCarrierId);
634 // trigger RLF detection only when UE has an active RRC connection
635 // and RLF detection attribute is set to true
637 {
638 double avrgSinrForRlf = ComputeAvgSinr(m_ctrlSinrForRlf);
639 RlfDetection(10 * log10(avrgSinrForRlf));
640 }
641
643 m_rnti,
644 rsrp,
645 avSinr,
646 (uint16_t)m_componentCarrierId);
648 }
649
650 if (m_pssReceived)
651 {
652 // measure instantaneous RSRQ now
653 NS_ASSERT_MSG(m_rsInterferencePowerUpdated, " RS interference power info obsolete");
654
655 std::list<PssElement>::iterator itPss = m_pssList.begin();
656 while (itPss != m_pssList.end())
657 {
658 uint16_t rbNum = 0;
659 double rssiSum = 0.0;
660
661 Values::const_iterator itIntN = m_rsInterferencePower.ConstValuesBegin();
662 Values::const_iterator itPj = m_rsReceivedPower.ConstValuesBegin();
665 itIntN++, itPj++)
666 {
667 rbNum++;
668 // convert PSD [W/Hz] to linear power [W] for the single RE
669 double interfPlusNoisePowerTxW = ((*itIntN) * 180000.0) / 12.0;
670 double signalPowerTxW = ((*itPj) * 180000.0) / 12.0;
671 rssiSum += (2 * (interfPlusNoisePowerTxW + signalPowerTxW));
672 }
673
674 NS_ASSERT(rbNum == (*itPss).nRB);
675 double rsrq_dB = 10 * log10((*itPss).pssPsdSum / rssiSum);
676
677 if (rsrq_dB > m_pssReceptionThreshold)
678 {
679 NS_LOG_INFO(this << " PSS RNTI " << m_rnti << " cellId " << m_cellId << " has RSRQ "
680 << rsrq_dB << " and RBnum " << rbNum);
681 // store measurements
682 std::map<uint16_t, UeMeasurementsElement>::iterator itMeasMap;
683 itMeasMap = m_ueMeasurementsMap.find((*itPss).cellId);
684 if (itMeasMap != m_ueMeasurementsMap.end())
685 {
686 (*itMeasMap).second.rsrqSum += rsrq_dB;
687 (*itMeasMap).second.rsrqNum++;
688 }
689 else
690 {
691 NS_LOG_WARN("race condition of bug 2091 occurred");
692 }
693 }
694
695 itPss++;
696
697 } // end of while (itPss != m_pssList.end ())
698
699 m_pssList.clear();
700
701 } // end of if (m_pssReceived)
702
703} // end of void LteUePhy::GenerateCtrlCqiReport (const SpectrumValue& sinr)
704
705double
707{
708 NS_LOG_FUNCTION(this);
709
710 // averaged SINR among RBs
711 double sum = 0.0;
712 uint8_t rbNum = 0;
713 Values::const_iterator it;
714
715 for (it = sinr.ConstValuesBegin(); it != sinr.ConstValuesEnd(); it++)
716 {
717 sum += (*it);
718 rbNum++;
719 }
720
721 double avrgSinr = (rbNum > 0) ? (sum / rbNum) : DBL_MAX;
722
723 return avrgSinr;
724}
725
726void
728{
729 // Not used by UE, CQI are based only on RS
730}
731
732void
734{
735 NS_LOG_FUNCTION(this);
736
746 if (m_cellId == 0)
747 {
748 return;
749 }
750
752 // NOTE: The SINR received by this method is
753 // based on CTRL, which is not used to compute
754 // PDSCH (i.e., data) based SINR. It is used
755 // for RLF detection.
756 m_ctrlSinrForRlf = sinr;
757
760 {
761 // we have a measurement of interf + noise for the denominator
762 // of SINR = S/(I+N)
763 mixedSinr /= m_dataInterferencePower;
765 NS_LOG_LOGIC("data interf measurement available, SINR = " << mixedSinr);
766 }
767 else
768 {
769 // we did not see any interference on data, so interference is
770 // there and we have only noise at the denominator of SINR
771 mixedSinr /= (*m_noisePsd);
772 NS_LOG_LOGIC("no data interf measurement available, SINR = " << mixedSinr);
773 }
774
775 /*
776 * some RBs are not used in PDSCH and their SINR is very high
777 * for example with bandwidth 25, last RB is not used
778 * it can make avgSinr value very high, what is incorrect
779 */
780 uint32_t rbgSize = GetRbgSize();
781 uint32_t modulo = m_dlBandwidth % rbgSize;
782 double avgMixedSinr = 0;
783 uint32_t usedRbgNum = 0;
784 for (uint32_t i = 0; i < (m_dlBandwidth - 1 - modulo); i++)
785 {
786 usedRbgNum++;
787 avgMixedSinr += mixedSinr[i];
788 }
789 avgMixedSinr = avgMixedSinr / usedRbgNum;
790 for (uint32_t i = 0; i < modulo; i++)
791 {
792 mixedSinr[m_dlBandwidth - 1 - i] = avgMixedSinr;
793 }
794
795 GenerateCqiRsrpRsrq(mixedSinr);
796}
797
798void
800{
801 NS_LOG_FUNCTION(this << interf);
803 m_rsInterferencePower = interf;
804}
805
806void
808{
809 NS_LOG_FUNCTION(this << interf);
810
813}
814
815void
817{
818 NS_LOG_FUNCTION(this << power);
820 m_rsReceivedPower = power;
821
823 {
824 double sum = 0;
825 Values::const_iterator it;
827 it++)
828 {
829 double powerTxW = ((*it) * 180000);
830 sum += powerTxW;
831 }
832 double rsrp = 10 * log10(sum) + 30;
833
834 NS_LOG_INFO("RSRP: " << rsrp);
835 m_powerControl->SetRsrp(rsrp);
836 }
837}
838
841{
842 NS_LOG_FUNCTION(this);
843
844 // apply transmission mode gain
846 SpectrumValue newSinr = sinr;
847 newSinr *= m_txModeGain.at(m_transmissionMode);
848
849 // CREATE DlCqiLteControlMessage
850 Ptr<DlCqiLteControlMessage> msg = Create<DlCqiLteControlMessage>();
851 CqiListElement_s dlcqi;
852 std::vector<int> cqi;
854 {
855 cqi = m_amc->CreateCqiFeedbacks(newSinr, m_dlBandwidth);
856
858 auto nbSubChannels = cqi.size();
859 double cqiSum = 0.0;
860 int activeSubChannels = 0;
861 // average the CQIs of the different RBs
862 for (std::size_t i = 0; i < nbSubChannels; i++)
863 {
864 if (cqi.at(i) != -1)
865 {
866 cqiSum += cqi.at(i);
867 activeSubChannels++;
868 }
869 NS_LOG_DEBUG(this << " subch " << i << " cqi " << cqi.at(i));
870 }
871 dlcqi.m_rnti = m_rnti;
872 dlcqi.m_ri = 1; // not yet used
873 dlcqi.m_cqiType = CqiListElement_s::P10; // Periodic CQI using PUCCH wideband
874 NS_ASSERT_MSG(nLayer > 0, " nLayer negative");
875 NS_ASSERT_MSG(nLayer < 3, " nLayer limit is 2s");
876 for (uint8_t i = 0; i < nLayer; i++)
877 {
878 if (activeSubChannels > 0)
879 {
880 dlcqi.m_wbCqi.push_back((uint16_t)cqiSum / activeSubChannels);
881 }
882 else
883 {
884 // approximate with the worst case -> CQI = 1
885 dlcqi.m_wbCqi.push_back(1);
886 }
887 }
888 // NS_LOG_DEBUG (this << " Generate P10 CQI feedback " << (uint16_t) cqiSum /
889 // activeSubChannels);
890 dlcqi.m_wbPmi = 0; // not yet used
891 // dl.cqi.m_sbMeasResult others CQI report modes: not yet implemented
892 }
894 {
895 cqi = m_amc->CreateCqiFeedbacks(newSinr, GetRbgSize());
897 auto nbSubChannels = cqi.size();
898 int rbgSize = GetRbgSize();
899 double cqiSum = 0.0;
900 int cqiNum = 0;
901 SbMeasResult_s rbgMeas;
902 // NS_LOG_DEBUG (this << " Create A30 CQI feedback, RBG " << rbgSize << " cqiNum " <<
903 // nbSubChannels << " band " << (uint16_t)m_dlBandwidth);
904 for (std::size_t i = 0; i < nbSubChannels; i++)
905 {
906 if (cqi.at(i) != -1)
907 {
908 cqiSum += cqi.at(i);
909 }
910 // else "nothing" no CQI is treated as CQI = 0 (worst case scenario)
911 cqiNum++;
912 if (cqiNum == rbgSize)
913 {
914 // average the CQIs of the different RBGs
915 // NS_LOG_DEBUG (this << " RBG CQI " << (uint16_t) cqiSum / rbgSize);
917 hlCqi.m_sbPmi = 0; // not yet used
918 for (uint8_t i = 0; i < nLayer; i++)
919 {
920 hlCqi.m_sbCqi.push_back((uint16_t)cqiSum / rbgSize);
921 }
922 rbgMeas.m_higherLayerSelected.push_back(hlCqi);
923 cqiSum = 0.0;
924 cqiNum = 0;
925 }
926 }
927 dlcqi.m_rnti = m_rnti;
928 dlcqi.m_ri = 1; // not yet used
929 dlcqi.m_cqiType = CqiListElement_s::A30; // Aperidic CQI using PUSCH
930 // dlcqi.m_wbCqi.push_back ((uint16_t) cqiSum / nbSubChannels);
931 dlcqi.m_wbPmi = 0; // not yet used
932 dlcqi.m_sbMeasResult = rbgMeas;
933 }
934
935 msg->SetDlCqi(dlcqi);
936 return msg;
937}
938
939void
941{
943 NS_LOG_DEBUG(this << " Report UE Measurements ");
944
946
947 std::map<uint16_t, UeMeasurementsElement>::iterator it;
948 for (it = m_ueMeasurementsMap.begin(); it != m_ueMeasurementsMap.end(); it++)
949 {
950 double avg_rsrp = (*it).second.rsrpSum / (double)(*it).second.rsrpNum;
951 double avg_rsrq = (*it).second.rsrqSum / (double)(*it).second.rsrqNum;
952 /*
953 * In CELL_SEARCH state, this may result in avg_rsrq = 0/0 = -nan.
954 * UE RRC must take this into account when receiving measurement reports.
955 * TODO remove this shortcoming by calculating RSRQ during CELL_SEARCH
956 */
957 NS_LOG_DEBUG(this << " CellId " << (*it).first << " RSRP " << avg_rsrp << " (nSamples "
958 << (uint16_t)(*it).second.rsrpNum << ")"
959 << " RSRQ " << avg_rsrq << " (nSamples " << (uint16_t)(*it).second.rsrqNum
960 << ")"
961 << " ComponentCarrierID " << (uint16_t)m_componentCarrierId);
962
964 newEl.m_cellId = (*it).first;
965 newEl.m_rsrp = avg_rsrp;
966 newEl.m_rsrq = avg_rsrq;
967 ret.m_ueMeasurementsList.push_back(newEl);
969
970 // report to UE measurements trace
972 (*it).first,
973 avg_rsrp,
974 avg_rsrq,
975 ((*it).first == m_cellId ? 1 : 0),
977 }
978
979 // report to RRC
981
982 m_ueMeasurementsMap.clear();
984}
985
986void
988{
989 NS_LOG_FUNCTION(this << cqiPeriodicity);
990 m_a30CqiPeriodicity = cqiPeriodicity;
991 m_p10CqiPeriodicity = cqiPeriodicity;
992}
993
994void
996{
997 NS_LOG_FUNCTION(this << msg);
998
1000}
1001
1002void
1004{
1005 NS_LOG_FUNCTION(this << raPreambleId);
1006
1007 // unlike other control messages, RACH preamble is sent ASAP
1008 Ptr<RachPreambleLteControlMessage> msg = Create<RachPreambleLteControlMessage>();
1009 msg->SetRapId(raPreambleId);
1010 m_raPreambleId = raPreambleId;
1011 m_raRnti = raRnti;
1012 m_controlMessagesQueue.at(0).emplace_back(msg);
1013}
1014
1015void
1017{
1023 if (m_componentCarrierId == 0)
1024 {
1025 m_isConnected = true;
1026 // Initialize the parameters for radio link failure detection
1028 }
1029}
1030
1031void
1033{
1034 NS_LOG_FUNCTION(this);
1035
1036 std::list<Ptr<LteControlMessage>>::iterator it;
1037 NS_LOG_DEBUG(this << " I am rnti = " << m_rnti << " and I received msgs "
1038 << (uint16_t)msgList.size());
1039 for (it = msgList.begin(); it != msgList.end(); it++)
1040 {
1041 Ptr<LteControlMessage> msg = (*it);
1042
1043 if (msg->GetMessageType() == LteControlMessage::DL_DCI)
1044 {
1045 Ptr<DlDciLteControlMessage> msg2 = DynamicCast<DlDciLteControlMessage>(msg);
1046
1047 DlDciListElement_s dci = msg2->GetDci();
1048 if (dci.m_rnti != m_rnti)
1049 {
1050 // DCI not for me
1051 continue;
1052 }
1053
1054 if (dci.m_resAlloc != 0)
1055 {
1056 NS_FATAL_ERROR("Resource Allocation type not implemented");
1057 }
1058
1059 std::vector<int> dlRb;
1060
1061 // translate the DCI to Spectrum framework
1062 uint32_t mask = 0x1;
1063 for (int i = 0; i < 32; i++)
1064 {
1065 if (((dci.m_rbBitmap & mask) >> i) == 1)
1066 {
1067 for (int k = 0; k < GetRbgSize(); k++)
1068 {
1069 dlRb.push_back((i * GetRbgSize()) + k);
1070 // NS_LOG_DEBUG(this << " RNTI " << m_rnti << " RBG " << i << "
1071 // DL-DCI allocated PRB " << (i*GetRbgSize()) + k);
1072 }
1073 }
1074 mask = (mask << 1);
1075 }
1077 {
1079 }
1080
1081 // send TB info to LteSpectrumPhy
1082 NS_LOG_DEBUG(this << " UE " << m_rnti << " DL-DCI " << dci.m_rnti << " bitmap "
1083 << dci.m_rbBitmap);
1084 for (std::size_t i = 0; i < dci.m_tbsSize.size(); i++)
1085 {
1086 m_downlinkSpectrumPhy->AddExpectedTb(dci.m_rnti,
1087 dci.m_ndi.at(i),
1088 dci.m_tbsSize.at(i),
1089 dci.m_mcs.at(i),
1090 dlRb,
1091 i,
1092 dci.m_harqProcess,
1093 dci.m_rv.at(i),
1094 true /* DL */);
1095 }
1096
1098 }
1099 else if (msg->GetMessageType() == LteControlMessage::UL_DCI)
1100 {
1101 // set the uplink bandwidth according to the UL-CQI
1102 Ptr<UlDciLteControlMessage> msg2 = DynamicCast<UlDciLteControlMessage>(msg);
1103 UlDciListElement_s dci = msg2->GetDci();
1104 if (dci.m_rnti != m_rnti)
1105 {
1106 // DCI not for me
1107 continue;
1108 }
1109 NS_LOG_INFO(this << " UL DCI");
1110 std::vector<int> ulRb;
1111 ulRb.reserve(dci.m_rbLen);
1112 for (int i = 0; i < dci.m_rbLen; i++)
1113 {
1114 ulRb.push_back(i + dci.m_rbStart);
1115 // NS_LOG_DEBUG (this << " UE RB " << i + dci.m_rbStart);
1116 }
1119 // fire trace of UL Tx PHY stats
1120 HarqProcessInfoList_t harqInfoList = m_harqPhyModule->GetHarqProcessInfoUl(m_rnti, 0);
1122 params.m_cellId = m_cellId;
1123 params.m_imsi = 0; // it will be set by DlPhyTransmissionCallback in LteHelper
1124 params.m_timestamp = Simulator::Now().GetMilliSeconds() + UL_PUSCH_TTIS_DELAY;
1125 params.m_rnti = m_rnti;
1126 params.m_txMode = 0; // always SISO for UE
1127 params.m_layer = 0;
1128 params.m_mcs = dci.m_mcs;
1129 params.m_size = dci.m_tbSize;
1130 params.m_rv = harqInfoList.size();
1131 params.m_ndi = dci.m_ndi;
1132 params.m_ccId = m_componentCarrierId;
1133 m_ulPhyTransmission(params);
1134 // pass the info to the MAC
1136 }
1137 else if (msg->GetMessageType() == LteControlMessage::RAR)
1138 {
1139 Ptr<RarLteControlMessage> rarMsg = DynamicCast<RarLteControlMessage>(msg);
1140 if (rarMsg->GetRaRnti() == m_raRnti)
1141 {
1142 for (std::list<RarLteControlMessage::Rar>::const_iterator it =
1143 rarMsg->RarListBegin();
1144 it != rarMsg->RarListEnd();
1145 ++it)
1146 {
1147 if (it->rapId != m_raPreambleId)
1148 {
1149 // UL grant not for me
1150 continue;
1151 }
1152 else
1153 {
1154 NS_LOG_INFO("received RAR RNTI " << m_raRnti);
1155 // set the uplink bandwidth according to the UL grant
1156 std::vector<int> ulRb;
1157 ulRb.reserve(it->rarPayload.m_grant.m_rbLen);
1158 for (int i = 0; i < it->rarPayload.m_grant.m_rbLen; i++)
1159 {
1160 ulRb.push_back(i + it->rarPayload.m_grant.m_rbStart);
1161 }
1162
1164 // pass the info to the MAC
1166 // reset RACH variables with out of range values
1167 m_raPreambleId = 255;
1168 m_raRnti = 11;
1169 }
1170 }
1171 }
1172 }
1173 else if (msg->GetMessageType() == LteControlMessage::MIB)
1174 {
1175 NS_LOG_INFO("received MIB");
1176 NS_ASSERT(m_cellId > 0);
1177 Ptr<MibLteControlMessage> msg2 = DynamicCast<MibLteControlMessage>(msg);
1179 }
1180 else if (msg->GetMessageType() == LteControlMessage::SIB1)
1181 {
1182 NS_LOG_INFO("received SIB1");
1183 NS_ASSERT(m_cellId > 0);
1184 Ptr<Sib1LteControlMessage> msg2 = DynamicCast<Sib1LteControlMessage>(msg);
1186 }
1187 else
1188 {
1189 // pass the message to UE-MAC
1191 }
1192 }
1193}
1194
1195void
1197{
1198 NS_LOG_FUNCTION(this << cellId << (*p));
1199
1200 double sum = 0.0;
1201 uint16_t nRB = 0;
1202 Values::const_iterator itPi;
1203 for (itPi = p->ConstValuesBegin(); itPi != p->ConstValuesEnd(); itPi++)
1204 {
1205 // convert PSD [W/Hz] to linear power [W] for the single RE
1206 double powerTxW = ((*itPi) * 180000.0) / 12.0;
1207 sum += powerTxW;
1208 nRB++;
1209 }
1210
1211 // measure instantaneous RSRP now
1212 double rsrp_dBm = 10 * log10(1000 * (sum / (double)nRB));
1213 NS_LOG_INFO(this << " PSS RNTI " << m_rnti << " cellId " << m_cellId << " has RSRP " << rsrp_dBm
1214 << " and RBnum " << nRB);
1215 // note that m_pssReceptionThreshold does not apply here
1216
1217 // store measurements
1218 std::map<uint16_t, UeMeasurementsElement>::iterator itMeasMap =
1219 m_ueMeasurementsMap.find(cellId);
1220 if (itMeasMap == m_ueMeasurementsMap.end())
1221 {
1222 // insert new entry
1224 newEl.rsrpSum = rsrp_dBm;
1225 newEl.rsrpNum = 1;
1226 newEl.rsrqSum = 0;
1227 newEl.rsrqNum = 0;
1228 m_ueMeasurementsMap.insert(std::pair<uint16_t, UeMeasurementsElement>(cellId, newEl));
1229 }
1230 else
1231 {
1232 (*itMeasMap).second.rsrpSum += rsrp_dBm;
1233 (*itMeasMap).second.rsrpNum++;
1234 }
1235
1236 /*
1237 * Collect the PSS for later processing in GenerateCtrlCqiReport()
1238 * (to be called from ChunkProcessor after RX is finished).
1239 */
1240 m_pssReceived = true;
1241 PssElement el;
1242 el.cellId = cellId;
1243 el.pssPsdSum = sum;
1244 el.nRB = nRB;
1245 m_pssList.push_back(el);
1246
1247} // end of void LteUePhy::ReceivePss (uint16_t cellId, Ptr<SpectrumValue> p)
1248
1249void
1251{
1253}
1254
1255void
1257{
1258 NS_LOG_FUNCTION(this << frameNo << subframeNo);
1259
1260 NS_ASSERT_MSG(frameNo > 0, "the SRS index check code assumes that frameNo starts at 1");
1261
1262 // refresh internal variables
1265 m_pssReceived = false;
1266
1267 if (m_ulConfigured)
1268 {
1269 // update uplink transmission mask according to previous UL-CQIs
1270 std::vector<int> rbMask = m_subChannelsForTransmissionQueue.at(0);
1272
1273 // shift the queue
1274 for (uint8_t i = 1; i < m_macChTtiDelay; i++)
1275 {
1277 }
1279
1281 {
1282 NS_ASSERT_MSG(subframeNo > 0 && subframeNo <= 10,
1283 "the SRS index check code assumes that subframeNo starts at 1");
1284 if ((((frameNo - 1) * 10 + (subframeNo - 1)) % m_srsPeriodicity) == m_srsSubframeOffset)
1285 {
1286 NS_LOG_INFO("frame " << frameNo << " subframe " << subframeNo
1287 << " sending SRS (offset=" << m_srsSubframeOffset
1288 << ", period=" << m_srsPeriodicity << ")");
1291 }
1292 }
1293
1294 std::list<Ptr<LteControlMessage>> ctrlMsg = GetControlMessages();
1295 // send packets in queue
1296 NS_LOG_LOGIC(this << " UE - start slot for PUSCH + PUCCH - RNTI " << m_rnti << " CELLID "
1297 << m_cellId);
1298 // send the current burts of packets
1300 if (pb)
1301 {
1303 {
1306 }
1307 m_uplinkSpectrumPhy->StartTxDataFrame(pb, ctrlMsg, UL_DATA_DURATION);
1308 }
1309 else
1310 {
1311 // send only PUCCH (ideal: fake null bandwidth signal)
1312 if (!ctrlMsg.empty())
1313 {
1314 NS_LOG_LOGIC(this << " UE - start TX PUCCH (NO PUSCH)");
1315 std::vector<int> dlRb;
1316
1318 {
1320 }
1321
1323 m_uplinkSpectrumPhy->StartTxDataFrame(pb, ctrlMsg, UL_DATA_DURATION);
1324 }
1325 else
1326 {
1327 NS_LOG_LOGIC(this << " UE - UL NOTHING TO SEND");
1328 }
1329 }
1330 } // m_configured
1331
1332 // trigger the MAC
1333 m_uePhySapUser->SubframeIndication(frameNo, subframeNo);
1334
1335 m_subframeNo = subframeNo;
1336 ++subframeNo;
1337 if (subframeNo > 10)
1338 {
1339 ++frameNo;
1340 subframeNo = 1;
1341 }
1342
1343 // schedule next subframe indication
1346 this,
1347 frameNo,
1348 subframeNo);
1349}
1350
1351void
1353{
1354 NS_LOG_FUNCTION(this << " UE " << m_rnti << " start tx SRS, cell Id " << (uint32_t)m_cellId);
1355 NS_ASSERT(m_cellId > 0);
1356 // set the current tx power spectral density (full bandwidth)
1357 std::vector<int> dlRb;
1358 for (uint16_t i = 0; i < m_ulBandwidth; i++)
1359 {
1360 dlRb.push_back(i);
1361 }
1362
1364 {
1366 }
1367
1369 m_uplinkSpectrumPhy->StartTxUlSrsFrame();
1370}
1371
1372void
1374{
1375 NS_LOG_FUNCTION(this);
1376
1377 m_rnti = 0;
1378 m_cellId = 0;
1379 m_isConnected = false;
1381 m_srsPeriodicity = 0;
1382 m_srsConfigured = false;
1383 m_dlConfigured = false;
1384 m_ulConfigured = false;
1385 m_raPreambleId = 255; // value out of range
1386 m_raRnti = 11; // value out of range
1390 m_paLinear = 1;
1391
1395
1396 m_packetBurstQueue.clear();
1397 m_controlMessagesQueue.clear();
1399 for (int i = 0; i < m_macChTtiDelay; i++)
1400 {
1401 Ptr<PacketBurst> pb = CreateObject<PacketBurst>();
1402 m_packetBurstQueue.push_back(pb);
1403 std::list<Ptr<LteControlMessage>> l;
1404 m_controlMessagesQueue.push_back(l);
1405 }
1406 std::vector<int> ulRb;
1408
1410 m_downlinkSpectrumPhy->Reset();
1411 m_uplinkSpectrumPhy->Reset();
1412 m_pssList.clear();
1417 m_downlinkSpectrumPhy->m_interferenceCtrl->EndRx();
1418 m_downlinkSpectrumPhy->m_interferenceData->EndRx();
1419
1420} // end of void LteUePhy::DoReset ()
1421
1422void
1424{
1425 NS_LOG_FUNCTION(this << dlEarfcn);
1426 m_dlEarfcn = dlEarfcn;
1427 DoSetDlBandwidth(6); // configure DL for receiving PSS
1429}
1430
1431void
1433{
1434 NS_LOG_FUNCTION(this << cellId << dlEarfcn);
1435 m_dlEarfcn = dlEarfcn;
1436 DoSynchronizeWithEnb(cellId);
1437}
1438
1439void
1441{
1442 NS_LOG_FUNCTION(this << cellId);
1443
1444 if (cellId == 0)
1445 {
1446 NS_FATAL_ERROR("Cell ID shall not be zero");
1447 }
1448
1449 m_cellId = cellId;
1450 m_downlinkSpectrumPhy->SetCellId(cellId);
1451 m_uplinkSpectrumPhy->SetCellId(cellId);
1452
1453 // configure DL for receiving the BCH with the minimum bandwidth
1455
1456 m_dlConfigured = false;
1457 m_ulConfigured = false;
1458
1460}
1461
1462uint16_t
1464{
1465 return m_cellId;
1466}
1467
1470{
1471 return m_dlEarfcn;
1472}
1473
1474void
1475LteUePhy::DoSetDlBandwidth(uint16_t dlBandwidth)
1476{
1477 NS_LOG_FUNCTION(this << (uint32_t)dlBandwidth);
1478 if (m_dlBandwidth != dlBandwidth or !m_dlConfigured)
1479 {
1480 m_dlBandwidth = dlBandwidth;
1481
1482 static const int Type0AllocationRbg[4] = {
1483 10, // RGB size 1
1484 26, // RGB size 2
1485 63, // RGB size 3
1486 110, // RGB size 4
1487 }; // see table 7.1.6.1-1 of 36.213
1488 for (int i = 0; i < 4; i++)
1489 {
1490 if (dlBandwidth < Type0AllocationRbg[i])
1491 {
1492 m_rbgSize = i + 1;
1493 break;
1494 }
1495 }
1496
1500 m_downlinkSpectrumPhy->SetNoisePowerSpectralDensity(m_noisePsd);
1501 m_downlinkSpectrumPhy->GetChannel()->AddRx(m_downlinkSpectrumPhy);
1502 }
1503 m_dlConfigured = true;
1504}
1505
1506void
1507LteUePhy::DoConfigureUplink(uint32_t ulEarfcn, uint16_t ulBandwidth)
1508{
1509 m_ulEarfcn = ulEarfcn;
1510 m_ulBandwidth = ulBandwidth;
1511 m_ulConfigured = true;
1512}
1513
1514void
1516{
1517 NS_LOG_FUNCTION(this);
1518 m_powerControl->ConfigureReferenceSignalPower(referenceSignalPower);
1519}
1520
1521void
1523{
1524 NS_LOG_FUNCTION(this << rnti);
1525 m_rnti = rnti;
1526
1529}
1530
1531void
1533{
1534 NS_LOG_FUNCTION(this << (uint16_t)txMode);
1535 m_transmissionMode = txMode;
1536 m_downlinkSpectrumPhy->SetTransmissionMode(txMode);
1537}
1538
1539void
1541{
1542 NS_LOG_FUNCTION(this << srcCi);
1545 m_srsConfigured = true;
1546
1547 // a guard time is needed for the case where the SRS periodicity is changed dynamically at run
1548 // time if we use a static one, we can have a 0ms guard time
1550 NS_LOG_DEBUG(this << " UE SRS P " << m_srsPeriodicity << " RNTI " << m_rnti << " offset "
1551 << m_srsSubframeOffset << " cellId " << m_cellId << " CI " << srcCi);
1552}
1553
1554void
1556{
1557 NS_LOG_FUNCTION(this << pa);
1558 m_paLinear = pow(10, (pa / 10));
1559}
1560
1561void
1562LteUePhy::DoSetRsrpFilterCoefficient(uint8_t rsrpFilterCoefficient)
1563{
1564 NS_LOG_FUNCTION(this << (uint16_t)(rsrpFilterCoefficient));
1565 m_powerControl->SetRsrpFilterCoefficient(rsrpFilterCoefficient);
1566}
1567
1568void
1570{
1571 NS_LOG_FUNCTION(this);
1572 m_downlinkSpectrumPhy->m_harqPhyModule->ClearDlHarqBuffer(m_rnti); // flush HARQ buffers
1575 m_pssReceived = false;
1576 DoReset();
1577}
1578
1579void
1581{
1582 NS_LOG_FUNCTION(this);
1583
1585}
1586
1587void
1589{
1590 NS_LOG_FUNCTION(this);
1591 // indicates that the downlink radio link quality has to be monitored for in-sync indications
1592 m_downlinkInSync = false;
1593}
1594
1595void
1597{
1598 NS_LOG_FUNCTION(this);
1599 m_imsi = imsi;
1600}
1601
1602void
1604{
1605 NS_LOG_FUNCTION(this);
1606 m_numOfSubframes = 0;
1607 m_sinrDbFrame = 0;
1608 m_numOfFrames = 0;
1609 m_downlinkInSync = true;
1610}
1611
1612void
1614{
1615 NS_LOG_FUNCTION(this << sinrDb);
1616 m_sinrDbFrame += sinrDb;
1618 NS_LOG_LOGIC("No of Subframes: " << m_numOfSubframes
1619 << " UE synchronized: " << m_downlinkInSync);
1620 // check for out_of_snyc indications first when UE is both DL and UL synchronized
1621 // m_downlinkInSync=true indicates that the evaluation is for out-of-sync indications
1623 {
1629 {
1630 m_numOfFrames++; // increment the counter if a frame cannot be decoded
1631 NS_LOG_LOGIC("No of Frames which cannot be decoded: " << m_numOfFrames);
1632 }
1633 else
1634 {
1640 NS_LOG_INFO("Resetting frame counter at phy. Current value = " << m_numOfFrames);
1641 m_numOfFrames = 0;
1642 // Also reset the sync indicator counter at RRC
1644 }
1645 m_numOfSubframes = 0;
1646 m_sinrDbFrame = 0;
1647 }
1654 {
1655 NS_LOG_LOGIC("At " << Simulator::Now().As(Time::MS)
1656 << " ms UE PHY sending out of sync indication to UE RRC layer");
1658 m_numOfFrames = 0;
1659 }
1660 // check for in_snyc indications when T310 timer is started
1661 // m_downlinkInSync=false indicates that the evaluation is for in-sync indications
1662 if (!m_downlinkInSync && m_numOfSubframes == 10)
1663 {
1670 {
1671 m_numOfFrames++; // increment the counter if a frame can be decoded
1672 NS_LOG_LOGIC("No of Frames successfully decoded: " << m_numOfFrames);
1673 }
1674 else
1675 {
1681 m_numOfFrames = 0;
1682 // Also reset the sync indicator counter at RRC
1684 }
1685 m_numOfSubframes = 0;
1686 m_sinrDbFrame = 0;
1687 }
1693 {
1694 NS_LOG_LOGIC("At " << Simulator::Now().As(Time::MS)
1695 << " ms UE PHY sending in sync indication to UE RRC layer");
1697 m_numOfFrames = 0;
1698 }
1699}
1700
1701void
1703{
1704 SetTxModeGain(1, gain);
1705}
1706
1707void
1709{
1710 SetTxModeGain(2, gain);
1711}
1712
1713void
1715{
1716 SetTxModeGain(3, gain);
1717}
1718
1719void
1721{
1722 SetTxModeGain(4, gain);
1723}
1724
1725void
1727{
1728 SetTxModeGain(5, gain);
1729}
1730
1731void
1733{
1734 SetTxModeGain(6, gain);
1735}
1736
1737void
1739{
1740 SetTxModeGain(7, gain);
1741}
1742
1743void
1744LteUePhy::SetTxModeGain(uint8_t txMode, double gain)
1745{
1746 NS_LOG_FUNCTION(this << gain);
1747 if (txMode > 0)
1748 {
1749 // convert to linear
1750 double gainLin = std::pow(10.0, (gain / 10.0));
1751 if (m_txModeGain.size() < txMode)
1752 {
1753 m_txModeGain.resize(txMode);
1754 }
1755 m_txModeGain.at(txMode - 1) = gainLin;
1756 }
1757 // forward the info to DL LteSpectrumPhy
1758 m_downlinkSpectrumPhy->SetTxModeGain(txMode, gain);
1759}
1760
1761void
1763{
1764 NS_LOG_FUNCTION(this);
1765 // get the feedback from LteSpectrumPhy and send it through ideal PUCCH to eNB
1766 Ptr<DlHarqFeedbackLteControlMessage> msg = Create<DlHarqFeedbackLteControlMessage>();
1767 msg->SetDlHarqFeedback(m);
1768 SetControlMessages(msg);
1769}
1770
1771void
1773{
1774 m_harqPhyModule = harq;
1775}
1776
1779{
1780 NS_LOG_FUNCTION(this);
1781 return m_state;
1782}
1783
1784void
1786{
1787 NS_LOG_FUNCTION(this << newState);
1788 State oldState = m_state;
1789 m_state = newState;
1790 NS_LOG_INFO(this << " cellId=" << m_cellId << " rnti=" << m_rnti << " UePhy "
1791 << ToString(oldState) << " --> " << ToString(newState));
1792 m_stateTransitionTrace(m_cellId, m_rnti, oldState, newState);
1793}
1794
1795} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
void Cancel()
This method is syntactic sugar for the ns3::Simulator::Cancel method.
Definition: event-id.cc:55
The LtePhy models the physical layer of LTE.
Definition: lte-phy.h:50
double m_txPower
Transmission power in dBm.
Definition: lte-phy.h:240
uint8_t GetRbgSize() const
Definition: lte-phy.cc:179
void DoDispose() override
Destructor implementation.
Definition: lte-phy.cc:75
uint16_t GetSrsPeriodicity(uint16_t srcCi) const
Definition: lte-phy.cc:143
std::vector< Ptr< PacketBurst > > m_packetBurstQueue
A queue of packet bursts to be sent.
Definition: lte-phy.h:280
uint16_t m_ulBandwidth
The UL bandwidth in number of PRBs.
Definition: lte-phy.h:260
Ptr< PacketBurst > GetPacketBurst()
Definition: lte-phy.cc:191
Ptr< LteNetDevice > GetDevice() const
Get the device where the phy layer is attached.
Definition: lte-phy.cc:96
uint8_t m_componentCarrierId
component carrier Id used to address sap
Definition: lte-phy.h:302
double m_noiseFigure
Loss (dB) in the Signal-to-Noise-Ratio due to non-idealities in the receiver.
Definition: lte-phy.h:252
uint32_t m_ulEarfcn
The uplink carrier frequency.
Definition: lte-phy.h:277
uint16_t m_dlBandwidth
The DL bandwidth in number of PRBs.
Definition: lte-phy.h:265
Ptr< LteSpectrumPhy > m_downlinkSpectrumPhy
The downlink LteSpectrumPhy associated to this LtePhy.
Definition: lte-phy.h:229
void SetMacPdu(Ptr< Packet > p)
Definition: lte-phy.cc:185
std::list< Ptr< LteControlMessage > > GetControlMessages()
Definition: lte-phy.cc:217
uint16_t GetSrsSubframeOffset(uint16_t srcCi) const
Definition: lte-phy.cc:161
Ptr< LteNetDevice > m_netDevice
Pointer to the NetDevice where this PHY layer is attached.
Definition: lte-phy.h:223
uint16_t m_cellId
Cell identifier.
Definition: lte-phy.h:299
void SetControlMessages(Ptr< LteControlMessage > m)
Definition: lte-phy.cc:209
uint32_t m_dlEarfcn
The downlink carrier frequency.
Definition: lte-phy.h:272
Ptr< LteSpectrumPhy > m_uplinkSpectrumPhy
The uplink LteSpectrumPhy associated to this LtePhy.
Definition: lte-phy.h:234
double GetTti() const
Definition: lte-phy.cc:136
std::vector< std::list< Ptr< LteControlMessage > > > m_controlMessagesQueue
A queue of control messages to be sent.
Definition: lte-phy.h:282
uint8_t m_rbgSize
The RB group size according to the bandwidth.
Definition: lte-phy.h:267
uint8_t m_macChTtiDelay
Delay between MAC and channel layer in terms of TTIs.
Definition: lte-phy.h:292
static Ptr< SpectrumValue > CreateUlTxPowerSpectralDensity(uint16_t earfcn, uint16_t bandwidth, double powerTx, std::vector< int > activeRbs)
create a spectrum value representing the uplink power spectral density of a signal to be transmitted.
static Ptr< SpectrumValue > CreateNoisePowerSpectralDensity(uint32_t earfcn, uint16_t bandwidth, double noiseFigure)
create a SpectrumValue that models the power spectral density of AWGN
Service Access Point (SAP) offered by the UE PHY to the UE RRC for control purposes.
Service Access Point (SAP) offered by the UE PHY to the UE RRC for control purposes.
virtual void NotifyInSync()=0
Send an in sync indication to UE RRC.
virtual void ReportUeMeasurements(UeMeasurementsParameters params)=0
Send a report of RSRP and RSRQ values perceived from PSS by the PHY entity (after applying layer-1 fi...
virtual void RecvMasterInformationBlock(uint16_t cellId, LteRrcSap::MasterInformationBlock mib)=0
Relay an MIB message from the PHY entity to the RRC layer.
virtual void RecvSystemInformationBlockType1(uint16_t cellId, LteRrcSap::SystemInformationBlockType1 sib1)=0
Relay an SIB1 message from the PHY entity to the RRC layer.
virtual void NotifyOutOfSync()=0
Send an out of sync indication to UE RRC.
virtual void ResetSyncIndicationCounter()=0
Reset the sync indication counter.
The LteUeNetDevice class implements the UE net device.
The LteSpectrumPhy models the physical layer of LTE.
Definition: lte-ue-phy.h:51
void SetTxMode1Gain(double gain)
Set transmit mode 1 gain function.
Definition: lte-ue-phy.cc:1702
SpectrumValue m_dataInterferencePower
data interference power
Definition: lte-ue-phy.h:726
void SetSubChannelsForTransmission(std::vector< int > mask)
Set a list of sub channels to use in TX.
Definition: lte-ue-phy.cc:502
void DoInitialize() override
Initialize() implementation.
Definition: lte-ue-phy.cc:354
friend class MemberLteUeCphySapProvider< LteUePhy >
allow MemberLteUeCphySapProvider<LteUePhy> class friend access
Definition: lte-ue-phy.h:55
void SetHarqPhyModule(Ptr< LteHarqPhy > harq)
Set the HARQ PHY module.
Definition: lte-ue-phy.cc:1772
void DoSetDlBandwidth(uint16_t dlBandwidth)
Set DL bandwidth function.
Definition: lte-ue-phy.cc:1475
uint16_t GetNumQinEvalSf() const
Get number of Qin evaluation subframes.
Definition: lte-ue-phy.cc:481
void SetTxMode3Gain(double gain)
Set transmit mode 3 gain function.
Definition: lte-ue-phy.cc:1714
uint16_t m_numOfQinEvalSf
the downlink radio link quality is estimated over this period for detecting in-syncs
Definition: lte-ue-phy.h:841
LteUePhySapUser * m_uePhySapUser
UE Phy SAP user.
Definition: lte-ue-phy.h:688
uint16_t DoGetCellId()
Get cell ID.
Definition: lte-ue-phy.cc:1463
uint16_t m_rsrpSinrSampleCounter
The RsrpSinrSampleCounter attribute.
Definition: lte-ue-phy.h:788
virtual void ReportDataInterference(const SpectrumValue &interf)
Create the mixed CQI report.
Definition: lte-ue-phy.cc:807
void QueueSubChannelsForTransmission(std::vector< int > rbMap)
Queue subchannels for transmission function.
Definition: lte-ue-phy.cc:1250
void DoConfigureUplink(uint32_t ulEarfcn, uint16_t ulBandwidth)
Configure UL uplink function.
Definition: lte-ue-phy.cc:1507
virtual void ReceivePss(uint16_t cellId, Ptr< SpectrumValue > p)
Receive PSS function.
Definition: lte-ue-phy.cc:1196
uint16_t m_srsPeriodicity
SRS periodicity.
Definition: lte-ue-phy.h:698
void DoResetPhyAfterRlf()
Reset Phy after radio link failure function.
Definition: lte-ue-phy.cc:1569
virtual void DoNotifyConnectionSuccessful()
Notify PHY about the successful RRC connection establishment.
Definition: lte-ue-phy.cc:1016
bool m_dlConfigured
DL configured?
Definition: lte-ue-phy.h:705
LteUePhySapProvider * GetLteUePhySapProvider()
Get the PHY SAP provider.
Definition: lte-ue-phy.cc:379
Time m_srsStartTime
SRS start time.
Definition: lte-ue-phy.h:701
double GetNoiseFigure() const
Get noise figure.
Definition: lte-ue-phy.cc:407
Time m_p10CqiLast
last periodic CQI
Definition: lte-ue-phy.h:677
std::map< uint16_t, UeMeasurementsElement > m_ueMeasurementsMap
Store measurement results during the last layer-1 filtering period.
Definition: lte-ue-phy.h:759
TracedCallback< uint16_t, Ptr< SpectrumValue > > m_reportPowerSpectralDensity
The ReportsPowerSpectralDensity trace source.
Definition: lte-ue-phy.h:819
LteUePhySapProvider * m_uePhySapProvider
UE Phy SAP provider.
Definition: lte-ue-phy.h:687
void ReportRsReceivedPower(const SpectrumValue &power) override
generate a report based on the linear RS power perceived during CTRL frame NOTE: used only by UE for ...
Definition: lte-ue-phy.cc:816
uint16_t GetNumQoutEvalSf() const
Get number of Qout evaluation subframes.
Definition: lte-ue-phy.cc:474
bool m_rsInterferencePowerUpdated
RS interference power updated?
Definition: lte-ue-phy.h:722
virtual void ReceiveLteControlMessageList(std::list< Ptr< LteControlMessage > > msgList)
Receive LTE control message list function.
Definition: lte-ue-phy.cc:1032
void DoSendMacPdu(Ptr< Packet > p) override
Queue the MAC PDU to be sent (according to m_macChTtiDelay)
Definition: lte-ue-phy.cc:488
Ptr< SpectrumValue > m_noisePsd
Noise power spectral density for the configured bandwidth.
Definition: lte-ue-phy.h:821
void GenerateCtrlCqiReport(const SpectrumValue &sinr) override
generate a CQI report based on the given SINR of Ctrl frame
Definition: lte-ue-phy.cc:548
uint32_t DoGetDlEarfcn()
Get DL EARFCN.
Definition: lte-ue-phy.cc:1469
double ComputeAvgSinr(const SpectrumValue &sinr)
Compute average SINR among the RBs.
Definition: lte-ue-phy.cc:706
void SetLteUePhySapUser(LteUePhySapUser *s)
Set the PHY SAP User.
Definition: lte-ue-phy.cc:372
virtual void DoSendRachPreamble(uint32_t prachId, uint32_t raRnti)
Send RACH preamble function.
Definition: lte-ue-phy.cc:1003
void DoStartCellSearch(uint32_t dlEarfcn)
Start the cell search function.
Definition: lte-ue-phy.cc:1423
void SetTxMode6Gain(double gain)
Set transmit mode 6 gain function.
Definition: lte-ue-phy.cc:1732
LteUeCphySapProvider * m_ueCphySapProvider
UE CPhy SAP provider.
Definition: lte-ue-phy.h:690
Ptr< SpectrumValue > CreateTxPowerSpectralDensity() override
Create the PSD for the TX.
Definition: lte-ue-phy.cc:534
std::vector< std::vector< int > > m_subChannelsForTransmissionQueue
subchannels for transmission queue
Definition: lte-ue-phy.h:663
void DoReset()
Do Reset function.
Definition: lte-ue-phy.cc:1373
void SetNumQoutEvalSf(uint16_t numSubframes)
Set number of Qout evaluation subframes.
Definition: lte-ue-phy.cc:454
State m_state
The current UE PHY state.
Definition: lte-ue-phy.h:709
bool m_pssReceived
PSS received?
Definition: lte-ue-phy.h:728
TracedCallback< uint16_t, uint16_t, double, double, uint8_t > m_reportCurrentCellRsrpSinrTrace
The ReportCurrentCellRsrpSinr trace source.
Definition: lte-ue-phy.h:778
void DoSetImsi(uint64_t imsi)
Set IMSI.
Definition: lte-ue-phy.cc:1596
void SetTxMode2Gain(double gain)
Set transmit mode 2 gain function.
Definition: lte-ue-phy.cc:1708
void DoSetRsrpFilterCoefficient(uint8_t rsrpFilterCoefficient)
Do set RSRP filter coefficient.
Definition: lte-ue-phy.cc:1562
~LteUePhy() override
Definition: lte-ue-phy.cc:180
uint8_t GetMacChDelay() const
Get MAC to Channel delay.
Definition: lte-ue-phy.cc:436
Ptr< LteUePowerControl > m_powerControl
Pointer to UE Uplink Power Control entity.
Definition: lte-ue-phy.h:673
void DoConfigureReferenceSignalPower(int8_t referenceSignalPower)
Configure reference signal power function.
Definition: lte-ue-phy.cc:1515
std::list< PssElement > m_pssList
PSS list.
Definition: lte-ue-phy.h:738
void SubframeIndication(uint32_t frameNo, uint32_t subframeNo)
trigger from eNB the start from a new frame
Definition: lte-ue-phy.cc:1256
Ptr< LteUePowerControl > GetUplinkPowerControl() const
Get Uplink power control.
Definition: lte-ue-phy.cc:429
void RlfDetection(double sinrdB)
Radio link failure detection function.
Definition: lte-ue-phy.cc:1613
std::vector< double > m_txModeGain
the transmit mode gain
Definition: lte-ue-phy.h:696
State GetState() const
Get state of the UE physical layer.
Definition: lte-ue-phy.cc:1778
SpectrumValue m_rsReceivedPower
RS receive power.
Definition: lte-ue-phy.h:720
void DoSynchronizeWithEnb(uint16_t cellId)
Synchronize with ENB function.
Definition: lte-ue-phy.cc:1440
void DoSetSrsConfigurationIndex(uint16_t srcCi)
Set SRS configuration index function.
Definition: lte-ue-phy.cc:1540
uint16_t m_srsSubframeOffset
SRS subframe offset.
Definition: lte-ue-phy.h:699
uint8_t m_subframeNo
Definition: lte-ue-phy.h:717
uint16_t m_srsConfigured
SRS configured.
Definition: lte-ue-phy.h:700
uint16_t m_rsrpSinrSamplePeriod
The RsrpSinrSamplePeriod attribute.
Definition: lte-ue-phy.h:783
uint64_t m_imsi
the IMSI of the UE
Definition: lte-ue-phy.h:852
uint16_t m_rnti
the RNTI
Definition: lte-ue-phy.h:693
bool m_enableUplinkPowerControl
The EnableUplinkPowerControl attribute.
Definition: lte-ue-phy.h:671
Ptr< LteSpectrumPhy > GetDlSpectrumPhy() const
Get Downlink spectrum phy.
Definition: lte-ue-phy.cc:442
void SetTxMode5Gain(double gain)
Set transmit mode 5 gain function.
Definition: lte-ue-phy.cc:1726
void DoSetTransmissionMode(uint8_t txMode)
Set transmission mode function.
Definition: lte-ue-phy.cc:1532
bool m_enableRlfDetection
Flag to enable/disable RLF detection.
Definition: lte-ue-phy.h:853
Time m_a30CqiLast
last aperiodic CQI
Definition: lte-ue-phy.h:685
void GenerateCqiRsrpRsrq(const SpectrumValue &sinr)
Get CQI, RSRP, and RSRQ.
Definition: lte-ue-phy.cc:569
SpectrumValue m_rsInterferencePower
RS interference power.
Definition: lte-ue-phy.h:723
void DoResetRlfParams()
Reset radio link failure parameters.
Definition: lte-ue-phy.cc:1580
void SetDownlinkCqiPeriodicity(Time cqiPeriodicity)
Set the periodicty for the downlink periodic wideband and aperiodic subband CQI reporting.
Definition: lte-ue-phy.cc:987
Ptr< LteHarqPhy > m_harqPhyModule
HARQ phy module.
Definition: lte-ue-phy.h:768
EventId m_sendSrsEvent
send SRS event
Definition: lte-ue-phy.h:798
double m_qIn
The 'Qin' attribute.
Definition: lte-ue-phy.h:830
void SetNoiseFigure(double nf)
Set noise figure.
Definition: lte-ue-phy.cc:400
friend class UeMemberLteUePhySapProvider
allow UeMemberLteUePhySapProvider class friend access
Definition: lte-ue-phy.h:53
void DoSetPa(double pa)
Set PA function.
Definition: lte-ue-phy.cc:1555
Ptr< DlCqiLteControlMessage > CreateDlCqiFeedbackMessage(const SpectrumValue &sinr)
Create the DL CQI feedback from SINR values perceived at the physical layer with the signal received ...
Definition: lte-ue-phy.cc:840
LteUeCphySapUser * m_ueCphySapUser
UE CPhy SAP user.
Definition: lte-ue-phy.h:691
void SetNumQinEvalSf(uint16_t numSubframes)
Set number of Qin evaluation subframes.
Definition: lte-ue-phy.cc:464
void DoStartInSnycDetection()
Start in Sync detection function.
Definition: lte-ue-phy.cc:1588
void SetLteUeCphySapUser(LteUeCphySapUser *s)
Set the CPHY SAP User.
Definition: lte-ue-phy.cc:386
double m_sinrDbFrame
the average SINR per radio frame
Definition: lte-ue-phy.h:850
TracedCallback< uint16_t, uint16_t, State, State > m_stateTransitionTrace
The StateTransition trace source.
Definition: lte-ue-phy.h:714
void DoDispose() override
Destructor implementation.
Definition: lte-ue-phy.cc:186
void SetSubChannelsForReception(std::vector< int > mask)
Get a list of sub channels to use in RX.
Definition: lte-ue-phy.cc:513
bool m_rsReceivedPowerUpdated
RS receive power updated?
Definition: lte-ue-phy.h:719
void SwitchToState(State s)
Switch the UE PHY to the given state.
Definition: lte-ue-phy.cc:1785
TracedCallback< uint16_t, uint16_t, double, double, bool, uint8_t > m_reportUeMeasurements
The ReportUeMeasurements trace source.
Definition: lte-ue-phy.h:796
double m_paLinear
PA linear.
Definition: lte-ue-phy.h:703
TracedCallback< PhyTransmissionStatParameters > m_ulPhyTransmission
The UlPhyTransmission trace source.
Definition: lte-ue-phy.h:805
bool m_isConnected
set when UE RRC is in CONNECTED_NORMALLY state
Definition: lte-ue-phy.h:824
Ptr< LteAmc > m_amc
AMC.
Definition: lte-ue-phy.h:665
std::vector< int > m_subChannelsForReception
A list of sub channels to use in RX.
Definition: lte-ue-phy.h:660
void InitializeRlfParams()
Initialize radio link failure parameters.
Definition: lte-ue-phy.cc:1603
std::vector< int > GetSubChannelsForTransmission()
Get a list of sub channels to use in RX.
Definition: lte-ue-phy.cc:520
void PhyPduReceived(Ptr< Packet > p)
PhySpectrum received a new PHY-PDU.
Definition: lte-ue-phy.cc:496
LteUeCphySapProvider * GetLteUeCphySapProvider()
Get the CPHY SAP provider.
Definition: lte-ue-phy.cc:393
bool m_ulConfigured
UL configured?
Definition: lte-ue-phy.h:706
SpectrumValue m_ctrlSinrForRlf
the CTRL SINR used for RLF detection
Definition: lte-ue-phy.h:851
Time m_ueMeasurementsFilterPeriod
The UeMeasurementsFilterPeriod attribute.
Definition: lte-ue-phy.h:764
void GenerateDataCqiReport(const SpectrumValue &sinr) override
generate a CQI report based on the given SINR of Data frame (used for PUSCH CQIs)
Definition: lte-ue-phy.cc:727
uint16_t m_numOfFrames
count the number of frames for which the downlink radio link quality is estimated
Definition: lte-ue-phy.h:848
bool m_downlinkInSync
when set, DL SINR evaluation for out-of-sync indications is conducted.
Definition: lte-ue-phy.h:844
uint16_t m_numOfQoutEvalSf
the downlink radio link quality is estimated over this period for detecting out-of-syncs
Definition: lte-ue-phy.h:839
void SetTxMode7Gain(double gain)
Set transmit mode 7 gain function.
Definition: lte-ue-phy.cc:1738
void DoSetRnti(uint16_t rnti)
Set RNTI function.
Definition: lte-ue-phy.cc:1522
static TypeId GetTypeId()
Get the type ID.
Definition: lte-ue-phy.cc:195
double GetTxPower() const
Get transmit power.
Definition: lte-ue-phy.cc:422
virtual void EnqueueDlHarqFeedback(DlInfoListElement_s mes)
Enqueue the downlink HARQ feedback generated by LteSpectrumPhy.
Definition: lte-ue-phy.cc:1762
std::vector< int > m_subChannelsForTransmission
A list of sub channels to use in TX.
Definition: lte-ue-phy.h:658
Time m_p10CqiPeriodicity
Wideband Periodic CQI. 2, 5, 10, 16, 20, 32, 40, 64, 80 or 160 ms.
Definition: lte-ue-phy.h:676
bool m_dataInterferencePowerUpdated
data interference power updated?
Definition: lte-ue-phy.h:725
void SetTxPower(double pow)
Set transmit power.
Definition: lte-ue-phy.cc:414
State
The states of the UE PHY entity.
Definition: lte-ue-phy.h:62
uint16_t m_numOfSubframes
count the number of subframes for which the downlink radio link quality is estimated
Definition: lte-ue-phy.h:846
void SetTxMode4Gain(double gain)
Set transmit mode 4 gain function.
Definition: lte-ue-phy.cc:1720
virtual void DoSendLteControlMessage(Ptr< LteControlMessage > msg)
Send LTE control message function.
Definition: lte-ue-phy.cc:995
Time m_a30CqiPeriodicity
SubBand Aperiodic CQI.
Definition: lte-ue-phy.h:684
TracedCallback< uint16_t, const std::vector< int > & > m_reportUlPhyResourceBlocks
The ReportUlPhyResourceBlocks trace source.
Definition: lte-ue-phy.h:812
void ReportInterference(const SpectrumValue &interf) override
generate a report based on the linear interference and noise power perceived during DATA frame NOTE: ...
Definition: lte-ue-phy.cc:799
std::vector< int > GetSubChannelsForReception()
Get a list of sub channels to use in RX.
Definition: lte-ue-phy.cc:527
Ptr< LteSpectrumPhy > GetUlSpectrumPhy() const
Get Uplink spectrum phy.
Definition: lte-ue-phy.cc:448
void ReportUeMeasurements()
Layer-1 filtering of RSRP and RSRQ measurements and reporting to the RRC entity.
Definition: lte-ue-phy.cc:940
double m_pssReceptionThreshold
The RsrqUeMeasThreshold attribute.
Definition: lte-ue-phy.h:744
uint32_t m_raPreambleId
RA preamble ID.
Definition: lte-ue-phy.h:770
double m_qOut
The 'Qout' attribute.
Definition: lte-ue-phy.h:837
void SendSrs()
Send the SRS signal in the last symbols of the frame.
Definition: lte-ue-phy.cc:1352
virtual void GenerateMixedCqiReport(const SpectrumValue &sinr)
Create the mixed CQI report.
Definition: lte-ue-phy.cc:733
uint8_t m_transmissionMode
the transmission mode
Definition: lte-ue-phy.h:695
void SetTxModeGain(uint8_t txMode, double gain)
Set transmit mode gain function.
Definition: lte-ue-phy.cc:1744
uint32_t m_raRnti
RA RNTI.
Definition: lte-ue-phy.h:771
Service Access Point (SAP) offered by the UE-PHY to the UE-MAC.
Service Access Point (SAP) offered by the PHY to the MAC.
virtual void ReceivePhyPdu(Ptr< Packet > p)=0
Receive Phy Pdu function.
virtual void SubframeIndication(uint32_t frameNo, uint32_t subframeNo)=0
Trigger the start from a new frame (input from Phy layer)
virtual void ReceiveLteControlMessage(Ptr< LteControlMessage > msg)=0
Receive SendLteControlMessage (PDCCH map, CQI feedbacks) using the ideal control channel.
void SetCellId(uint16_t cellId)
Set the cell ID function.
void SetRsrp(double value)
Set RSRP function.
void ConfigureReferenceSignalPower(int8_t referenceSignalPower)
Configure reference signal power (dBm) function.
void SetRnti(uint16_t rnti)
Set the RNTI function.
double GetPucchTxPower(std::vector< int > rb)
Get PUCCH transmit power function.
void SetTxPower(double value)
Set transmit power function.
void SetRsrpFilterCoefficient(uint8_t rsrpFilterCoefficient)
Set RSRP function.
double GetPuschTxPower(std::vector< int > rb)
Get PUSCH transmit power function.
void ReportTpc(uint8_t tpc)
Set RSRP function.
double GetSrsTxPower(std::vector< int > rb)
Get SRS transmit power function.
virtual void DoInitialize()
Initialize() implementation.
Definition: object.cc:360
Hold objects of type Ptr<T>.
Definition: pointer.h:37
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:78
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:568
static void ScheduleWithContext(uint32_t context, const Time &delay, FUNC f, Ts &&... args)
Schedule an event with the given context.
Definition: simulator.h:587
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:199
Set of values corresponding to a given SpectrumModel.
Values::const_iterator ConstValuesBegin() const
Values::const_iterator ConstValuesEnd() const
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
int64_t GetMilliSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:407
TimeWithUnit As(const Unit unit=Time::AUTO) const
Attach a unit to a Time, to facilitate output in a specific unit.
Definition: time.cc:417
@ MS
millisecond
Definition: nstime.h:117
AttributeValue implementation for Time.
Definition: nstime.h:1423
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:60
@ ATTR_GET
The attribute can be read.
Definition: type-id.h:65
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:935
UeMemberLteUePhySapProvider class.
Definition: lte-ue-phy.cc:76
void SendRachPreamble(uint32_t prachId, uint32_t raRnti) override
Send a preamble on the PRACH.
Definition: lte-ue-phy.cc:113
void NotifyConnectionSuccessful() override
Notify PHY about the successful RRC connection establishment.
Definition: lte-ue-phy.cc:119
void SendLteControlMessage(Ptr< LteControlMessage > msg) override
Send SendLteControlMessage (PDCCH map, CQI feedbacks) using the ideal control channel.
Definition: lte-ue-phy.cc:107
void SendMacPdu(Ptr< Packet > p) override
Send the MAC PDU to the channel.
Definition: lte-ue-phy.cc:101
UeMemberLteUePhySapProvider(LteUePhy *phy)
Constructor.
Definition: lte-ue-phy.cc:95
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:86
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeDoubleAccessor(T1 a1)
Definition: double.h:43
Ptr< const AttributeAccessor > MakePointerAccessor(T1 a1)
Definition: pointer.h:231
Ptr< const AttributeChecker > MakeTimeChecker()
Helper to make an unbounded Time checker.
Definition: nstime.h:1444
Ptr< const AttributeAccessor > MakeTimeAccessor(T1 a1)
Definition: nstime.h:1424
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_WARN(msg)
Use NS_LOG to output a message of level LOG_WARN.
Definition: log.h:261
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
Time NanoSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1372
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1336
Time MilliSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1348
Ptr< const TraceSourceAccessor > MakeTraceSourceAccessor(T a)
Create a TraceSourceAccessor which will control access to the underlying trace source.
#define UL_PUSCH_TTIS_DELAY
Definition: lte-common.h:28
Every class exported by the ns3 library is enclosed in the ns3 namespace.
static const std::string g_uePhyStateName[LteUePhy::NUM_STATES]
Map each of UE PHY states to its string representation.
Definition: lte-ue-phy.cc:129
static const Time UL_DATA_DURATION
Duration of the data portion of a UL subframe.
Definition: lte-ue-phy.cc:62
static const Time UL_SRS_DELAY_FROM_SUBFRAME_START
Delay from subframe start to transmission of SRS.
Definition: lte-ue-phy.cc:68
std::vector< HarqProcessInfoElement_t > HarqProcessInfoList_t
HarqProcessInfoList_t typedef.
Definition: lte-harq-phy.h:44
static const int Type0AllocationRbg[4]
Type 0 RGB allocation.
static const std::string & ToString(EpcUeNas::State s)
Definition: epc-ue-nas.cc:48
See section 4.3.24 cqiListElement.
std::vector< uint8_t > m_wbCqi
wb CQI
struct SbMeasResult_s m_sbMeasResult
sb measure result
uint8_t m_wbPmi
wb PMI
uint16_t m_rnti
RNTI.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
See section 4.3.23 dlInfoListElement.
See section 4.3.27 higherLayerSelected.
std::vector< uint8_t > m_sbCqi
sb CQI
Parameters of the ReportUeMeasurements primitive: RSRP [dBm] and RSRQ [dB] See section 5....
UeMeasurementsParameters structure.
uint8_t m_componentCarrierId
component carrier ID
std::vector< struct UeMeasurementsElement > m_ueMeasurementsList
UE measurement list.
PssElement structure.
Definition: lte-ue-phy.h:732
uint16_t cellId
cell ID
Definition: lte-ue-phy.h:733
double pssPsdSum
PSS PSD sum.
Definition: lte-ue-phy.h:734
uint16_t nRB
number of RB
Definition: lte-ue-phy.h:735
Summary results of measuring a specific cell. Used for layer-1 filtering.
Definition: lte-ue-phy.h:748
double rsrqSum
Sum of RSRQ sample values in linear unit.
Definition: lte-ue-phy.h:751
uint8_t rsrpNum
Number of RSRP samples.
Definition: lte-ue-phy.h:750
double rsrpSum
Sum of RSRP sample values in linear unit.
Definition: lte-ue-phy.h:749
uint8_t rsrqNum
Number of RSRQ samples.
Definition: lte-ue-phy.h:752
PhyTransmissionStatParameters structure.
Definition: lte-common.h:182
See section 4.3.25 sbMeasResult.
std::vector< struct HigherLayerSelected_s > m_higherLayerSelected
higher layer selected
See section 4.3.2 ulDciListElement.