A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
lte-ue-phy.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2010 TELEMATICS LAB, DEE - Politecnico di Bari
3 * Copyright (c) 2018 Fraunhofer ESK : RLF extensions
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Giuseppe Piro <g.piro@poliba.it>
19 * Marco Miozzo <marco.miozzo@cttc.es>
20 * Nicola Baldo <nbaldo@cttc.es>
21 * Modified by:
22 * Vignesh Babu <ns3-dev@esk.fraunhofer.de> (RLF extensions)
23 */
24
25#include "lte-ue-phy.h"
26
27#include "ff-mac-common.h"
28#include "lte-amc.h"
29#include "lte-common.h"
30#include "lte-net-device.h"
32#include "lte-ue-net-device.h"
34
35#include <ns3/boolean.h>
36#include <ns3/double.h>
37#include <ns3/log.h>
38#include <ns3/node.h>
39#include <ns3/object-factory.h>
40#include <ns3/pointer.h>
41#include <ns3/simulator.h>
42
43#include <cfloat>
44#include <cmath>
45
46namespace ns3
47{
48
49NS_LOG_COMPONENT_DEFINE("LteUePhy");
50
58static const Time UL_DATA_DURATION = NanoSeconds(1e6 - 71429 - 1);
59
65
67// member SAP forwarders
69
72{
73 public:
80
81 // inherited from LtePhySapProvider
82 void SendMacPdu(Ptr<Packet> p) override;
84 void SendRachPreamble(uint32_t prachId, uint32_t raRnti) override;
85 void NotifyConnectionSuccessful() override;
86
87 private:
89};
90
92 : m_phy(phy)
93{
94}
95
96void
98{
100}
101
102void
104{
106}
107
108void
110{
111 m_phy->DoSendRachPreamble(prachId, raRnti);
112}
113
114void
116{
118}
119
121// LteUePhy methods
123
125static const std::string g_uePhyStateName[LteUePhy::NUM_STATES] = {
126 "CELL_SEARCH",
127 "SYNCHRONIZED",
128};
129
134static inline const std::string&
136{
137 return g_uePhyStateName[s];
138}
139
141
143{
144 NS_LOG_FUNCTION(this);
145 NS_FATAL_ERROR("This constructor should not be called");
146}
147
149 : LtePhy(dlPhy, ulPhy),
150 m_uePhySapUser(nullptr),
151 m_ueCphySapUser(nullptr),
152 m_state(CELL_SEARCH),
153 m_subframeNo(0),
154 m_rsReceivedPowerUpdated(false),
155 m_rsInterferencePowerUpdated(false),
156 m_dataInterferencePowerUpdated(false),
157 m_pssReceived(false),
158 m_ueMeasurementsFilterPeriod(MilliSeconds(200)),
159 m_ueMeasurementsFilterLast(MilliSeconds(0)),
160 m_rsrpSinrSampleCounter(0),
161 m_imsi(0)
162{
163 m_amc = CreateObject<LteAmc>();
164 m_powerControl = CreateObject<LteUePowerControl>();
168
169 NS_ASSERT_MSG(Simulator::Now().GetNanoSeconds() == 0,
170 "Cannot create UE devices after simulation started");
172
173 DoReset();
174}
175
177{
178 m_txModeGain.clear();
179}
180
181void
183{
184 NS_LOG_FUNCTION(this);
185 delete m_uePhySapProvider;
186 delete m_ueCphySapProvider;
188}
189
190TypeId
192{
193 static TypeId tid =
194 TypeId("ns3::LteUePhy")
195 .SetParent<LtePhy>()
196 .SetGroupName("Lte")
197 .AddConstructor<LteUePhy>()
198 .AddAttribute("TxPower",
199 "Transmission power in dBm",
200 DoubleValue(10.0),
202 MakeDoubleChecker<double>())
203 .AddAttribute(
204 "NoiseFigure",
205 "Loss (dB) in the Signal-to-Noise-Ratio due to non-idealities in the receiver."
206 " According to Wikipedia (http://en.wikipedia.org/wiki/Noise_figure), this is "
207 "\"the difference in decibels (dB) between"
208 " the noise output of the actual receiver to the noise output of an "
209 " ideal receiver with the same overall gain and bandwidth when the receivers "
210 " are connected to sources at the standard noise temperature T0.\" "
211 "In this model, we consider T0 = 290K.",
212 DoubleValue(9.0),
214 MakeDoubleChecker<double>())
215 .AddAttribute("TxMode1Gain",
216 "Transmission mode 1 gain in dB",
217 DoubleValue(0.0),
219 MakeDoubleChecker<double>())
220 .AddAttribute("TxMode2Gain",
221 "Transmission mode 2 gain in dB",
222 DoubleValue(4.2),
224 MakeDoubleChecker<double>())
225 .AddAttribute("TxMode3Gain",
226 "Transmission mode 3 gain in dB",
227 DoubleValue(-2.8),
229 MakeDoubleChecker<double>())
230 .AddAttribute("TxMode4Gain",
231 "Transmission mode 4 gain in dB",
232 DoubleValue(0.0),
234 MakeDoubleChecker<double>())
235 .AddAttribute("TxMode5Gain",
236 "Transmission mode 5 gain in dB",
237 DoubleValue(0.0),
239 MakeDoubleChecker<double>())
240 .AddAttribute("TxMode6Gain",
241 "Transmission mode 6 gain in dB",
242 DoubleValue(0.0),
244 MakeDoubleChecker<double>())
245 .AddAttribute("TxMode7Gain",
246 "Transmission mode 7 gain in dB",
247 DoubleValue(0.0),
249 MakeDoubleChecker<double>())
250 .AddTraceSource("ReportCurrentCellRsrpSinr",
251 "RSRP and SINR statistics.",
253 "ns3::LteUePhy::RsrpSinrTracedCallback")
254 .AddAttribute("RsrpSinrSamplePeriod",
255 "The sampling period for reporting RSRP-SINR stats (default value 1)",
256 UintegerValue(1),
258 MakeUintegerChecker<uint16_t>())
259 .AddTraceSource("ReportUlPhyResourceBlocks",
260 "UL transmission PHY layer resource blocks.",
262 "ns3::LteUePhy::UlPhyResourceBlocksTracedCallback")
263 .AddTraceSource("ReportPowerSpectralDensity",
264 "Power Spectral Density data.",
266 "ns3::LteUePhy::PowerSpectralDensityTracedCallback")
267 .AddTraceSource("UlPhyTransmission",
268 "DL transmission PHY layer statistics.",
270 "ns3::PhyTransmissionStatParameters::TracedCallback")
271 .AddAttribute("DlSpectrumPhy",
272 "The downlink LteSpectrumPhy associated to this LtePhy",
274 PointerValue(),
276 MakePointerChecker<LteSpectrumPhy>())
277 .AddAttribute("UlSpectrumPhy",
278 "The uplink LteSpectrumPhy associated to this LtePhy",
280 PointerValue(),
282 MakePointerChecker<LteSpectrumPhy>())
283 .AddAttribute("RsrqUeMeasThreshold",
284 "Receive threshold for PSS on RSRQ [dB]",
285 DoubleValue(-1000.0),
287 MakeDoubleChecker<double>())
288 .AddAttribute("UeMeasurementsFilterPeriod",
289 "Time period for reporting UE measurements, i.e., the"
290 "length of layer-1 filtering.",
294 .AddAttribute("DownlinkCqiPeriodicity",
295 "Periodicity in milliseconds for reporting the"
296 "wideband and subband downlink CQIs to the eNB",
300 .AddTraceSource("ReportUeMeasurements",
301 "Report UE measurements RSRP (dBm) and RSRQ (dB).",
303 "ns3::LteUePhy::RsrpRsrqTracedCallback")
304 .AddTraceSource("StateTransition",
305 "Trace fired upon every UE PHY state transition",
307 "ns3::LteUePhy::StateTracedCallback")
308 .AddAttribute("EnableUplinkPowerControl",
309 "If true, Uplink Power Control will be enabled.",
310 BooleanValue(true),
313 .AddAttribute("Qout",
314 "corresponds to 10% block error rate of a hypothetical PDCCH transmission"
315 "taking into account the PCFICH errors with transmission parameters."
316 "see 3GPP TS 36.213 4.2.1 and TS 36.133 7.6",
317 DoubleValue(-5),
319 MakeDoubleChecker<double>())
320 .AddAttribute("Qin",
321 "corresponds to 2% block error rate of a hypothetical PDCCH transmission"
322 "taking into account the PCFICH errors with transmission parameters."
323 "see 3GPP TS 36.213 4.2.1 and TS 36.133 7.6",
324 DoubleValue(-3.9),
326 MakeDoubleChecker<double>())
327 .AddAttribute(
328 "NumQoutEvalSf",
329 "This specifies the total number of consecutive subframes"
330 "which corresponds to the Qout evaluation period",
331 UintegerValue(200), // see 3GPP 3GPP TS 36.133 7.6.2.1
333 MakeUintegerChecker<uint16_t>())
334 .AddAttribute(
335 "NumQinEvalSf",
336 "This specifies the total number of consecutive subframes"
337 "which corresponds to the Qin evaluation period",
338 UintegerValue(100), // see 3GPP 3GPP TS 36.133 7.6.2.1
340 MakeUintegerChecker<uint16_t>())
341 .AddAttribute("EnableRlfDetection",
342 "If true, RLF detection will be enabled.",
343 BooleanValue(true),
346 return tid;
347}
348
349void
351{
352 NS_LOG_FUNCTION(this);
353
354 NS_ABORT_MSG_IF(!m_netDevice, "LteNetDevice is not available in LteUePhy");
355 Ptr<Node> node = m_netDevice->GetNode();
356 NS_ABORT_MSG_IF(!node, "Node is not available in the LteNetDevice of LteUePhy");
357 uint32_t nodeId = node->GetId();
358
359 // ScheduleWithContext() is needed here to set context for logs,
360 // because Initialize() is called outside of Node::AddDevice().
361
363
365}
366
367void
369{
370 NS_LOG_FUNCTION(this);
371 m_uePhySapUser = s;
372}
373
376{
377 NS_LOG_FUNCTION(this);
378 return (m_uePhySapProvider);
379}
380
381void
383{
384 NS_LOG_FUNCTION(this);
385 m_ueCphySapUser = s;
386}
387
390{
391 NS_LOG_FUNCTION(this);
392 return (m_ueCphySapProvider);
393}
394
395void
397{
398 NS_LOG_FUNCTION(this << nf);
399 m_noiseFigure = nf;
400}
401
402double
404{
405 NS_LOG_FUNCTION(this);
406 return m_noiseFigure;
407}
408
409void
411{
412 NS_LOG_FUNCTION(this << pow);
413 m_txPower = pow;
415}
416
417double
419{
420 NS_LOG_FUNCTION(this);
421 return m_txPower;
422}
423
426{
427 NS_LOG_FUNCTION(this);
428 return m_powerControl;
429}
430
431uint8_t
433{
434 return (m_macChTtiDelay);
435}
436
439{
441}
442
445{
446 return m_uplinkSpectrumPhy;
447}
448
449void
450LteUePhy::SetNumQoutEvalSf(uint16_t numSubframes)
451{
452 NS_LOG_FUNCTION(this << numSubframes);
453 NS_ABORT_MSG_IF(numSubframes % 10 != 0,
454 "Number of subframes used for Qout "
455 "evaluation must be multiple of 10");
456 m_numOfQoutEvalSf = numSubframes;
457}
458
459void
460LteUePhy::SetNumQinEvalSf(uint16_t numSubframes)
461{
462 NS_LOG_FUNCTION(this << numSubframes);
463 NS_ABORT_MSG_IF(numSubframes % 10 != 0,
464 "Number of subframes used for Qin "
465 "evaluation must be multiple of 10");
466 m_numOfQinEvalSf = numSubframes;
467}
468
469uint16_t
471{
472 NS_LOG_FUNCTION(this);
473 return m_numOfQoutEvalSf;
474}
475
476uint16_t
478{
479 NS_LOG_FUNCTION(this);
480 return m_numOfQinEvalSf;
481}
482
483void
485{
486 NS_LOG_FUNCTION(this);
487
488 SetMacPdu(p);
489}
490
491void
493{
495}
496
497void
499{
500 NS_LOG_FUNCTION(this);
501
503
505 m_uplinkSpectrumPhy->SetTxPowerSpectralDensity(txPsd);
506}
507
508void
510{
511 NS_LOG_FUNCTION(this);
513}
514
515std::vector<int>
517{
518 NS_LOG_FUNCTION(this);
520}
521
522std::vector<int>
524{
525 NS_LOG_FUNCTION(this);
527}
528
531{
532 NS_LOG_FUNCTION(this);
536 m_txPower,
539
540 return psd;
541}
542
543void
545{
546 NS_LOG_FUNCTION(this);
556 if (m_cellId == 0)
557 {
558 return;
559 }
560 m_ctrlSinrForRlf = sinr;
562}
563
564void
566{
567 NS_LOG_FUNCTION(this << sinr);
568
570 NS_ASSERT(m_cellId > 0);
571
572 if (m_dlConfigured && m_ulConfigured && (m_rnti > 0))
573 {
574 // check periodic wideband CQI
576 {
577 NS_LOG_DEBUG("Reporting P10 CQI at : " << Simulator::Now().As(Time::MS)
578 << ". Last reported at : "
580 Ptr<LteUeNetDevice> thisDevice = GetDevice()->GetObject<LteUeNetDevice>();
582 if (msg)
583 {
585 }
587 }
588 // check aperiodic high-layer configured subband CQI
590 {
591 NS_LOG_DEBUG("Reporting A30 CQI at : " << Simulator::Now().As(Time::MS)
592 << ". Last reported at : "
594 Ptr<LteUeNetDevice> thisDevice = GetDevice()->GetObject<LteUeNetDevice>();
596 if (msg)
597 {
599 }
601 }
602 }
603
604 // Generate PHY trace
607 {
608 NS_ASSERT_MSG(m_rsReceivedPowerUpdated, " RS received power info obsolete");
609 // RSRP evaluated as averaged received power among RBs
610 double sum = 0.0;
611 uint8_t rbNum = 0;
612 Values::const_iterator it;
614 it++)
615 {
616 // convert PSD [W/Hz] to linear power [W] for the single RE
617 // we consider only one RE for the RS since the channel is
618 // flat within the same RB
619 double powerTxW = ((*it) * 180000.0) / 12.0;
620 sum += powerTxW;
621 rbNum++;
622 }
623 double rsrp = (rbNum > 0) ? (sum / rbNum) : DBL_MAX;
624 // averaged SINR among RBs
625 double avSinr = ComputeAvgSinr(sinr);
626
627 NS_LOG_INFO(this << " cellId " << m_cellId << " rnti " << m_rnti << " RSRP " << rsrp
628 << " SINR " << avSinr << " ComponentCarrierId "
629 << (uint16_t)m_componentCarrierId);
630 // trigger RLF detection only when UE has an active RRC connection
631 // and RLF detection attribute is set to true
633 {
634 double avrgSinrForRlf = ComputeAvgSinr(m_ctrlSinrForRlf);
635 RlfDetection(10 * log10(avrgSinrForRlf));
636 }
637
639 m_rnti,
640 rsrp,
641 avSinr,
642 (uint16_t)m_componentCarrierId);
644 }
645
646 if (m_pssReceived)
647 {
648 // measure instantaneous RSRQ now
649 NS_ASSERT_MSG(m_rsInterferencePowerUpdated, " RS interference power info obsolete");
650
651 std::list<PssElement>::iterator itPss = m_pssList.begin();
652 while (itPss != m_pssList.end())
653 {
654 uint16_t rbNum = 0;
655 double rssiSum = 0.0;
656
657 Values::const_iterator itIntN = m_rsInterferencePower.ConstValuesBegin();
658 Values::const_iterator itPj = m_rsReceivedPower.ConstValuesBegin();
661 itIntN++, itPj++)
662 {
663 rbNum++;
664 // convert PSD [W/Hz] to linear power [W] for the single RE
665 double interfPlusNoisePowerTxW = ((*itIntN) * 180000.0) / 12.0;
666 double signalPowerTxW = ((*itPj) * 180000.0) / 12.0;
667 rssiSum += (2 * (interfPlusNoisePowerTxW + signalPowerTxW));
668 }
669
670 NS_ASSERT(rbNum == (*itPss).nRB);
671 double rsrq_dB = 10 * log10((*itPss).pssPsdSum / rssiSum);
672
673 if (rsrq_dB > m_pssReceptionThreshold)
674 {
675 NS_LOG_INFO(this << " PSS RNTI " << m_rnti << " cellId " << m_cellId << " has RSRQ "
676 << rsrq_dB << " and RBnum " << rbNum);
677 // store measurements
678 std::map<uint16_t, UeMeasurementsElement>::iterator itMeasMap;
679 itMeasMap = m_ueMeasurementsMap.find((*itPss).cellId);
680 if (itMeasMap != m_ueMeasurementsMap.end())
681 {
682 (*itMeasMap).second.rsrqSum += rsrq_dB;
683 (*itMeasMap).second.rsrqNum++;
684 }
685 else
686 {
687 NS_LOG_WARN("race condition of bug 2091 occurred");
688 }
689 }
690
691 itPss++;
692
693 } // end of while (itPss != m_pssList.end ())
694
695 m_pssList.clear();
696
697 } // end of if (m_pssReceived)
698
699} // end of void LteUePhy::GenerateCtrlCqiReport (const SpectrumValue& sinr)
700
701double
703{
704 NS_LOG_FUNCTION(this);
705
706 // averaged SINR among RBs
707 double sum = 0.0;
708 uint8_t rbNum = 0;
709 Values::const_iterator it;
710
711 for (it = sinr.ConstValuesBegin(); it != sinr.ConstValuesEnd(); it++)
712 {
713 sum += (*it);
714 rbNum++;
715 }
716
717 double avrgSinr = (rbNum > 0) ? (sum / rbNum) : DBL_MAX;
718
719 return avrgSinr;
720}
721
722void
724{
725 // Not used by UE, CQI are based only on RS
726}
727
728void
730{
731 NS_LOG_FUNCTION(this);
732
742 if (m_cellId == 0)
743 {
744 return;
745 }
746
748 // NOTE: The SINR received by this method is
749 // based on CTRL, which is not used to compute
750 // PDSCH (i.e., data) based SINR. It is used
751 // for RLF detection.
752 m_ctrlSinrForRlf = sinr;
753
756 {
757 // we have a measurement of interf + noise for the denominator
758 // of SINR = S/(I+N)
759 mixedSinr /= m_dataInterferencePower;
761 NS_LOG_LOGIC("data interf measurement available, SINR = " << mixedSinr);
762 }
763 else
764 {
765 // we did not see any interference on data, so interference is
766 // there and we have only noise at the denominator of SINR
767 mixedSinr /= (*m_noisePsd);
768 NS_LOG_LOGIC("no data interf measurement available, SINR = " << mixedSinr);
769 }
770
771 /*
772 * some RBs are not used in PDSCH and their SINR is very high
773 * for example with bandwidth 25, last RB is not used
774 * it can make avgSinr value very high, what is incorrect
775 */
776 uint32_t rbgSize = GetRbgSize();
777 uint32_t modulo = m_dlBandwidth % rbgSize;
778 double avgMixedSinr = 0;
779 uint32_t usedRbgNum = 0;
780 for (uint32_t i = 0; i < (m_dlBandwidth - 1 - modulo); i++)
781 {
782 usedRbgNum++;
783 avgMixedSinr += mixedSinr[i];
784 }
785 avgMixedSinr = avgMixedSinr / usedRbgNum;
786 for (uint32_t i = 0; i < modulo; i++)
787 {
788 mixedSinr[m_dlBandwidth - 1 - i] = avgMixedSinr;
789 }
790
791 GenerateCqiRsrpRsrq(mixedSinr);
792}
793
794void
796{
797 NS_LOG_FUNCTION(this << interf);
799 m_rsInterferencePower = interf;
800}
801
802void
804{
805 NS_LOG_FUNCTION(this << interf);
806
809}
810
811void
813{
814 NS_LOG_FUNCTION(this << power);
816 m_rsReceivedPower = power;
817
819 {
820 double sum = 0;
821 Values::const_iterator it;
823 it++)
824 {
825 double powerTxW = ((*it) * 180000);
826 sum += powerTxW;
827 }
828 double rsrp = 10 * log10(sum) + 30;
829
830 NS_LOG_INFO("RSRP: " << rsrp);
831 m_powerControl->SetRsrp(rsrp);
832 }
833}
834
837{
838 NS_LOG_FUNCTION(this);
839
840 // apply transmission mode gain
842 SpectrumValue newSinr = sinr;
843 newSinr *= m_txModeGain.at(m_transmissionMode);
844
845 // CREATE DlCqiLteControlMessage
846 Ptr<DlCqiLteControlMessage> msg = Create<DlCqiLteControlMessage>();
847 CqiListElement_s dlcqi;
848 std::vector<int> cqi;
850 {
851 cqi = m_amc->CreateCqiFeedbacks(newSinr, m_dlBandwidth);
852
854 auto nbSubChannels = cqi.size();
855 double cqiSum = 0.0;
856 int activeSubChannels = 0;
857 // average the CQIs of the different RBs
858 for (std::size_t i = 0; i < nbSubChannels; i++)
859 {
860 if (cqi.at(i) != -1)
861 {
862 cqiSum += cqi.at(i);
863 activeSubChannels++;
864 }
865 NS_LOG_DEBUG(this << " subch " << i << " cqi " << cqi.at(i));
866 }
867 dlcqi.m_rnti = m_rnti;
868 dlcqi.m_ri = 1; // not yet used
869 dlcqi.m_cqiType = CqiListElement_s::P10; // Periodic CQI using PUCCH wideband
870 NS_ASSERT_MSG(nLayer > 0, " nLayer negative");
871 NS_ASSERT_MSG(nLayer < 3, " nLayer limit is 2s");
872 for (uint8_t i = 0; i < nLayer; i++)
873 {
874 if (activeSubChannels > 0)
875 {
876 dlcqi.m_wbCqi.push_back((uint16_t)cqiSum / activeSubChannels);
877 }
878 else
879 {
880 // approximate with the worst case -> CQI = 1
881 dlcqi.m_wbCqi.push_back(1);
882 }
883 }
884 // NS_LOG_DEBUG (this << " Generate P10 CQI feedback " << (uint16_t) cqiSum /
885 // activeSubChannels);
886 dlcqi.m_wbPmi = 0; // not yet used
887 // dl.cqi.m_sbMeasResult others CQI report modes: not yet implemented
888 }
890 {
891 cqi = m_amc->CreateCqiFeedbacks(newSinr, GetRbgSize());
893 auto nbSubChannels = cqi.size();
894 int rbgSize = GetRbgSize();
895 double cqiSum = 0.0;
896 int cqiNum = 0;
897 SbMeasResult_s rbgMeas;
898 // NS_LOG_DEBUG (this << " Create A30 CQI feedback, RBG " << rbgSize << " cqiNum " <<
899 // nbSubChannels << " band " << (uint16_t)m_dlBandwidth);
900 for (std::size_t i = 0; i < nbSubChannels; i++)
901 {
902 if (cqi.at(i) != -1)
903 {
904 cqiSum += cqi.at(i);
905 }
906 // else "nothing" no CQI is treated as CQI = 0 (worst case scenario)
907 cqiNum++;
908 if (cqiNum == rbgSize)
909 {
910 // average the CQIs of the different RBGs
911 // NS_LOG_DEBUG (this << " RBG CQI " << (uint16_t) cqiSum / rbgSize);
913 hlCqi.m_sbPmi = 0; // not yet used
914 for (uint8_t i = 0; i < nLayer; i++)
915 {
916 hlCqi.m_sbCqi.push_back((uint16_t)cqiSum / rbgSize);
917 }
918 rbgMeas.m_higherLayerSelected.push_back(hlCqi);
919 cqiSum = 0.0;
920 cqiNum = 0;
921 }
922 }
923 dlcqi.m_rnti = m_rnti;
924 dlcqi.m_ri = 1; // not yet used
925 dlcqi.m_cqiType = CqiListElement_s::A30; // Aperidic CQI using PUSCH
926 // dlcqi.m_wbCqi.push_back ((uint16_t) cqiSum / nbSubChannels);
927 dlcqi.m_wbPmi = 0; // not yet used
928 dlcqi.m_sbMeasResult = rbgMeas;
929 }
930
931 msg->SetDlCqi(dlcqi);
932 return msg;
933}
934
935void
937{
939 NS_LOG_DEBUG(this << " Report UE Measurements ");
940
942
943 std::map<uint16_t, UeMeasurementsElement>::iterator it;
944 for (it = m_ueMeasurementsMap.begin(); it != m_ueMeasurementsMap.end(); it++)
945 {
946 double avg_rsrp = (*it).second.rsrpSum / (double)(*it).second.rsrpNum;
947 double avg_rsrq = (*it).second.rsrqSum / (double)(*it).second.rsrqNum;
948 /*
949 * In CELL_SEARCH state, this may result in avg_rsrq = 0/0 = -nan.
950 * UE RRC must take this into account when receiving measurement reports.
951 * TODO remove this shortcoming by calculating RSRQ during CELL_SEARCH
952 */
953 NS_LOG_DEBUG(this << " CellId " << (*it).first << " RSRP " << avg_rsrp << " (nSamples "
954 << (uint16_t)(*it).second.rsrpNum << ")"
955 << " RSRQ " << avg_rsrq << " (nSamples " << (uint16_t)(*it).second.rsrqNum
956 << ")"
957 << " ComponentCarrierID " << (uint16_t)m_componentCarrierId);
958
960 newEl.m_cellId = (*it).first;
961 newEl.m_rsrp = avg_rsrp;
962 newEl.m_rsrq = avg_rsrq;
963 ret.m_ueMeasurementsList.push_back(newEl);
965
966 // report to UE measurements trace
968 (*it).first,
969 avg_rsrp,
970 avg_rsrq,
971 ((*it).first == m_cellId ? 1 : 0),
973 }
974
975 // report to RRC
977
978 m_ueMeasurementsMap.clear();
980}
981
982void
984{
985 NS_LOG_FUNCTION(this << cqiPeriodicity);
986 m_a30CqiPeriodicity = cqiPeriodicity;
987 m_p10CqiPeriodicity = cqiPeriodicity;
988}
989
990void
992{
993 NS_LOG_FUNCTION(this << msg);
994
996}
997
998void
1000{
1001 NS_LOG_FUNCTION(this << raPreambleId);
1002
1003 // unlike other control messages, RACH preamble is sent ASAP
1004 Ptr<RachPreambleLteControlMessage> msg = Create<RachPreambleLteControlMessage>();
1005 msg->SetRapId(raPreambleId);
1006 m_raPreambleId = raPreambleId;
1007 m_raRnti = raRnti;
1008 m_controlMessagesQueue.at(0).emplace_back(msg);
1009}
1010
1011void
1013{
1019 if (m_componentCarrierId == 0)
1020 {
1021 m_isConnected = true;
1022 // Initialize the parameters for radio link failure detection
1024 }
1025}
1026
1027void
1029{
1030 NS_LOG_FUNCTION(this);
1031
1032 std::list<Ptr<LteControlMessage>>::iterator it;
1033 NS_LOG_DEBUG(this << " I am rnti = " << m_rnti << " and I received msgs "
1034 << (uint16_t)msgList.size());
1035 for (it = msgList.begin(); it != msgList.end(); it++)
1036 {
1037 Ptr<LteControlMessage> msg = (*it);
1038
1039 if (msg->GetMessageType() == LteControlMessage::DL_DCI)
1040 {
1041 Ptr<DlDciLteControlMessage> msg2 = DynamicCast<DlDciLteControlMessage>(msg);
1042
1043 DlDciListElement_s dci = msg2->GetDci();
1044 if (dci.m_rnti != m_rnti)
1045 {
1046 // DCI not for me
1047 continue;
1048 }
1049
1050 if (dci.m_resAlloc != 0)
1051 {
1052 NS_FATAL_ERROR("Resource Allocation type not implemented");
1053 }
1054
1055 std::vector<int> dlRb;
1056
1057 // translate the DCI to Spectrum framework
1058 uint32_t mask = 0x1;
1059 for (int i = 0; i < 32; i++)
1060 {
1061 if (((dci.m_rbBitmap & mask) >> i) == 1)
1062 {
1063 for (int k = 0; k < GetRbgSize(); k++)
1064 {
1065 dlRb.push_back((i * GetRbgSize()) + k);
1066 // NS_LOG_DEBUG(this << " RNTI " << m_rnti << " RBG " << i << "
1067 // DL-DCI allocated PRB " << (i*GetRbgSize()) + k);
1068 }
1069 }
1070 mask = (mask << 1);
1071 }
1073 {
1075 }
1076
1077 // send TB info to LteSpectrumPhy
1078 NS_LOG_DEBUG(this << " UE " << m_rnti << " DL-DCI " << dci.m_rnti << " bitmap "
1079 << dci.m_rbBitmap);
1080 for (std::size_t i = 0; i < dci.m_tbsSize.size(); i++)
1081 {
1082 m_downlinkSpectrumPhy->AddExpectedTb(dci.m_rnti,
1083 dci.m_ndi.at(i),
1084 dci.m_tbsSize.at(i),
1085 dci.m_mcs.at(i),
1086 dlRb,
1087 i,
1088 dci.m_harqProcess,
1089 dci.m_rv.at(i),
1090 true /* DL */);
1091 }
1092
1094 }
1095 else if (msg->GetMessageType() == LteControlMessage::UL_DCI)
1096 {
1097 // set the uplink bandwidth according to the UL-CQI
1098 Ptr<UlDciLteControlMessage> msg2 = DynamicCast<UlDciLteControlMessage>(msg);
1099 UlDciListElement_s dci = msg2->GetDci();
1100 if (dci.m_rnti != m_rnti)
1101 {
1102 // DCI not for me
1103 continue;
1104 }
1105 NS_LOG_INFO(this << " UL DCI");
1106 std::vector<int> ulRb;
1107 ulRb.reserve(dci.m_rbLen);
1108 for (int i = 0; i < dci.m_rbLen; i++)
1109 {
1110 ulRb.push_back(i + dci.m_rbStart);
1111 // NS_LOG_DEBUG (this << " UE RB " << i + dci.m_rbStart);
1112 }
1115 // fire trace of UL Tx PHY stats
1116 HarqProcessInfoList_t harqInfoList = m_harqPhyModule->GetHarqProcessInfoUl(m_rnti, 0);
1118 params.m_cellId = m_cellId;
1119 params.m_imsi = 0; // it will be set by DlPhyTransmissionCallback in LteHelper
1120 params.m_timestamp = Simulator::Now().GetMilliSeconds() + UL_PUSCH_TTIS_DELAY;
1121 params.m_rnti = m_rnti;
1122 params.m_txMode = 0; // always SISO for UE
1123 params.m_layer = 0;
1124 params.m_mcs = dci.m_mcs;
1125 params.m_size = dci.m_tbSize;
1126 params.m_rv = harqInfoList.size();
1127 params.m_ndi = dci.m_ndi;
1128 params.m_ccId = m_componentCarrierId;
1129 m_ulPhyTransmission(params);
1130 // pass the info to the MAC
1132 }
1133 else if (msg->GetMessageType() == LteControlMessage::RAR)
1134 {
1135 Ptr<RarLteControlMessage> rarMsg = DynamicCast<RarLteControlMessage>(msg);
1136 if (rarMsg->GetRaRnti() == m_raRnti)
1137 {
1138 for (std::list<RarLteControlMessage::Rar>::const_iterator it =
1139 rarMsg->RarListBegin();
1140 it != rarMsg->RarListEnd();
1141 ++it)
1142 {
1143 if (it->rapId != m_raPreambleId)
1144 {
1145 // UL grant not for me
1146 continue;
1147 }
1148 else
1149 {
1150 NS_LOG_INFO("received RAR RNTI " << m_raRnti);
1151 // set the uplink bandwidth according to the UL grant
1152 std::vector<int> ulRb;
1153 ulRb.reserve(it->rarPayload.m_grant.m_rbLen);
1154 for (int i = 0; i < it->rarPayload.m_grant.m_rbLen; i++)
1155 {
1156 ulRb.push_back(i + it->rarPayload.m_grant.m_rbStart);
1157 }
1158
1160 // pass the info to the MAC
1162 // reset RACH variables with out of range values
1163 m_raPreambleId = 255;
1164 m_raRnti = 11;
1165 }
1166 }
1167 }
1168 }
1169 else if (msg->GetMessageType() == LteControlMessage::MIB)
1170 {
1171 NS_LOG_INFO("received MIB");
1172 NS_ASSERT(m_cellId > 0);
1173 Ptr<MibLteControlMessage> msg2 = DynamicCast<MibLteControlMessage>(msg);
1175 }
1176 else if (msg->GetMessageType() == LteControlMessage::SIB1)
1177 {
1178 NS_LOG_INFO("received SIB1");
1179 NS_ASSERT(m_cellId > 0);
1180 Ptr<Sib1LteControlMessage> msg2 = DynamicCast<Sib1LteControlMessage>(msg);
1182 }
1183 else
1184 {
1185 // pass the message to UE-MAC
1187 }
1188 }
1189}
1190
1191void
1193{
1194 NS_LOG_FUNCTION(this << cellId << (*p));
1195
1196 double sum = 0.0;
1197 uint16_t nRB = 0;
1198 Values::const_iterator itPi;
1199 for (itPi = p->ConstValuesBegin(); itPi != p->ConstValuesEnd(); itPi++)
1200 {
1201 // convert PSD [W/Hz] to linear power [W] for the single RE
1202 double powerTxW = ((*itPi) * 180000.0) / 12.0;
1203 sum += powerTxW;
1204 nRB++;
1205 }
1206
1207 // measure instantaneous RSRP now
1208 double rsrp_dBm = 10 * log10(1000 * (sum / (double)nRB));
1209 NS_LOG_INFO(this << " PSS RNTI " << m_rnti << " cellId " << m_cellId << " has RSRP " << rsrp_dBm
1210 << " and RBnum " << nRB);
1211 // note that m_pssReceptionThreshold does not apply here
1212
1213 // store measurements
1214 std::map<uint16_t, UeMeasurementsElement>::iterator itMeasMap =
1215 m_ueMeasurementsMap.find(cellId);
1216 if (itMeasMap == m_ueMeasurementsMap.end())
1217 {
1218 // insert new entry
1220 newEl.rsrpSum = rsrp_dBm;
1221 newEl.rsrpNum = 1;
1222 newEl.rsrqSum = 0;
1223 newEl.rsrqNum = 0;
1224 m_ueMeasurementsMap.insert(std::pair<uint16_t, UeMeasurementsElement>(cellId, newEl));
1225 }
1226 else
1227 {
1228 (*itMeasMap).second.rsrpSum += rsrp_dBm;
1229 (*itMeasMap).second.rsrpNum++;
1230 }
1231
1232 /*
1233 * Collect the PSS for later processing in GenerateCtrlCqiReport()
1234 * (to be called from ChunkProcessor after RX is finished).
1235 */
1236 m_pssReceived = true;
1237 PssElement el;
1238 el.cellId = cellId;
1239 el.pssPsdSum = sum;
1240 el.nRB = nRB;
1241 m_pssList.push_back(el);
1242
1243} // end of void LteUePhy::ReceivePss (uint16_t cellId, Ptr<SpectrumValue> p)
1244
1245void
1247{
1249}
1250
1251void
1253{
1254 NS_LOG_FUNCTION(this << frameNo << subframeNo);
1255
1256 NS_ASSERT_MSG(frameNo > 0, "the SRS index check code assumes that frameNo starts at 1");
1257
1258 // refresh internal variables
1261 m_pssReceived = false;
1262
1263 if (m_ulConfigured)
1264 {
1265 // update uplink transmission mask according to previous UL-CQIs
1266 std::vector<int> rbMask = m_subChannelsForTransmissionQueue.at(0);
1268
1269 // shift the queue
1270 for (uint8_t i = 1; i < m_macChTtiDelay; i++)
1271 {
1273 }
1275
1277 {
1278 NS_ASSERT_MSG(subframeNo > 0 && subframeNo <= 10,
1279 "the SRS index check code assumes that subframeNo starts at 1");
1280 if ((((frameNo - 1) * 10 + (subframeNo - 1)) % m_srsPeriodicity) == m_srsSubframeOffset)
1281 {
1282 NS_LOG_INFO("frame " << frameNo << " subframe " << subframeNo
1283 << " sending SRS (offset=" << m_srsSubframeOffset
1284 << ", period=" << m_srsPeriodicity << ")");
1287 }
1288 }
1289
1290 std::list<Ptr<LteControlMessage>> ctrlMsg = GetControlMessages();
1291 // send packets in queue
1292 NS_LOG_LOGIC(this << " UE - start slot for PUSCH + PUCCH - RNTI " << m_rnti << " CELLID "
1293 << m_cellId);
1294 // send the current burts of packets
1296 if (pb)
1297 {
1299 {
1302 }
1303 m_uplinkSpectrumPhy->StartTxDataFrame(pb, ctrlMsg, UL_DATA_DURATION);
1304 }
1305 else
1306 {
1307 // send only PUCCH (ideal: fake null bandwidth signal)
1308 if (!ctrlMsg.empty())
1309 {
1310 NS_LOG_LOGIC(this << " UE - start TX PUCCH (NO PUSCH)");
1311 std::vector<int> dlRb;
1312
1314 {
1316 }
1317
1319 m_uplinkSpectrumPhy->StartTxDataFrame(pb, ctrlMsg, UL_DATA_DURATION);
1320 }
1321 else
1322 {
1323 NS_LOG_LOGIC(this << " UE - UL NOTHING TO SEND");
1324 }
1325 }
1326 } // m_configured
1327
1328 // trigger the MAC
1329 m_uePhySapUser->SubframeIndication(frameNo, subframeNo);
1330
1331 m_subframeNo = subframeNo;
1332 ++subframeNo;
1333 if (subframeNo > 10)
1334 {
1335 ++frameNo;
1336 subframeNo = 1;
1337 }
1338
1339 // schedule next subframe indication
1342 this,
1343 frameNo,
1344 subframeNo);
1345}
1346
1347void
1349{
1350 NS_LOG_FUNCTION(this << " UE " << m_rnti << " start tx SRS, cell Id " << (uint32_t)m_cellId);
1351 NS_ASSERT(m_cellId > 0);
1352 // set the current tx power spectral density (full bandwidth)
1353 std::vector<int> dlRb;
1354 for (uint16_t i = 0; i < m_ulBandwidth; i++)
1355 {
1356 dlRb.push_back(i);
1357 }
1358
1360 {
1362 }
1363
1365 m_uplinkSpectrumPhy->StartTxUlSrsFrame();
1366}
1367
1368void
1370{
1371 NS_LOG_FUNCTION(this);
1372
1373 m_rnti = 0;
1374 m_cellId = 0;
1375 m_isConnected = false;
1377 m_srsPeriodicity = 0;
1378 m_srsConfigured = false;
1379 m_dlConfigured = false;
1380 m_ulConfigured = false;
1381 m_raPreambleId = 255; // value out of range
1382 m_raRnti = 11; // value out of range
1386 m_paLinear = 1;
1387
1391
1392 m_packetBurstQueue.clear();
1393 m_controlMessagesQueue.clear();
1395 for (int i = 0; i < m_macChTtiDelay; i++)
1396 {
1397 Ptr<PacketBurst> pb = CreateObject<PacketBurst>();
1398 m_packetBurstQueue.push_back(pb);
1399 std::list<Ptr<LteControlMessage>> l;
1400 m_controlMessagesQueue.push_back(l);
1401 }
1402 std::vector<int> ulRb;
1404
1406 m_downlinkSpectrumPhy->Reset();
1407 m_uplinkSpectrumPhy->Reset();
1408 m_pssList.clear();
1413 m_downlinkSpectrumPhy->m_interferenceCtrl->EndRx();
1414 m_downlinkSpectrumPhy->m_interferenceData->EndRx();
1415
1416} // end of void LteUePhy::DoReset ()
1417
1418void
1420{
1421 NS_LOG_FUNCTION(this << dlEarfcn);
1422 m_dlEarfcn = dlEarfcn;
1423 DoSetDlBandwidth(6); // configure DL for receiving PSS
1425}
1426
1427void
1429{
1430 NS_LOG_FUNCTION(this << cellId << dlEarfcn);
1431 m_dlEarfcn = dlEarfcn;
1432 DoSynchronizeWithEnb(cellId);
1433}
1434
1435void
1437{
1438 NS_LOG_FUNCTION(this << cellId);
1439
1440 if (cellId == 0)
1441 {
1442 NS_FATAL_ERROR("Cell ID shall not be zero");
1443 }
1444
1445 m_cellId = cellId;
1446 m_downlinkSpectrumPhy->SetCellId(cellId);
1447 m_uplinkSpectrumPhy->SetCellId(cellId);
1448
1449 // configure DL for receiving the BCH with the minimum bandwidth
1451
1452 m_dlConfigured = false;
1453 m_ulConfigured = false;
1454
1456}
1457
1458uint16_t
1460{
1461 return m_cellId;
1462}
1463
1466{
1467 return m_dlEarfcn;
1468}
1469
1470void
1471LteUePhy::DoSetDlBandwidth(uint16_t dlBandwidth)
1472{
1473 NS_LOG_FUNCTION(this << (uint32_t)dlBandwidth);
1474 if (m_dlBandwidth != dlBandwidth or !m_dlConfigured)
1475 {
1476 m_dlBandwidth = dlBandwidth;
1477
1478 static const int Type0AllocationRbg[4] = {
1479 10, // RGB size 1
1480 26, // RGB size 2
1481 63, // RGB size 3
1482 110, // RGB size 4
1483 }; // see table 7.1.6.1-1 of 36.213
1484 for (int i = 0; i < 4; i++)
1485 {
1486 if (dlBandwidth < Type0AllocationRbg[i])
1487 {
1488 m_rbgSize = i + 1;
1489 break;
1490 }
1491 }
1492
1496 m_downlinkSpectrumPhy->SetNoisePowerSpectralDensity(m_noisePsd);
1497 m_downlinkSpectrumPhy->GetChannel()->AddRx(m_downlinkSpectrumPhy);
1498 }
1499 m_dlConfigured = true;
1500}
1501
1502void
1503LteUePhy::DoConfigureUplink(uint32_t ulEarfcn, uint16_t ulBandwidth)
1504{
1505 m_ulEarfcn = ulEarfcn;
1506 m_ulBandwidth = ulBandwidth;
1507 m_ulConfigured = true;
1508}
1509
1510void
1512{
1513 NS_LOG_FUNCTION(this);
1514 m_powerControl->ConfigureReferenceSignalPower(referenceSignalPower);
1515}
1516
1517void
1519{
1520 NS_LOG_FUNCTION(this << rnti);
1521 m_rnti = rnti;
1522
1525}
1526
1527void
1529{
1530 NS_LOG_FUNCTION(this << (uint16_t)txMode);
1531 m_transmissionMode = txMode;
1532 m_downlinkSpectrumPhy->SetTransmissionMode(txMode);
1533}
1534
1535void
1537{
1538 NS_LOG_FUNCTION(this << srcCi);
1541 m_srsConfigured = true;
1542
1543 // a guard time is needed for the case where the SRS periodicity is changed dynamically at run
1544 // time if we use a static one, we can have a 0ms guard time
1546 NS_LOG_DEBUG(this << " UE SRS P " << m_srsPeriodicity << " RNTI " << m_rnti << " offset "
1547 << m_srsSubframeOffset << " cellId " << m_cellId << " CI " << srcCi);
1548}
1549
1550void
1552{
1553 NS_LOG_FUNCTION(this << pa);
1554 m_paLinear = pow(10, (pa / 10));
1555}
1556
1557void
1558LteUePhy::DoSetRsrpFilterCoefficient(uint8_t rsrpFilterCoefficient)
1559{
1560 NS_LOG_FUNCTION(this << (uint16_t)(rsrpFilterCoefficient));
1561 m_powerControl->SetRsrpFilterCoefficient(rsrpFilterCoefficient);
1562}
1563
1564void
1566{
1567 NS_LOG_FUNCTION(this);
1568 m_downlinkSpectrumPhy->m_harqPhyModule->ClearDlHarqBuffer(m_rnti); // flush HARQ buffers
1571 m_pssReceived = false;
1572 DoReset();
1573}
1574
1575void
1577{
1578 NS_LOG_FUNCTION(this);
1579
1581}
1582
1583void
1585{
1586 NS_LOG_FUNCTION(this);
1587 // indicates that the downlink radio link quality has to be monitored for in-sync indications
1588 m_downlinkInSync = false;
1589}
1590
1591void
1593{
1594 NS_LOG_FUNCTION(this);
1595 m_imsi = imsi;
1596}
1597
1598void
1600{
1601 NS_LOG_FUNCTION(this);
1602 m_numOfSubframes = 0;
1603 m_sinrDbFrame = 0;
1604 m_numOfFrames = 0;
1605 m_downlinkInSync = true;
1606}
1607
1608void
1610{
1611 NS_LOG_FUNCTION(this << sinrDb);
1612 m_sinrDbFrame += sinrDb;
1614 NS_LOG_LOGIC("No of Subframes: " << m_numOfSubframes
1615 << " UE synchronized: " << m_downlinkInSync);
1616 // check for out_of_sync indications first when UE is both DL and UL synchronized
1617 // m_downlinkInSync=true indicates that the evaluation is for out-of-sync indications
1619 {
1625 {
1626 m_numOfFrames++; // increment the counter if a frame cannot be decoded
1627 NS_LOG_LOGIC("No of Frames which cannot be decoded: " << m_numOfFrames);
1628 }
1629 else
1630 {
1636 NS_LOG_INFO("Resetting frame counter at phy. Current value = " << m_numOfFrames);
1637 m_numOfFrames = 0;
1638 // Also reset the sync indicator counter at RRC
1640 }
1641 m_numOfSubframes = 0;
1642 m_sinrDbFrame = 0;
1643 }
1650 {
1651 NS_LOG_LOGIC("At " << Simulator::Now().As(Time::MS)
1652 << " ms UE PHY sending out of sync indication to UE RRC layer");
1654 m_numOfFrames = 0;
1655 }
1656 // check for in_sync indications when T310 timer is started
1657 // m_downlinkInSync=false indicates that the evaluation is for in-sync indications
1658 if (!m_downlinkInSync && m_numOfSubframes == 10)
1659 {
1666 {
1667 m_numOfFrames++; // increment the counter if a frame can be decoded
1668 NS_LOG_LOGIC("No of Frames successfully decoded: " << m_numOfFrames);
1669 }
1670 else
1671 {
1677 m_numOfFrames = 0;
1678 // Also reset the sync indicator counter at RRC
1680 }
1681 m_numOfSubframes = 0;
1682 m_sinrDbFrame = 0;
1683 }
1689 {
1690 NS_LOG_LOGIC("At " << Simulator::Now().As(Time::MS)
1691 << " ms UE PHY sending in sync indication to UE RRC layer");
1693 m_numOfFrames = 0;
1694 }
1695}
1696
1697void
1699{
1700 SetTxModeGain(1, gain);
1701}
1702
1703void
1705{
1706 SetTxModeGain(2, gain);
1707}
1708
1709void
1711{
1712 SetTxModeGain(3, gain);
1713}
1714
1715void
1717{
1718 SetTxModeGain(4, gain);
1719}
1720
1721void
1723{
1724 SetTxModeGain(5, gain);
1725}
1726
1727void
1729{
1730 SetTxModeGain(6, gain);
1731}
1732
1733void
1735{
1736 SetTxModeGain(7, gain);
1737}
1738
1739void
1740LteUePhy::SetTxModeGain(uint8_t txMode, double gain)
1741{
1742 NS_LOG_FUNCTION(this << gain);
1743 if (txMode > 0)
1744 {
1745 // convert to linear
1746 double gainLin = std::pow(10.0, (gain / 10.0));
1747 if (m_txModeGain.size() < txMode)
1748 {
1749 m_txModeGain.resize(txMode);
1750 }
1751 m_txModeGain.at(txMode - 1) = gainLin;
1752 }
1753 // forward the info to DL LteSpectrumPhy
1754 m_downlinkSpectrumPhy->SetTxModeGain(txMode, gain);
1755}
1756
1757void
1759{
1760 NS_LOG_FUNCTION(this);
1761 // get the feedback from LteSpectrumPhy and send it through ideal PUCCH to eNB
1762 Ptr<DlHarqFeedbackLteControlMessage> msg = Create<DlHarqFeedbackLteControlMessage>();
1763 msg->SetDlHarqFeedback(m);
1764 SetControlMessages(msg);
1765}
1766
1767void
1769{
1770 m_harqPhyModule = harq;
1771}
1772
1775{
1776 NS_LOG_FUNCTION(this);
1777 return m_state;
1778}
1779
1780void
1782{
1783 NS_LOG_FUNCTION(this << newState);
1784 State oldState = m_state;
1785 m_state = newState;
1786 NS_LOG_INFO(this << " cellId=" << m_cellId << " rnti=" << m_rnti << " UePhy "
1787 << ToString(oldState) << " --> " << ToString(newState));
1788 m_stateTransitionTrace(m_cellId, m_rnti, oldState, newState);
1789}
1790
1791} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
void Cancel()
This method is syntactic sugar for the ns3::Simulator::Cancel method.
Definition: event-id.cc:55
The LtePhy models the physical layer of LTE.
Definition: lte-phy.h:51
double m_txPower
Transmission power in dBm.
Definition: lte-phy.h:241
uint8_t GetRbgSize() const
Definition: lte-phy.cc:180
void DoDispose() override
Destructor implementation.
Definition: lte-phy.cc:76
uint16_t GetSrsPeriodicity(uint16_t srcCi) const
Definition: lte-phy.cc:144
std::vector< Ptr< PacketBurst > > m_packetBurstQueue
A queue of packet bursts to be sent.
Definition: lte-phy.h:281
uint16_t m_ulBandwidth
The UL bandwidth in number of PRBs.
Definition: lte-phy.h:261
Ptr< PacketBurst > GetPacketBurst()
Definition: lte-phy.cc:192
Ptr< LteNetDevice > GetDevice() const
Get the device where the phy layer is attached.
Definition: lte-phy.cc:97
uint8_t m_componentCarrierId
component carrier Id used to address sap
Definition: lte-phy.h:303
double m_noiseFigure
Loss (dB) in the Signal-to-Noise-Ratio due to non-idealities in the receiver.
Definition: lte-phy.h:253
uint32_t m_ulEarfcn
The uplink carrier frequency.
Definition: lte-phy.h:278
uint16_t m_dlBandwidth
The DL bandwidth in number of PRBs.
Definition: lte-phy.h:266
Ptr< LteSpectrumPhy > m_downlinkSpectrumPhy
The downlink LteSpectrumPhy associated to this LtePhy.
Definition: lte-phy.h:230
void SetMacPdu(Ptr< Packet > p)
Definition: lte-phy.cc:186
std::list< Ptr< LteControlMessage > > GetControlMessages()
Definition: lte-phy.cc:218
uint16_t GetSrsSubframeOffset(uint16_t srcCi) const
Definition: lte-phy.cc:162
Ptr< LteNetDevice > m_netDevice
Pointer to the NetDevice where this PHY layer is attached.
Definition: lte-phy.h:224
uint16_t m_cellId
Cell identifier.
Definition: lte-phy.h:300
void SetControlMessages(Ptr< LteControlMessage > m)
Definition: lte-phy.cc:210
uint32_t m_dlEarfcn
The downlink carrier frequency.
Definition: lte-phy.h:273
Ptr< LteSpectrumPhy > m_uplinkSpectrumPhy
The uplink LteSpectrumPhy associated to this LtePhy.
Definition: lte-phy.h:235
double GetTti() const
Definition: lte-phy.cc:137
std::vector< std::list< Ptr< LteControlMessage > > > m_controlMessagesQueue
A queue of control messages to be sent.
Definition: lte-phy.h:283
uint8_t m_rbgSize
The RB group size according to the bandwidth.
Definition: lte-phy.h:268
uint8_t m_macChTtiDelay
Delay between MAC and channel layer in terms of TTIs.
Definition: lte-phy.h:293
static Ptr< SpectrumValue > CreateUlTxPowerSpectralDensity(uint16_t earfcn, uint16_t bandwidth, double powerTx, std::vector< int > activeRbs)
create a spectrum value representing the uplink power spectral density of a signal to be transmitted.
static Ptr< SpectrumValue > CreateNoisePowerSpectralDensity(uint32_t earfcn, uint16_t bandwidth, double noiseFigure)
create a SpectrumValue that models the power spectral density of AWGN
Service Access Point (SAP) offered by the UE PHY to the UE RRC for control purposes.
Service Access Point (SAP) offered by the UE PHY to the UE RRC for control purposes.
virtual void NotifyInSync()=0
Send an in sync indication to UE RRC.
virtual void ReportUeMeasurements(UeMeasurementsParameters params)=0
Send a report of RSRP and RSRQ values perceived from PSS by the PHY entity (after applying layer-1 fi...
virtual void RecvMasterInformationBlock(uint16_t cellId, LteRrcSap::MasterInformationBlock mib)=0
Relay an MIB message from the PHY entity to the RRC layer.
virtual void RecvSystemInformationBlockType1(uint16_t cellId, LteRrcSap::SystemInformationBlockType1 sib1)=0
Relay an SIB1 message from the PHY entity to the RRC layer.
virtual void NotifyOutOfSync()=0
Send an out of sync indication to UE RRC.
virtual void ResetSyncIndicationCounter()=0
Reset the sync indication counter.
The LteUeNetDevice class implements the UE net device.
The LteSpectrumPhy models the physical layer of LTE.
Definition: lte-ue-phy.h:52
void SetTxMode1Gain(double gain)
Set transmit mode 1 gain function.
Definition: lte-ue-phy.cc:1698
SpectrumValue m_dataInterferencePower
data interference power
Definition: lte-ue-phy.h:727
void SetSubChannelsForTransmission(std::vector< int > mask)
Set a list of sub channels to use in TX.
Definition: lte-ue-phy.cc:498
void DoInitialize() override
Initialize() implementation.
Definition: lte-ue-phy.cc:350
friend class MemberLteUeCphySapProvider< LteUePhy >
allow MemberLteUeCphySapProvider<LteUePhy> class friend access
Definition: lte-ue-phy.h:56
void SetHarqPhyModule(Ptr< LteHarqPhy > harq)
Set the HARQ PHY module.
Definition: lte-ue-phy.cc:1768
void DoSetDlBandwidth(uint16_t dlBandwidth)
Set DL bandwidth function.
Definition: lte-ue-phy.cc:1471
uint16_t GetNumQinEvalSf() const
Get number of Qin evaluation subframes.
Definition: lte-ue-phy.cc:477
void SetTxMode3Gain(double gain)
Set transmit mode 3 gain function.
Definition: lte-ue-phy.cc:1710
uint16_t m_numOfQinEvalSf
the downlink radio link quality is estimated over this period for detecting in-syncs
Definition: lte-ue-phy.h:842
LteUePhySapUser * m_uePhySapUser
UE Phy SAP user.
Definition: lte-ue-phy.h:689
uint16_t DoGetCellId()
Get cell ID.
Definition: lte-ue-phy.cc:1459
uint16_t m_rsrpSinrSampleCounter
The RsrpSinrSampleCounter attribute.
Definition: lte-ue-phy.h:789
virtual void ReportDataInterference(const SpectrumValue &interf)
Create the mixed CQI report.
Definition: lte-ue-phy.cc:803
void QueueSubChannelsForTransmission(std::vector< int > rbMap)
Queue subchannels for transmission function.
Definition: lte-ue-phy.cc:1246
void DoConfigureUplink(uint32_t ulEarfcn, uint16_t ulBandwidth)
Configure UL uplink function.
Definition: lte-ue-phy.cc:1503
virtual void ReceivePss(uint16_t cellId, Ptr< SpectrumValue > p)
Receive PSS function.
Definition: lte-ue-phy.cc:1192
uint16_t m_srsPeriodicity
SRS periodicity.
Definition: lte-ue-phy.h:699
void DoResetPhyAfterRlf()
Reset Phy after radio link failure function.
Definition: lte-ue-phy.cc:1565
virtual void DoNotifyConnectionSuccessful()
Notify PHY about the successful RRC connection establishment.
Definition: lte-ue-phy.cc:1012
bool m_dlConfigured
DL configured?
Definition: lte-ue-phy.h:706
LteUePhySapProvider * GetLteUePhySapProvider()
Get the PHY SAP provider.
Definition: lte-ue-phy.cc:375
Time m_srsStartTime
SRS start time.
Definition: lte-ue-phy.h:702
double GetNoiseFigure() const
Get noise figure.
Definition: lte-ue-phy.cc:403
Time m_p10CqiLast
last periodic CQI
Definition: lte-ue-phy.h:678
std::map< uint16_t, UeMeasurementsElement > m_ueMeasurementsMap
Store measurement results during the last layer-1 filtering period.
Definition: lte-ue-phy.h:760
TracedCallback< uint16_t, Ptr< SpectrumValue > > m_reportPowerSpectralDensity
The ReportsPowerSpectralDensity trace source.
Definition: lte-ue-phy.h:820
LteUePhySapProvider * m_uePhySapProvider
UE Phy SAP provider.
Definition: lte-ue-phy.h:688
void ReportRsReceivedPower(const SpectrumValue &power) override
generate a report based on the linear RS power perceived during CTRL frame NOTE: used only by UE for ...
Definition: lte-ue-phy.cc:812
uint16_t GetNumQoutEvalSf() const
Get number of Qout evaluation subframes.
Definition: lte-ue-phy.cc:470
bool m_rsInterferencePowerUpdated
RS interference power updated?
Definition: lte-ue-phy.h:723
virtual void ReceiveLteControlMessageList(std::list< Ptr< LteControlMessage > > msgList)
Receive LTE control message list function.
Definition: lte-ue-phy.cc:1028
void DoSendMacPdu(Ptr< Packet > p) override
Queue the MAC PDU to be sent (according to m_macChTtiDelay)
Definition: lte-ue-phy.cc:484
Ptr< SpectrumValue > m_noisePsd
Noise power spectral density for the configured bandwidth.
Definition: lte-ue-phy.h:822
void GenerateCtrlCqiReport(const SpectrumValue &sinr) override
generate a CQI report based on the given SINR of Ctrl frame
Definition: lte-ue-phy.cc:544
uint32_t DoGetDlEarfcn()
Get DL EARFCN.
Definition: lte-ue-phy.cc:1465
double ComputeAvgSinr(const SpectrumValue &sinr)
Compute average SINR among the RBs.
Definition: lte-ue-phy.cc:702
void SetLteUePhySapUser(LteUePhySapUser *s)
Set the PHY SAP User.
Definition: lte-ue-phy.cc:368
virtual void DoSendRachPreamble(uint32_t prachId, uint32_t raRnti)
Send RACH preamble function.
Definition: lte-ue-phy.cc:999
void DoStartCellSearch(uint32_t dlEarfcn)
Start the cell search function.
Definition: lte-ue-phy.cc:1419
void SetTxMode6Gain(double gain)
Set transmit mode 6 gain function.
Definition: lte-ue-phy.cc:1728
LteUeCphySapProvider * m_ueCphySapProvider
UE CPhy SAP provider.
Definition: lte-ue-phy.h:691
Ptr< SpectrumValue > CreateTxPowerSpectralDensity() override
Create the PSD for the TX.
Definition: lte-ue-phy.cc:530
std::vector< std::vector< int > > m_subChannelsForTransmissionQueue
subchannels for transmission queue
Definition: lte-ue-phy.h:664
void DoReset()
Do Reset function.
Definition: lte-ue-phy.cc:1369
void SetNumQoutEvalSf(uint16_t numSubframes)
Set number of Qout evaluation subframes.
Definition: lte-ue-phy.cc:450
State m_state
The current UE PHY state.
Definition: lte-ue-phy.h:710
bool m_pssReceived
PSS received?
Definition: lte-ue-phy.h:729
TracedCallback< uint16_t, uint16_t, double, double, uint8_t > m_reportCurrentCellRsrpSinrTrace
The ReportCurrentCellRsrpSinr trace source.
Definition: lte-ue-phy.h:779
void DoSetImsi(uint64_t imsi)
Set IMSI.
Definition: lte-ue-phy.cc:1592
void SetTxMode2Gain(double gain)
Set transmit mode 2 gain function.
Definition: lte-ue-phy.cc:1704
void DoSetRsrpFilterCoefficient(uint8_t rsrpFilterCoefficient)
Do set RSRP filter coefficient.
Definition: lte-ue-phy.cc:1558
~LteUePhy() override
Definition: lte-ue-phy.cc:176
uint8_t GetMacChDelay() const
Get MAC to Channel delay.
Definition: lte-ue-phy.cc:432
Ptr< LteUePowerControl > m_powerControl
Pointer to UE Uplink Power Control entity.
Definition: lte-ue-phy.h:674
void DoConfigureReferenceSignalPower(int8_t referenceSignalPower)
Configure reference signal power function.
Definition: lte-ue-phy.cc:1511
std::list< PssElement > m_pssList
PSS list.
Definition: lte-ue-phy.h:739
void SubframeIndication(uint32_t frameNo, uint32_t subframeNo)
trigger from eNB the start from a new frame
Definition: lte-ue-phy.cc:1252
Ptr< LteUePowerControl > GetUplinkPowerControl() const
Get Uplink power control.
Definition: lte-ue-phy.cc:425
void RlfDetection(double sinrdB)
Radio link failure detection function.
Definition: lte-ue-phy.cc:1609
std::vector< double > m_txModeGain
the transmit mode gain
Definition: lte-ue-phy.h:697
State GetState() const
Get state of the UE physical layer.
Definition: lte-ue-phy.cc:1774
SpectrumValue m_rsReceivedPower
RS receive power.
Definition: lte-ue-phy.h:721
void DoSynchronizeWithEnb(uint16_t cellId)
Synchronize with ENB function.
Definition: lte-ue-phy.cc:1436
void DoSetSrsConfigurationIndex(uint16_t srcCi)
Set SRS configuration index function.
Definition: lte-ue-phy.cc:1536
uint16_t m_srsSubframeOffset
SRS subframe offset.
Definition: lte-ue-phy.h:700
uint8_t m_subframeNo
Definition: lte-ue-phy.h:718
uint16_t m_srsConfigured
SRS configured.
Definition: lte-ue-phy.h:701
uint16_t m_rsrpSinrSamplePeriod
The RsrpSinrSamplePeriod attribute.
Definition: lte-ue-phy.h:784
uint64_t m_imsi
the IMSI of the UE
Definition: lte-ue-phy.h:853
uint16_t m_rnti
the RNTI
Definition: lte-ue-phy.h:694
bool m_enableUplinkPowerControl
The EnableUplinkPowerControl attribute.
Definition: lte-ue-phy.h:672
Ptr< LteSpectrumPhy > GetDlSpectrumPhy() const
Get Downlink spectrum phy.
Definition: lte-ue-phy.cc:438
void SetTxMode5Gain(double gain)
Set transmit mode 5 gain function.
Definition: lte-ue-phy.cc:1722
void DoSetTransmissionMode(uint8_t txMode)
Set transmission mode function.
Definition: lte-ue-phy.cc:1528
bool m_enableRlfDetection
Flag to enable/disable RLF detection.
Definition: lte-ue-phy.h:854
Time m_a30CqiLast
last aperiodic CQI
Definition: lte-ue-phy.h:686
void GenerateCqiRsrpRsrq(const SpectrumValue &sinr)
Get CQI, RSRP, and RSRQ.
Definition: lte-ue-phy.cc:565
SpectrumValue m_rsInterferencePower
RS interference power.
Definition: lte-ue-phy.h:724
void DoResetRlfParams()
Reset radio link failure parameters.
Definition: lte-ue-phy.cc:1576
void SetDownlinkCqiPeriodicity(Time cqiPeriodicity)
Set the periodicty for the downlink periodic wideband and aperiodic subband CQI reporting.
Definition: lte-ue-phy.cc:983
Ptr< LteHarqPhy > m_harqPhyModule
HARQ phy module.
Definition: lte-ue-phy.h:769
EventId m_sendSrsEvent
send SRS event
Definition: lte-ue-phy.h:799
double m_qIn
The 'Qin' attribute.
Definition: lte-ue-phy.h:831
void SetNoiseFigure(double nf)
Set noise figure.
Definition: lte-ue-phy.cc:396
friend class UeMemberLteUePhySapProvider
allow UeMemberLteUePhySapProvider class friend access
Definition: lte-ue-phy.h:54
void DoSetPa(double pa)
Set PA function.
Definition: lte-ue-phy.cc:1551
Ptr< DlCqiLteControlMessage > CreateDlCqiFeedbackMessage(const SpectrumValue &sinr)
Create the DL CQI feedback from SINR values perceived at the physical layer with the signal received ...
Definition: lte-ue-phy.cc:836
LteUeCphySapUser * m_ueCphySapUser
UE CPhy SAP user.
Definition: lte-ue-phy.h:692
void SetNumQinEvalSf(uint16_t numSubframes)
Set number of Qin evaluation subframes.
Definition: lte-ue-phy.cc:460
void SetLteUeCphySapUser(LteUeCphySapUser *s)
Set the CPHY SAP User.
Definition: lte-ue-phy.cc:382
double m_sinrDbFrame
the average SINR per radio frame
Definition: lte-ue-phy.h:851
TracedCallback< uint16_t, uint16_t, State, State > m_stateTransitionTrace
The StateTransition trace source.
Definition: lte-ue-phy.h:715
void DoDispose() override
Destructor implementation.
Definition: lte-ue-phy.cc:182
void SetSubChannelsForReception(std::vector< int > mask)
Get a list of sub channels to use in RX.
Definition: lte-ue-phy.cc:509
bool m_rsReceivedPowerUpdated
RS receive power updated?
Definition: lte-ue-phy.h:720
void SwitchToState(State s)
Switch the UE PHY to the given state.
Definition: lte-ue-phy.cc:1781
TracedCallback< uint16_t, uint16_t, double, double, bool, uint8_t > m_reportUeMeasurements
The ReportUeMeasurements trace source.
Definition: lte-ue-phy.h:797
double m_paLinear
PA linear.
Definition: lte-ue-phy.h:704
TracedCallback< PhyTransmissionStatParameters > m_ulPhyTransmission
The UlPhyTransmission trace source.
Definition: lte-ue-phy.h:806
bool m_isConnected
set when UE RRC is in CONNECTED_NORMALLY state
Definition: lte-ue-phy.h:825
Ptr< LteAmc > m_amc
AMC.
Definition: lte-ue-phy.h:666
std::vector< int > m_subChannelsForReception
A list of sub channels to use in RX.
Definition: lte-ue-phy.h:661
void InitializeRlfParams()
Initialize radio link failure parameters.
Definition: lte-ue-phy.cc:1599
std::vector< int > GetSubChannelsForTransmission()
Get a list of sub channels to use in RX.
Definition: lte-ue-phy.cc:516
void PhyPduReceived(Ptr< Packet > p)
PhySpectrum received a new PHY-PDU.
Definition: lte-ue-phy.cc:492
LteUeCphySapProvider * GetLteUeCphySapProvider()
Get the CPHY SAP provider.
Definition: lte-ue-phy.cc:389
bool m_ulConfigured
UL configured?
Definition: lte-ue-phy.h:707
SpectrumValue m_ctrlSinrForRlf
the CTRL SINR used for RLF detection
Definition: lte-ue-phy.h:852
Time m_ueMeasurementsFilterPeriod
The UeMeasurementsFilterPeriod attribute.
Definition: lte-ue-phy.h:765
void GenerateDataCqiReport(const SpectrumValue &sinr) override
generate a CQI report based on the given SINR of Data frame (used for PUSCH CQIs)
Definition: lte-ue-phy.cc:723
uint16_t m_numOfFrames
count the number of frames for which the downlink radio link quality is estimated
Definition: lte-ue-phy.h:849
bool m_downlinkInSync
when set, DL SINR evaluation for out-of-sync indications is conducted.
Definition: lte-ue-phy.h:845
uint16_t m_numOfQoutEvalSf
the downlink radio link quality is estimated over this period for detecting out-of-syncs
Definition: lte-ue-phy.h:840
void SetTxMode7Gain(double gain)
Set transmit mode 7 gain function.
Definition: lte-ue-phy.cc:1734
void DoSetRnti(uint16_t rnti)
Set RNTI function.
Definition: lte-ue-phy.cc:1518
static TypeId GetTypeId()
Get the type ID.
Definition: lte-ue-phy.cc:191
double GetTxPower() const
Get transmit power.
Definition: lte-ue-phy.cc:418
virtual void EnqueueDlHarqFeedback(DlInfoListElement_s mes)
Enqueue the downlink HARQ feedback generated by LteSpectrumPhy.
Definition: lte-ue-phy.cc:1758
std::vector< int > m_subChannelsForTransmission
A list of sub channels to use in TX.
Definition: lte-ue-phy.h:659
Time m_p10CqiPeriodicity
Wideband Periodic CQI. 2, 5, 10, 16, 20, 32, 40, 64, 80 or 160 ms.
Definition: lte-ue-phy.h:677
bool m_dataInterferencePowerUpdated
data interference power updated?
Definition: lte-ue-phy.h:726
void SetTxPower(double pow)
Set transmit power.
Definition: lte-ue-phy.cc:410
State
The states of the UE PHY entity.
Definition: lte-ue-phy.h:63
uint16_t m_numOfSubframes
count the number of subframes for which the downlink radio link quality is estimated
Definition: lte-ue-phy.h:847
void SetTxMode4Gain(double gain)
Set transmit mode 4 gain function.
Definition: lte-ue-phy.cc:1716
virtual void DoSendLteControlMessage(Ptr< LteControlMessage > msg)
Send LTE control message function.
Definition: lte-ue-phy.cc:991
Time m_a30CqiPeriodicity
SubBand Aperiodic CQI.
Definition: lte-ue-phy.h:685
TracedCallback< uint16_t, const std::vector< int > & > m_reportUlPhyResourceBlocks
The ReportUlPhyResourceBlocks trace source.
Definition: lte-ue-phy.h:813
void ReportInterference(const SpectrumValue &interf) override
generate a report based on the linear interference and noise power perceived during DATA frame NOTE: ...
Definition: lte-ue-phy.cc:795
std::vector< int > GetSubChannelsForReception()
Get a list of sub channels to use in RX.
Definition: lte-ue-phy.cc:523
Ptr< LteSpectrumPhy > GetUlSpectrumPhy() const
Get Uplink spectrum phy.
Definition: lte-ue-phy.cc:444
void ReportUeMeasurements()
Layer-1 filtering of RSRP and RSRQ measurements and reporting to the RRC entity.
Definition: lte-ue-phy.cc:936
double m_pssReceptionThreshold
The RsrqUeMeasThreshold attribute.
Definition: lte-ue-phy.h:745
uint32_t m_raPreambleId
RA preamble ID.
Definition: lte-ue-phy.h:771
double m_qOut
The 'Qout' attribute.
Definition: lte-ue-phy.h:838
void DoStartInSyncDetection()
Start in Sync detection function.
Definition: lte-ue-phy.cc:1584
void SendSrs()
Send the SRS signal in the last symbols of the frame.
Definition: lte-ue-phy.cc:1348
virtual void GenerateMixedCqiReport(const SpectrumValue &sinr)
Create the mixed CQI report.
Definition: lte-ue-phy.cc:729
uint8_t m_transmissionMode
the transmission mode
Definition: lte-ue-phy.h:696
void SetTxModeGain(uint8_t txMode, double gain)
Set transmit mode gain function.
Definition: lte-ue-phy.cc:1740
uint32_t m_raRnti
RA RNTI.
Definition: lte-ue-phy.h:772
Service Access Point (SAP) offered by the UE-PHY to the UE-MAC.
Service Access Point (SAP) offered by the PHY to the MAC.
virtual void ReceivePhyPdu(Ptr< Packet > p)=0
Receive Phy Pdu function.
virtual void SubframeIndication(uint32_t frameNo, uint32_t subframeNo)=0
Trigger the start from a new frame (input from Phy layer)
virtual void ReceiveLteControlMessage(Ptr< LteControlMessage > msg)=0
Receive SendLteControlMessage (PDCCH map, CQI feedbacks) using the ideal control channel.
void SetCellId(uint16_t cellId)
Set the cell ID function.
void SetRsrp(double value)
Set RSRP function.
void ConfigureReferenceSignalPower(int8_t referenceSignalPower)
Configure reference signal power (dBm) function.
void SetRnti(uint16_t rnti)
Set the RNTI function.
double GetPucchTxPower(std::vector< int > rb)
Get PUCCH transmit power function.
void SetTxPower(double value)
Set transmit power function.
void SetRsrpFilterCoefficient(uint8_t rsrpFilterCoefficient)
Set RSRP function.
double GetPuschTxPower(std::vector< int > rb)
Get PUSCH transmit power function.
void ReportTpc(uint8_t tpc)
Set RSRP function.
double GetSrsTxPower(std::vector< int > rb)
Get SRS transmit power function.
virtual void DoInitialize()
Initialize() implementation.
Definition: object.cc:360
Hold objects of type Ptr<T>.
Definition: pointer.h:37
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:78
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:568
static void ScheduleWithContext(uint32_t context, const Time &delay, FUNC f, Ts &&... args)
Schedule an event with the given context.
Definition: simulator.h:587
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:199
Set of values corresponding to a given SpectrumModel.
Values::const_iterator ConstValuesBegin() const
Values::const_iterator ConstValuesEnd() const
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
int64_t GetMilliSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:407
TimeWithUnit As(const Unit unit=Time::AUTO) const
Attach a unit to a Time, to facilitate output in a specific unit.
Definition: time.cc:417
@ MS
millisecond
Definition: nstime.h:117
AttributeValue implementation for Time.
Definition: nstime.h:1423
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:59
@ ATTR_GET
The attribute can be read.
Definition: type-id.h:64
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:936
UeMemberLteUePhySapProvider class.
Definition: lte-ue-phy.cc:72
void SendRachPreamble(uint32_t prachId, uint32_t raRnti) override
Send a preamble on the PRACH.
Definition: lte-ue-phy.cc:109
void NotifyConnectionSuccessful() override
Notify PHY about the successful RRC connection establishment.
Definition: lte-ue-phy.cc:115
void SendLteControlMessage(Ptr< LteControlMessage > msg) override
Send SendLteControlMessage (PDCCH map, CQI feedbacks) using the ideal control channel.
Definition: lte-ue-phy.cc:103
void SendMacPdu(Ptr< Packet > p) override
Send the MAC PDU to the channel.
Definition: lte-ue-phy.cc:97
UeMemberLteUePhySapProvider(LteUePhy *phy)
Constructor.
Definition: lte-ue-phy.cc:91
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:86
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
Ptr< const AttributeAccessor > MakeDoubleAccessor(T1 a1)
Definition: double.h:43
Ptr< const AttributeAccessor > MakePointerAccessor(T1 a1)
Definition: pointer.h:227
Ptr< const AttributeChecker > MakeTimeChecker()
Helper to make an unbounded Time checker.
Definition: nstime.h:1444
Ptr< const AttributeAccessor > MakeTimeAccessor(T1 a1)
Definition: nstime.h:1424
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_WARN(msg)
Use NS_LOG to output a message of level LOG_WARN.
Definition: log.h:261
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
Time NanoSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1372
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1336
Time MilliSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1348
Ptr< const TraceSourceAccessor > MakeTraceSourceAccessor(T a)
Create a TraceSourceAccessor which will control access to the underlying trace source.
#define UL_PUSCH_TTIS_DELAY
Definition: lte-common.h:28
Every class exported by the ns3 library is enclosed in the ns3 namespace.
static const std::string g_uePhyStateName[LteUePhy::NUM_STATES]
Map each of UE PHY states to its string representation.
Definition: lte-ue-phy.cc:125
static const Time UL_DATA_DURATION
Duration of the data portion of a UL subframe.
Definition: lte-ue-phy.cc:58
static const Time UL_SRS_DELAY_FROM_SUBFRAME_START
Delay from subframe start to transmission of SRS.
Definition: lte-ue-phy.cc:64
std::vector< HarqProcessInfoElement_t > HarqProcessInfoList_t
HarqProcessInfoList_t typedef.
Definition: lte-harq-phy.h:44
static const int Type0AllocationRbg[4]
Type 0 RGB allocation.
static const std::string & ToString(EpcUeNas::State s)
Definition: epc-ue-nas.cc:48
See section 4.3.24 cqiListElement.
std::vector< uint8_t > m_wbCqi
wb CQI
struct SbMeasResult_s m_sbMeasResult
sb measure result
uint8_t m_wbPmi
wb PMI
uint16_t m_rnti
RNTI.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
See section 4.3.23 dlInfoListElement.
See section 4.3.27 higherLayerSelected.
std::vector< uint8_t > m_sbCqi
sb CQI
Parameters of the ReportUeMeasurements primitive: RSRP [dBm] and RSRQ [dB] See section 5....
UeMeasurementsParameters structure.
uint8_t m_componentCarrierId
component carrier ID
std::vector< UeMeasurementsElement > m_ueMeasurementsList
UE measurement list.
PssElement structure.
Definition: lte-ue-phy.h:733
uint16_t cellId
cell ID
Definition: lte-ue-phy.h:734
double pssPsdSum
PSS PSD sum.
Definition: lte-ue-phy.h:735
uint16_t nRB
number of RB
Definition: lte-ue-phy.h:736
Summary results of measuring a specific cell. Used for layer-1 filtering.
Definition: lte-ue-phy.h:749
double rsrqSum
Sum of RSRQ sample values in linear unit.
Definition: lte-ue-phy.h:752
uint8_t rsrpNum
Number of RSRP samples.
Definition: lte-ue-phy.h:751
double rsrpSum
Sum of RSRP sample values in linear unit.
Definition: lte-ue-phy.h:750
uint8_t rsrqNum
Number of RSRQ samples.
Definition: lte-ue-phy.h:753
PhyTransmissionStatParameters structure.
Definition: lte-common.h:188
See section 4.3.25 sbMeasResult.
std::vector< struct HigherLayerSelected_s > m_higherLayerSelected
higher layer selected
See section 4.3.2 ulDciListElement.