A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
ideal-wifi-manager.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2006 INRIA
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
18 */
19
20#include "ideal-wifi-manager.h"
21
22#include "ns3/log.h"
23#include "ns3/wifi-phy.h"
24
25#include <algorithm>
26
27namespace ns3
28{
29
37{
44 uint8_t m_lastNss;
46 uint16_t
48};
49
51static const double CACHE_INITIAL_VALUE = -100;
52
54
55NS_LOG_COMPONENT_DEFINE("IdealWifiManager");
56
59{
60 static TypeId tid =
61 TypeId("ns3::IdealWifiManager")
63 .SetGroupName("Wifi")
64 .AddConstructor<IdealWifiManager>()
65 .AddAttribute("BerThreshold",
66 "The maximum Bit Error Rate acceptable at any transmission mode",
67 DoubleValue(1e-6),
69 MakeDoubleChecker<double>())
70 .AddTraceSource("Rate",
71 "Traced value for rate changes (b/s)",
73 "ns3::TracedValueCallback::Uint64");
74 return tid;
75}
76
78 : m_currentRate(0)
79{
80 NS_LOG_FUNCTION(this);
81}
82
84{
85 NS_LOG_FUNCTION(this);
86}
87
88void
90{
91 NS_LOG_FUNCTION(this << phy);
93}
94
95uint16_t
97{
103 {
104 return 22;
105 }
106 else
107 {
108 return 20;
109 }
110}
111
112void
114{
115 NS_LOG_FUNCTION(this);
117}
118
119void
121{
122 m_thresholds.clear();
123 WifiMode mode;
124 WifiTxVector txVector;
125 uint8_t nss = 1;
126 for (const auto& mode : GetPhy()->GetModeList())
127 {
129 txVector.SetNss(nss);
130 txVector.SetMode(mode);
131 NS_LOG_DEBUG("Adding mode = " << mode.GetUniqueName());
132 AddSnrThreshold(txVector, GetPhy()->CalculateSnr(txVector, m_ber));
133 }
134 // Add all MCSes
135 if (GetHtSupported())
136 {
137 for (const auto& mode : GetPhy()->GetMcsList())
138 {
139 for (uint16_t j = 20; j <= GetPhy()->GetChannelWidth(); j *= 2)
140 {
141 txVector.SetChannelWidth(j);
143 {
144 uint16_t guardInterval = GetShortGuardIntervalSupported() ? 400 : 800;
145 txVector.SetGuardInterval(guardInterval);
146 // derive NSS from the MCS index
147 nss = (mode.GetMcsValue() / 8) + 1;
148 NS_LOG_DEBUG("Adding mode = " << mode.GetUniqueName() << " channel width " << j
149 << " nss " << +nss << " GI " << guardInterval);
150 txVector.SetNss(nss);
151 txVector.SetMode(mode);
152 AddSnrThreshold(txVector, GetPhy()->CalculateSnr(txVector, m_ber));
153 }
154 else // VHT or HE
155 {
156 uint16_t guardInterval;
158 {
159 guardInterval = GetShortGuardIntervalSupported() ? 400 : 800;
160 }
161 else
162 {
163 guardInterval = GetGuardInterval();
164 }
165 txVector.SetGuardInterval(guardInterval);
166 for (uint8_t k = 1; k <= GetPhy()->GetMaxSupportedTxSpatialStreams(); k++)
167 {
168 if (mode.IsAllowed(j, k))
169 {
170 NS_LOG_DEBUG("Adding mode = " << mode.GetUniqueName()
171 << " channel width " << j << " nss " << +k
172 << " GI " << guardInterval);
173 txVector.SetNss(k);
174 txVector.SetMode(mode);
175 AddSnrThreshold(txVector, GetPhy()->CalculateSnr(txVector, m_ber));
176 }
177 else
178 {
179 NS_LOG_DEBUG("Mode = " << mode.GetUniqueName() << " disallowed");
180 }
181 }
182 }
183 }
184 }
185 }
186}
187
188double
190{
191 NS_LOG_FUNCTION(this << txVector);
192 auto it = std::find_if(m_thresholds.begin(),
193 m_thresholds.end(),
194 [&txVector](const std::pair<double, WifiTxVector>& p) -> bool {
195 return ((txVector.GetMode() == p.second.GetMode()) &&
196 (txVector.GetNss() == p.second.GetNss()) &&
197 (txVector.GetChannelWidth() == p.second.GetChannelWidth()));
198 });
199 if (it == m_thresholds.end())
200 {
201 // This means capabilities have changed in runtime, hence rebuild SNR thresholds
203 it = std::find_if(m_thresholds.begin(),
204 m_thresholds.end(),
205 [&txVector](const std::pair<double, WifiTxVector>& p) -> bool {
206 return ((txVector.GetMode() == p.second.GetMode()) &&
207 (txVector.GetNss() == p.second.GetNss()) &&
208 (txVector.GetChannelWidth() == p.second.GetChannelWidth()));
209 });
210 NS_ASSERT_MSG(it != m_thresholds.end(), "SNR threshold not found");
211 }
212 return it->first;
213}
214
215void
217{
218 NS_LOG_FUNCTION(this << txVector.GetMode().GetUniqueName() << txVector.GetChannelWidth()
219 << snr);
220 m_thresholds.emplace_back(snr, txVector);
221}
222
225{
226 NS_LOG_FUNCTION(this);
227 auto station = new IdealWifiRemoteStation();
228 Reset(station);
229 return station;
230}
231
232void
234{
235 NS_LOG_FUNCTION(this << station);
236 auto st = static_cast<IdealWifiRemoteStation*>(station);
237 st->m_lastSnrObserved = 0.0;
238 st->m_lastChannelWidthObserved = 0;
239 st->m_lastNssObserved = 1;
240 st->m_lastSnrCached = CACHE_INITIAL_VALUE;
241 st->m_lastMode = GetDefaultMode();
242 st->m_lastChannelWidth = 0;
243 st->m_lastNss = 1;
244}
245
246void
248{
249 NS_LOG_FUNCTION(this << station << rxSnr << txMode);
250}
251
252void
254{
255 NS_LOG_FUNCTION(this << station);
256}
257
258void
260{
261 NS_LOG_FUNCTION(this << station);
262}
263
264void
266 double ctsSnr,
267 WifiMode ctsMode,
268 double rtsSnr)
269{
270 NS_LOG_FUNCTION(this << st << ctsSnr << ctsMode.GetUniqueName() << rtsSnr);
271 auto station = static_cast<IdealWifiRemoteStation*>(st);
272 station->m_lastSnrObserved = rtsSnr;
273 station->m_lastChannelWidthObserved =
274 GetPhy()->GetChannelWidth() >= 40 ? 20 : GetPhy()->GetChannelWidth();
275 station->m_lastNssObserved = 1;
276}
277
278void
280 double ackSnr,
281 WifiMode ackMode,
282 double dataSnr,
283 uint16_t dataChannelWidth,
284 uint8_t dataNss)
285{
286 NS_LOG_FUNCTION(this << st << ackSnr << ackMode.GetUniqueName() << dataSnr << dataChannelWidth
287 << +dataNss);
288 auto station = static_cast<IdealWifiRemoteStation*>(st);
289 if (dataSnr == 0)
290 {
291 NS_LOG_WARN("DataSnr reported to be zero; not saving this report.");
292 return;
293 }
294 station->m_lastSnrObserved = dataSnr;
295 station->m_lastChannelWidthObserved = dataChannelWidth;
296 station->m_lastNssObserved = dataNss;
297}
298
299void
301 uint16_t nSuccessfulMpdus,
302 uint16_t nFailedMpdus,
303 double rxSnr,
304 double dataSnr,
305 uint16_t dataChannelWidth,
306 uint8_t dataNss)
307{
308 NS_LOG_FUNCTION(this << st << nSuccessfulMpdus << nFailedMpdus << rxSnr << dataSnr
309 << dataChannelWidth << +dataNss);
310 auto station = static_cast<IdealWifiRemoteStation*>(st);
311 if (dataSnr == 0)
312 {
313 NS_LOG_WARN("DataSnr reported to be zero; not saving this report.");
314 return;
315 }
316 station->m_lastSnrObserved = dataSnr;
317 station->m_lastChannelWidthObserved = dataChannelWidth;
318 station->m_lastNssObserved = dataNss;
319}
320
321void
323{
324 NS_LOG_FUNCTION(this << station);
325 Reset(station);
326}
327
328void
330{
331 NS_LOG_FUNCTION(this << station);
332 Reset(station);
333}
334
337{
338 NS_LOG_FUNCTION(this << st << allowedWidth);
339 auto station = static_cast<IdealWifiRemoteStation*>(st);
340 // We search within the Supported rate set the mode with the
341 // highest data rate for which the SNR threshold is smaller than m_lastSnr
342 // to ensure correct packet delivery.
343 WifiMode maxMode = GetDefaultModeForSta(st);
344 WifiTxVector txVector;
345 WifiMode mode;
346 uint64_t bestRate = 0;
347 uint8_t selectedNss = 1;
348 uint16_t guardInterval;
349 uint16_t channelWidth = std::min(GetChannelWidth(station), allowedWidth);
350 txVector.SetChannelWidth(channelWidth);
351 if ((station->m_lastSnrCached != CACHE_INITIAL_VALUE) &&
352 (station->m_lastSnrObserved == station->m_lastSnrCached) &&
353 (channelWidth == station->m_lastChannelWidth))
354 {
355 // SNR has not changed, so skip the search and use the last mode selected
356 maxMode = station->m_lastMode;
357 selectedNss = station->m_lastNss;
358 NS_LOG_DEBUG("Using cached mode = " << maxMode.GetUniqueName() << " last snr observed "
359 << station->m_lastSnrObserved << " cached "
360 << station->m_lastSnrCached << " channel width "
361 << station->m_lastChannelWidth << " nss "
362 << +selectedNss);
363 }
364 else
365 {
366 if (GetHtSupported() && GetHtSupported(st))
367 {
368 for (uint8_t i = 0; i < GetNMcsSupported(station); i++)
369 {
370 mode = GetMcsSupported(station, i);
371 txVector.SetMode(mode);
373 {
374 guardInterval = static_cast<uint16_t>(
375 std::max(GetShortGuardIntervalSupported(station) ? 400 : 800,
376 GetShortGuardIntervalSupported() ? 400 : 800));
377 txVector.SetGuardInterval(guardInterval);
378 // If the node and peer are both VHT capable, only search VHT modes
379 if (GetVhtSupported() && GetVhtSupported(station))
380 {
381 continue;
382 }
383 // If the node and peer are both HE capable, only search HE modes
384 if (GetHeSupported() && GetHeSupported(station))
385 {
386 continue;
387 }
388 // Derive NSS from the MCS index. There is a different mode for each possible
389 // NSS value.
390 uint8_t nss = (mode.GetMcsValue() / 8) + 1;
391 txVector.SetNss(nss);
392 if (!txVector.IsValid() || nss > std::min(GetMaxNumberOfTransmitStreams(),
394 {
395 NS_LOG_DEBUG("Skipping mode " << mode.GetUniqueName() << " nss " << +nss
396 << " width " << txVector.GetChannelWidth());
397 continue;
398 }
399 double threshold = GetSnrThreshold(txVector);
400 uint64_t dataRate = mode.GetDataRate(txVector.GetChannelWidth(),
401 txVector.GetGuardInterval(),
402 nss);
403 NS_LOG_DEBUG("Testing mode " << mode.GetUniqueName() << " data rate "
404 << dataRate << " threshold " << threshold
405 << " last snr observed "
406 << station->m_lastSnrObserved << " cached "
407 << station->m_lastSnrCached);
408 double snr = GetLastObservedSnr(station, channelWidth, nss);
409 if (dataRate > bestRate && threshold < snr)
410 {
411 NS_LOG_DEBUG("Candidate mode = " << mode.GetUniqueName() << " data rate "
412 << dataRate << " threshold " << threshold
413 << " channel width " << channelWidth
414 << " snr " << snr);
415 bestRate = dataRate;
416 maxMode = mode;
417 selectedNss = nss;
418 }
419 }
420 else if (mode.GetModulationClass() == WIFI_MOD_CLASS_VHT)
421 {
422 guardInterval = static_cast<uint16_t>(
423 std::max(GetShortGuardIntervalSupported(station) ? 400 : 800,
424 GetShortGuardIntervalSupported() ? 400 : 800));
425 txVector.SetGuardInterval(guardInterval);
426 // If the node and peer are both HE capable, only search HE modes
427 if (GetHeSupported() && GetHeSupported(station))
428 {
429 continue;
430 }
431 // If the node and peer are not both VHT capable, only search HT modes
432 if (!GetVhtSupported() || !GetVhtSupported(station))
433 {
434 continue;
435 }
436 for (uint8_t nss = 1; nss <= std::min(GetMaxNumberOfTransmitStreams(),
438 nss++)
439 {
440 txVector.SetNss(nss);
441 if (!txVector.IsValid())
442 {
443 NS_LOG_DEBUG("Skipping mode " << mode.GetUniqueName() << " nss " << +nss
444 << " width "
445 << txVector.GetChannelWidth());
446 continue;
447 }
448 double threshold = GetSnrThreshold(txVector);
449 uint64_t dataRate = mode.GetDataRate(txVector.GetChannelWidth(),
450 txVector.GetGuardInterval(),
451 nss);
452 NS_LOG_DEBUG("Testing mode = " << mode.GetUniqueName() << " data rate "
453 << dataRate << " threshold " << threshold
454 << " last snr observed "
455 << station->m_lastSnrObserved << " cached "
456 << station->m_lastSnrCached);
457 double snr = GetLastObservedSnr(station, channelWidth, nss);
458 if (dataRate > bestRate && threshold < snr)
459 {
460 NS_LOG_DEBUG("Candidate mode = "
461 << mode.GetUniqueName() << " data rate " << dataRate
462 << " channel width " << channelWidth << " snr " << snr);
463 bestRate = dataRate;
464 maxMode = mode;
465 selectedNss = nss;
466 }
467 }
468 }
469 else // HE
470 {
471 guardInterval = std::max(GetGuardInterval(station), GetGuardInterval());
472 txVector.SetGuardInterval(guardInterval);
473 // If the node and peer are not both HE capable, only search (V)HT modes
474 if (!GetHeSupported() || !GetHeSupported(station))
475 {
476 continue;
477 }
478 for (uint8_t nss = 1; nss <= std::min(GetMaxNumberOfTransmitStreams(),
480 nss++)
481 {
482 txVector.SetNss(nss);
483 if (!txVector.IsValid())
484 {
485 NS_LOG_DEBUG("Skipping mode " << mode.GetUniqueName() << " nss " << +nss
486 << " width "
487 << +txVector.GetChannelWidth());
488 continue;
489 }
490 double threshold = GetSnrThreshold(txVector);
491 uint64_t dataRate = mode.GetDataRate(txVector.GetChannelWidth(),
492 txVector.GetGuardInterval(),
493 nss);
494 NS_LOG_DEBUG("Testing mode = " << mode.GetUniqueName() << " data rate "
495 << dataRate << " threshold " << threshold
496 << " last snr observed "
497 << station->m_lastSnrObserved << " cached "
498 << station->m_lastSnrCached);
499 double snr = GetLastObservedSnr(station, channelWidth, nss);
500 if (dataRate > bestRate && threshold < snr)
501 {
502 NS_LOG_DEBUG("Candidate mode = "
503 << mode.GetUniqueName() << " data rate " << dataRate
504 << " threshold " << threshold << " channel width "
505 << channelWidth << " snr " << snr);
506 bestRate = dataRate;
507 maxMode = mode;
508 selectedNss = nss;
509 }
510 }
511 }
512 }
513 }
514 else
515 {
516 // Non-HT selection
517 selectedNss = 1;
518 for (uint8_t i = 0; i < GetNSupported(station); i++)
519 {
520 mode = GetSupported(station, i);
521 txVector.SetMode(mode);
522 txVector.SetNss(selectedNss);
523 uint16_t channelWidth = GetChannelWidthForNonHtMode(mode);
524 txVector.SetChannelWidth(channelWidth);
525 double threshold = GetSnrThreshold(txVector);
526 uint64_t dataRate = mode.GetDataRate(txVector.GetChannelWidth(),
527 txVector.GetGuardInterval(),
528 txVector.GetNss());
529 NS_LOG_DEBUG("mode = " << mode.GetUniqueName() << " threshold " << threshold
530 << " last snr observed " << station->m_lastSnrObserved);
531 double snr = GetLastObservedSnr(station, channelWidth, 1);
532 if (dataRate > bestRate && threshold < snr)
533 {
534 NS_LOG_DEBUG("Candidate mode = " << mode.GetUniqueName() << " data rate "
535 << dataRate << " threshold " << threshold
536 << " snr " << snr);
537 bestRate = dataRate;
538 maxMode = mode;
539 }
540 }
541 }
542 NS_LOG_DEBUG("Updating cached values for station to " << maxMode.GetUniqueName() << " snr "
543 << station->m_lastSnrObserved);
544 station->m_lastSnrCached = station->m_lastSnrObserved;
545 station->m_lastMode = maxMode;
546 station->m_lastNss = selectedNss;
547 }
548 NS_LOG_DEBUG("Found maxMode: " << maxMode << " channelWidth: " << channelWidth
549 << " nss: " << +selectedNss);
550 station->m_lastChannelWidth = channelWidth;
551 if (maxMode.GetModulationClass() == WIFI_MOD_CLASS_HE)
552 {
553 guardInterval = std::max(GetGuardInterval(station), GetGuardInterval());
554 }
555 else if ((maxMode.GetModulationClass() == WIFI_MOD_CLASS_HT) ||
557 {
558 guardInterval =
559 static_cast<uint16_t>(std::max(GetShortGuardIntervalSupported(station) ? 400 : 800,
560 GetShortGuardIntervalSupported() ? 400 : 800));
561 }
562 else
563 {
564 guardInterval = 800;
565 }
566 WifiTxVector bestTxVector{
567 maxMode,
570 guardInterval,
572 selectedNss,
573 0,
574 GetPhy()->GetTxBandwidth(maxMode, channelWidth),
575 GetAggregation(station)};
576 uint64_t maxDataRate = maxMode.GetDataRate(bestTxVector);
577 if (m_currentRate != maxDataRate)
578 {
579 NS_LOG_DEBUG("New datarate: " << maxDataRate);
580 m_currentRate = maxDataRate;
581 }
582 return bestTxVector;
583}
584
587{
588 NS_LOG_FUNCTION(this << st);
589 auto station = static_cast<IdealWifiRemoteStation*>(st);
590 // We search within the Basic rate set the mode with the highest
591 // SNR threshold possible which is smaller than m_lastSnr to
592 // ensure correct packet delivery.
593 double maxThreshold = 0.0;
594 WifiTxVector txVector;
595 WifiMode mode;
596 uint8_t nss = 1;
597 WifiMode maxMode = GetDefaultMode();
598 // RTS is sent in a non-HT frame
599 for (uint8_t i = 0; i < GetNBasicModes(); i++)
600 {
601 mode = GetBasicMode(i);
602 txVector.SetMode(mode);
603 txVector.SetNss(nss);
605 double threshold = GetSnrThreshold(txVector);
606 if (threshold > maxThreshold && threshold < station->m_lastSnrObserved)
607 {
608 maxThreshold = threshold;
609 maxMode = mode;
610 }
611 }
612 return WifiTxVector(
613 maxMode,
616 800,
618 nss,
619 0,
621 GetAggregation(station));
622}
623
624double
626 uint16_t channelWidth,
627 uint8_t nss) const
628{
629 double snr = station->m_lastSnrObserved;
630 if (channelWidth != station->m_lastChannelWidthObserved)
631 {
632 snr /= (static_cast<double>(channelWidth) / station->m_lastChannelWidthObserved);
633 }
634 if (nss != station->m_lastNssObserved)
635 {
636 snr /= (static_cast<double>(nss) / station->m_lastNssObserved);
637 }
638 NS_LOG_DEBUG("Last observed SNR is " << station->m_lastSnrObserved << " for channel width "
639 << station->m_lastChannelWidthObserved << " and nss "
640 << +station->m_lastNssObserved << "; computed SNR is "
641 << snr << " for channel width " << channelWidth
642 << " and nss " << +nss);
643 return snr;
644}
645
646} // namespace ns3
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
Ideal rate control algorithm.
void DoReportFinalRtsFailed(WifiRemoteStation *station) override
This method is a pure virtual method that must be implemented by the sub-class.
void AddSnrThreshold(WifiTxVector txVector, double snr)
Adds a pair of WifiTxVector and the minimum SNR for that given vector to the list.
void BuildSnrThresholds()
Construct the vector of minimum SNRs needed to successfully transmit for all possible combinations (r...
WifiTxVector DoGetDataTxVector(WifiRemoteStation *station, uint16_t allowedWidth) override
WifiTxVector DoGetRtsTxVector(WifiRemoteStation *station) override
void DoInitialize() override
Initialize() implementation.
uint16_t GetChannelWidthForNonHtMode(WifiMode mode) const
Convenience function for selecting a channel width for non-HT mode.
double m_ber
The maximum Bit Error Rate acceptable at any transmission mode.
WifiRemoteStation * DoCreateStation() const override
void DoReportRtsFailed(WifiRemoteStation *station) override
This method is a pure virtual method that must be implemented by the sub-class.
static TypeId GetTypeId()
Get the type ID.
void DoReportDataOk(WifiRemoteStation *station, double ackSnr, WifiMode ackMode, double dataSnr, uint16_t dataChannelWidth, uint8_t dataNss) override
This method is a pure virtual method that must be implemented by the sub-class.
void DoReportAmpduTxStatus(WifiRemoteStation *station, uint16_t nSuccessfulMpdus, uint16_t nFailedMpdus, double rxSnr, double dataSnr, uint16_t dataChannelWidth, uint8_t dataNss) override
Typically called per A-MPDU, either when a Block ACK was successfully received or when a BlockAckTime...
void SetupPhy(const Ptr< WifiPhy > phy) override
Set up PHY associated with this device since it is the object that knows the full set of transmit rat...
TracedValue< uint64_t > m_currentRate
Trace rate changes.
double GetLastObservedSnr(IdealWifiRemoteStation *station, uint16_t channelWidth, uint8_t nss) const
Convenience function to get the last observed SNR from a given station for a given channel width and ...
void DoReportRtsOk(WifiRemoteStation *station, double ctsSnr, WifiMode ctsMode, double rtsSnr) override
This method is a pure virtual method that must be implemented by the sub-class.
Thresholds m_thresholds
List of WifiTxVector and the minimum SNR pair.
void DoReportRxOk(WifiRemoteStation *station, double rxSnr, WifiMode txMode) override
This method is a pure virtual method that must be implemented by the sub-class.
double GetSnrThreshold(WifiTxVector txVector)
Return the minimum SNR needed to successfully transmit data with this WifiTxVector at the specified B...
void DoReportDataFailed(WifiRemoteStation *station) override
This method is a pure virtual method that must be implemented by the sub-class.
void DoReportFinalDataFailed(WifiRemoteStation *station) override
This method is a pure virtual method that must be implemented by the sub-class.
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:78
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:930
represent a single transmission mode
Definition: wifi-mode.h:51
std::string GetUniqueName() const
Definition: wifi-mode.cc:148
WifiModulationClass GetModulationClass() const
Definition: wifi-mode.cc:185
uint64_t GetDataRate(uint16_t channelWidth, uint16_t guardInterval, uint8_t nss) const
Definition: wifi-mode.cc:122
bool IsAllowed(uint16_t channelWidth, uint8_t nss) const
Definition: wifi-mode.cc:68
uint8_t GetMcsValue() const
Definition: wifi-mode.cc:163
uint16_t GetChannelWidth() const
Definition: wifi-phy.cc:1035
uint16_t GetTxBandwidth(WifiMode mode, uint16_t maxAllowedBandWidth=std::numeric_limits< uint16_t >::max()) const
Get the bandwidth for a transmission occurring on the current operating channel and using the given W...
Definition: wifi-phy.cc:1059
uint8_t GetMaxSupportedTxSpatialStreams() const
Definition: wifi-phy.cc:1293
hold a list of per-remote-station state.
uint8_t GetNumberOfSupportedStreams(Mac48Address address) const
Return the number of spatial streams supported by the station.
WifiMode GetDefaultModeForSta(const WifiRemoteStation *st) const
Return the default MCS to use to transmit frames to the given station.
uint8_t GetNBasicModes() const
Return the number of basic modes we support.
uint16_t GetChannelWidth(const WifiRemoteStation *station) const
Return the channel width supported by the station.
uint8_t GetNSupported(const WifiRemoteStation *station) const
Return the number of modes supported by the given station.
Ptr< WifiPhy > GetPhy() const
Return the WifiPhy.
uint16_t GetGuardInterval() const
Return the supported HE guard interval duration (in nanoseconds).
bool GetAggregation(const WifiRemoteStation *station) const
Return whether the given station supports A-MPDU.
bool GetHtSupported() const
Return whether the device has HT capability support enabled.
uint8_t GetNMcsSupported(Mac48Address address) const
Return the number of MCS supported by the station.
WifiMode GetBasicMode(uint8_t i) const
Return a basic mode from the set of basic modes.
bool GetShortGuardIntervalSupported() const
Return whether the device has SGI support enabled.
virtual void SetupPhy(const Ptr< WifiPhy > phy)
Set up PHY associated with this device since it is the object that knows the full set of transmit rat...
WifiMode GetMcsSupported(const WifiRemoteStation *station, uint8_t i) const
Return the WifiMode supported by the specified station at the specified index.
void Reset()
Reset the station, invoked in a STA upon dis-association or in an AP upon reboot.
bool GetVhtSupported() const
Return whether the device has VHT capability support enabled.
bool GetShortPreambleEnabled() const
Return whether the device uses short PHY preambles.
WifiMode GetSupported(const WifiRemoteStation *station, uint8_t i) const
Return whether mode associated with the specified station at the specified index.
bool GetHeSupported() const
Return whether the device has HE capability support enabled.
WifiMode GetDefaultMode() const
Return the default transmission mode.
This class mimics the TXVECTOR which is to be passed to the PHY in order to define the parameters whi...
uint16_t GetGuardInterval() const
bool IsValid() const
The standard disallows certain combinations of WifiMode, number of spatial streams,...
void SetChannelWidth(uint16_t channelWidth)
Sets the selected channelWidth (in MHz)
void SetGuardInterval(uint16_t guardInterval)
Sets the guard interval duration (in nanoseconds)
WifiMode GetMode(uint16_t staId=SU_STA_ID) const
If this TX vector is associated with an SU PPDU, return the selected payload transmission mode.
uint8_t GetNss(uint16_t staId=SU_STA_ID) const
If this TX vector is associated with an SU PPDU, return the number of spatial streams.
uint16_t GetChannelWidth() const
void SetMode(WifiMode mode)
Sets the selected payload transmission mode.
void SetNss(uint8_t nss)
Sets the number of Nss.
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeDoubleAccessor(T1 a1)
Definition: double.h:43
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_WARN(msg)
Use NS_LOG to output a message of level LOG_WARN.
Definition: log.h:261
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
Ptr< const TraceSourceAccessor > MakeTraceSourceAccessor(T a)
Create a TraceSourceAccessor which will control access to the underlying trace source.
@ WIFI_MOD_CLASS_HR_DSSS
HR/DSSS (Clause 16)
@ WIFI_MOD_CLASS_HT
HT (Clause 19)
@ WIFI_MOD_CLASS_VHT
VHT (Clause 22)
@ WIFI_MOD_CLASS_HE
HE (Clause 27)
@ WIFI_MOD_CLASS_DSSS
DSSS (Clause 15)
Every class exported by the ns3 library is enclosed in the ns3 namespace.
static const double CACHE_INITIAL_VALUE
To avoid using the cache before a valid value has been cached.
WifiPreamble GetPreambleForTransmission(WifiModulationClass modulation, bool useShortPreamble)
Return the preamble to be used for the transmission.
hold per-remote-station state for Ideal Wifi manager.
WifiMode m_lastMode
Mode most recently used to the remote station.
double m_lastSnrObserved
SNR of most recently reported packet sent to the remote station.
double m_lastSnrCached
SNR most recently used to select a rate.
uint8_t m_lastNss
Number of spatial streams most recently used to the remote station.
uint16_t m_lastNssObserved
Number of spatial streams of most recently reported packet sent to the remote station.
uint16_t m_lastChannelWidth
Channel width (in MHz) most recently used to the remote station.
uint16_t m_lastChannelWidthObserved
Channel width (in MHz) of most recently reported packet sent to the remote station.
hold per-remote-station state.