A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
lte-enb-phy.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2010 TELEMATICS LAB, DEE - Politecnico di Bari
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Giuseppe Piro <g.piro@poliba.it>
18 * Marco Miozzo <mmiozzo@cttc.es>
19 */
20
21#include "lte-enb-phy.h"
22
23#include "lte-common.h"
25#include "lte-net-device.h"
28
29#include <ns3/attribute-accessor-helper.h>
30#include <ns3/double.h>
31#include <ns3/log.h>
32#include <ns3/object-factory.h>
33#include <ns3/simulator.h>
34
35#include <cfloat>
36#include <cmath>
37
38// WILD HACK for the initialization of direct eNB-UE ctrl messaging
39#include <ns3/node-list.h>
40#include <ns3/node.h>
41#include <ns3/pointer.h>
42
43namespace ns3
44{
45
46NS_LOG_COMPONENT_DEFINE("LteEnbPhy");
47
49
50/**
51 * Duration of the data portion of a DL subframe.
52 * Equals to "TTI length * (11/14) - margin".
53 * Data portion is fixed to 11 symbols out of the available 14 symbols.
54 * 1 nanosecond margin is added to avoid overlapping simulator events.
55 */
56static const Time DL_DATA_DURATION = NanoSeconds(785714 - 1);
57
58/**
59 * Delay from the start of a DL subframe to transmission of the data portion.
60 * Equals to "TTI length * (3/14)".
61 * Control portion is fixed to 3 symbols out of the available 14 symbols.
62 */
64
65////////////////////////////////////////
66// member SAP forwarders
67////////////////////////////////////////
68
69/// \todo SetBandwidth() and SetCellId() can be removed.
71{
72 public:
73 /**
74 * Constructor
75 *
76 * \param phy the ENB Phy
77 */
79
80 // inherited from LteEnbPhySapProvider
81 void SendMacPdu(Ptr<Packet> p) override;
83 uint8_t GetMacChTtiDelay() override;
84 /**
85 * Set bandwidth function
86 *
87 * \param ulBandwidth the UL bandwidth
88 * \param dlBandwidth the DL bandwidth
89 */
90 virtual void SetBandwidth(uint16_t ulBandwidth, uint16_t dlBandwidth);
91 /**
92 * Set Cell ID function
93 *
94 * \param cellId the cell ID
95 */
96 virtual void SetCellId(uint16_t cellId);
97
98 private:
99 LteEnbPhy* m_phy; ///< the ENB Phy
100};
101
103 : m_phy(phy)
104{
105}
106
107void
109{
111}
112
113void
114EnbMemberLteEnbPhySapProvider::SetBandwidth(uint16_t ulBandwidth, uint16_t dlBandwidth)
115{
116 m_phy->DoSetBandwidth(ulBandwidth, dlBandwidth);
117}
118
119void
121{
122 m_phy->DoSetCellId(cellId);
123}
124
125void
127{
129}
130
131uint8_t
133{
134 return m_phy->DoGetMacChTtiDelay();
135}
136
137////////////////////////////////////////
138// generic LteEnbPhy methods
139////////////////////////////////////////
140
142{
143 NS_LOG_FUNCTION(this);
144 NS_FATAL_ERROR("This constructor should not be called");
145}
146
148 : LtePhy(dlPhy, ulPhy),
149 m_enbPhySapUser(nullptr),
150 m_enbCphySapUser(nullptr),
151 m_nrFrames(0),
152 m_nrSubFrames(0),
153 m_srsPeriodicity(0),
154 m_srsStartTime(Seconds(0)),
155 m_currentSrsOffset(0),
156 m_interferenceSampleCounter(0)
157{
160 m_harqPhyModule = Create<LteHarqPhy>();
161 m_downlinkSpectrumPhy->SetHarqPhyModule(m_harqPhyModule);
162 m_uplinkSpectrumPhy->SetHarqPhyModule(m_harqPhyModule);
163}
164
165TypeId
167{
168 static TypeId tid =
169 TypeId("ns3::LteEnbPhy")
170 .SetParent<LtePhy>()
171 .SetGroupName("Lte")
172 .AddConstructor<LteEnbPhy>()
173 .AddAttribute("TxPower",
174 "Transmission power in dBm",
175 DoubleValue(30.0),
177 MakeDoubleChecker<double>())
178 .AddAttribute(
179 "NoiseFigure",
180 "Loss (dB) in the Signal-to-Noise-Ratio due to "
181 "non-idealities in the receiver. According to Wikipedia "
182 "(http://en.wikipedia.org/wiki/Noise_figure), this is "
183 "\"the difference in decibels (dB) between"
184 " the noise output of the actual receiver to "
185 "the noise output of an ideal receiver with "
186 "the same overall gain and bandwidth when the receivers "
187 "are connected to sources at the standard noise "
188 "temperature T0.\" In this model, we consider T0 = 290K.",
189 DoubleValue(5.0),
191 MakeDoubleChecker<double>())
192 .AddAttribute(
193 "MacToChannelDelay",
194 "The delay in TTI units that occurs between "
195 "a scheduling decision in the MAC and the actual "
196 "start of the transmission by the PHY. This is "
197 "intended to be used to model the latency of real PHY "
198 "and MAC implementations.",
199 UintegerValue(2),
201 MakeUintegerChecker<uint8_t>())
202 .AddTraceSource("ReportUeSinr",
203 "Report UEs' averaged linear SINR",
205 "ns3::LteEnbPhy::ReportUeSinrTracedCallback")
206 .AddAttribute("UeSinrSamplePeriod",
207 "The sampling period for reporting UEs' SINR stats.",
208 UintegerValue(1), /// \todo In what unit is this?
210 MakeUintegerChecker<uint16_t>())
211 .AddTraceSource("ReportInterference",
212 "Report linear interference power per PHY RB",
214 "ns3::LteEnbPhy::ReportInterferenceTracedCallback")
215 .AddAttribute("InterferenceSamplePeriod",
216 "The sampling period for reporting interference stats",
217 UintegerValue(1), /// \todo In what unit is this?
219 MakeUintegerChecker<uint16_t>())
220 .AddTraceSource("DlPhyTransmission",
221 "DL transmission PHY layer statistics.",
223 "ns3::PhyTransmissionStatParameters::TracedCallback")
224 .AddAttribute("DlSpectrumPhy",
225 "The downlink LteSpectrumPhy associated to this LtePhy",
227 PointerValue(),
229 MakePointerChecker<LteSpectrumPhy>())
230 .AddAttribute("UlSpectrumPhy",
231 "The uplink LteSpectrumPhy associated to this LtePhy",
233 PointerValue(),
235 MakePointerChecker<LteSpectrumPhy>());
236 return tid;
237}
238
240{
241}
242
243void
245{
246 NS_LOG_FUNCTION(this);
247 m_ueAttached.clear();
248 m_srsUeOffset.clear();
249 delete m_enbPhySapProvider;
252}
253
254void
256{
257 NS_LOG_FUNCTION(this);
258
259 NS_ABORT_MSG_IF(!m_netDevice, "LteEnbDevice is not available in LteEnbPhy");
260 Ptr<Node> node = m_netDevice->GetNode();
261 NS_ABORT_MSG_IF(!node, "Node is not available in the LteNetDevice of LteEnbPhy");
262 uint32_t nodeId = node->GetId();
263
264 // ScheduleWithContext() is needed here to set context for logs,
265 // because Initialize() is called outside of Node::AddDevice().
266
268
269 Ptr<SpectrumValue> noisePsd =
273 m_uplinkSpectrumPhy->SetNoisePowerSpectralDensity(noisePsd);
275}
276
277void
279{
280 m_enbPhySapUser = s;
281}
282
285{
286 return m_enbPhySapProvider;
287}
288
289void
291{
292 NS_LOG_FUNCTION(this);
294}
295
298{
299 NS_LOG_FUNCTION(this);
301}
302
303void
305{
306 NS_LOG_FUNCTION(this << pow);
307 m_txPower = pow;
308}
309
310double
312{
313 NS_LOG_FUNCTION(this);
314 return m_txPower;
315}
316
317int8_t
319{
320 NS_LOG_FUNCTION(this);
321 return m_txPower;
322}
323
324void
326{
327 NS_LOG_FUNCTION(this << nf);
328 m_noiseFigure = nf;
329}
330
331double
333{
334 NS_LOG_FUNCTION(this);
335 return m_noiseFigure;
336}
337
338void
340{
341 NS_LOG_FUNCTION(this);
342 m_macChTtiDelay = delay;
343 for (int i = 0; i < m_macChTtiDelay; i++)
344 {
345 Ptr<PacketBurst> pb = CreateObject<PacketBurst>();
346 m_packetBurstQueue.push_back(pb);
347 std::list<Ptr<LteControlMessage>> l;
348 m_controlMessagesQueue.push_back(l);
349 std::list<UlDciLteControlMessage> l1;
350 m_ulDciQueue.push_back(l1);
351 }
352 for (int i = 0; i < UL_PUSCH_TTIS_DELAY; i++)
353 {
354 std::list<UlDciLteControlMessage> l1;
355 m_ulDciQueue.push_back(l1);
356 }
357}
358
359uint8_t
361{
362 return m_macChTtiDelay;
363}
364
367{
369}
370
373{
374 return m_uplinkSpectrumPhy;
375}
376
377bool
379{
380 NS_LOG_FUNCTION(this << rnti);
381 auto it = m_ueAttached.find(rnti);
382 if (it == m_ueAttached.end())
383 {
384 m_ueAttached.insert(rnti);
385 return true;
386 }
387 else
388 {
389 NS_LOG_ERROR("UE already attached");
390 return false;
391 }
392}
393
394bool
396{
397 NS_LOG_FUNCTION(this << rnti);
398 auto it = m_ueAttached.find(rnti);
399 if (it == m_ueAttached.end())
400 {
401 NS_LOG_ERROR("UE not attached");
402 return false;
403 }
404 else
405 {
406 m_ueAttached.erase(it);
407 return true;
408 }
409}
410
411void
413{
414 NS_LOG_FUNCTION(this);
415 SetMacPdu(p);
416}
417
418uint8_t
420{
421 return m_macChTtiDelay;
422}
423
424void
426{
427 NS_LOG_FUNCTION(this);
429}
430
431void
433{
434 NS_LOG_FUNCTION(this);
437 m_downlinkSpectrumPhy->SetTxPowerSpectralDensity(txPsd);
438}
439
440void
442{
443 NS_LOG_FUNCTION(this);
446 m_downlinkSpectrumPhy->SetTxPowerSpectralDensity(txPsd);
447}
448
449std::vector<int>
451{
452 NS_LOG_FUNCTION(this);
454}
455
456void
458{
459 NS_LOG_FUNCTION(this);
460 double rbgTxPower = m_txPower;
461
462 auto it = m_paMap.find(rnti);
463 if (it != m_paMap.end())
464 {
465 rbgTxPower = m_txPower + it->second;
466 }
467
468 m_dlPowerAllocationMap.insert(std::pair<int, double>(rbId, rbgTxPower));
469}
470
473{
474 NS_LOG_FUNCTION(this);
475
479 m_txPower,
481
482 return psd;
483}
484
487{
488 NS_LOG_FUNCTION(this);
489
493 m_txPower,
496
497 return psd;
498}
499
500void
502{
503 NS_LOG_FUNCTION(this);
504}
505
506void
508{
509 NS_LOG_FUNCTION(this << msg);
510 // queues the message (wait for MAC-PHY delay)
512}
513
514void
516{
517 NS_FATAL_ERROR("Obsolete function");
518 NS_LOG_FUNCTION(this << msg);
520}
521
522void
524{
525 NS_LOG_FUNCTION(this);
526 for (auto it = msgList.begin(); it != msgList.end(); it++)
527 {
528 switch ((*it)->GetMessageType())
529 {
532 DynamicCast<RachPreambleLteControlMessage>(*it);
533 m_enbPhySapUser->ReceiveRachPreamble(rachPreamble->GetRapId());
534 }
535 break;
537 Ptr<DlCqiLteControlMessage> dlcqiMsg = DynamicCast<DlCqiLteControlMessage>(*it);
538 CqiListElement_s dlcqi = dlcqiMsg->GetDlCqi();
539 // check whether the UE is connected
540 if (m_ueAttached.find(dlcqi.m_rnti) != m_ueAttached.end())
541 {
543 }
544 }
545 break;
547 Ptr<BsrLteControlMessage> bsrMsg = DynamicCast<BsrLteControlMessage>(*it);
548 MacCeListElement_s bsr = bsrMsg->GetBsr();
549 // check whether the UE is connected
550 if (m_ueAttached.find(bsr.m_rnti) != m_ueAttached.end())
551 {
553 }
554 }
555 break;
558 DynamicCast<DlHarqFeedbackLteControlMessage>(*it);
559 DlInfoListElement_s dlharq = dlharqMsg->GetDlHarqFeedback();
560 // check whether the UE is connected
561 if (m_ueAttached.find(dlharq.m_rnti) != m_ueAttached.end())
562 {
564 }
565 }
566 break;
567 default:
568 NS_FATAL_ERROR("Unexpected LteControlMessage type");
569 break;
570 }
571 }
572}
573
574void
576{
577 NS_LOG_FUNCTION(this);
578
579 ++m_nrFrames;
580 NS_LOG_INFO("-----frame " << m_nrFrames << "-----");
581 m_nrSubFrames = 0;
582
583 // send MIB at beginning of every frame
585 Ptr<MibLteControlMessage> mibMsg = Create<MibLteControlMessage>();
586 mibMsg->SetMib(m_mib);
587 m_controlMessagesQueue.at(0).emplace_back(mibMsg);
588
590}
591
592void
594{
595 NS_LOG_FUNCTION(this);
596
598
599 /*
600 * Send SIB1 at 6th subframe of every odd-numbered radio frame. This is
601 * equivalent with Section 5.2.1.2 of 3GPP TS 36.331, where it is specified
602 * "repetitions are scheduled in subframe #5 of all other radio frames for
603 * which SFN mod 2 = 0," except that 3GPP counts frames and subframes starting
604 * from 0, while ns-3 counts starting from 1.
605 */
606 if ((m_nrSubFrames == 6) && ((m_nrFrames % 2) == 1))
607 {
608 Ptr<Sib1LteControlMessage> msg = Create<Sib1LteControlMessage>();
609 msg->SetSib1(m_sib1);
610 m_controlMessagesQueue.at(0).emplace_back(msg);
611 }
612
613 if (m_srsPeriodicity > 0)
614 {
615 // might be 0 in case the eNB has no UEs attached
616 NS_ASSERT_MSG(m_nrFrames > 1, "the SRS index check code assumes that frameNo starts at 1");
618 "the SRS index check code assumes that subframeNo starts at 1");
620 }
621 NS_LOG_INFO("-----sub frame " << m_nrSubFrames << "-----");
622 m_harqPhyModule->SubframeIndication(m_nrFrames, m_nrSubFrames);
623
624 // update info on TB to be received
625 std::list<UlDciLteControlMessage> uldcilist = DequeueUlDci();
626 NS_LOG_DEBUG(this << " eNB Expected TBs " << uldcilist.size());
627 for (auto dciIt = uldcilist.begin(); dciIt != uldcilist.end(); dciIt++)
628 {
629 auto it2 = m_ueAttached.find((*dciIt).GetDci().m_rnti);
630
631 if (it2 == m_ueAttached.end())
632 {
633 NS_LOG_ERROR("UE not attached");
634 }
635 else
636 {
637 // send info of TB to LteSpectrumPhy
638 // translate to allocation map
639 std::vector<int> rbMap;
640 for (int i = (*dciIt).GetDci().m_rbStart;
641 i < (*dciIt).GetDci().m_rbStart + (*dciIt).GetDci().m_rbLen;
642 i++)
643 {
644 rbMap.push_back(i);
645 }
646 m_uplinkSpectrumPhy->AddExpectedTb((*dciIt).GetDci().m_rnti,
647 (*dciIt).GetDci().m_ndi,
648 (*dciIt).GetDci().m_tbSize,
649 (*dciIt).GetDci().m_mcs,
650 rbMap,
651 0 /* always SISO*/,
652 0 /* no HARQ proc id in UL*/,
653 0 /*evaluated by LteSpectrumPhy*/,
654 false /* UL*/);
655 if ((*dciIt).GetDci().m_ndi == 1)
656 {
657 NS_LOG_DEBUG(this << " RNTI " << (*dciIt).GetDci().m_rnti << " NEW TB");
658 }
659 else
660 {
661 NS_LOG_DEBUG(this << " RNTI " << (*dciIt).GetDci().m_rnti << " HARQ RETX");
662 }
663 }
664 }
665
666 // process the current burst of control messages
667 std::list<Ptr<LteControlMessage>> ctrlMsg = GetControlMessages();
668 m_dlDataRbMap.clear();
670 if (!ctrlMsg.empty())
671 {
672 auto it = ctrlMsg.begin();
673 while (it != ctrlMsg.end())
674 {
675 Ptr<LteControlMessage> msg = (*it);
676 if (msg->GetMessageType() == LteControlMessage::DL_DCI)
677 {
678 Ptr<DlDciLteControlMessage> dci = DynamicCast<DlDciLteControlMessage>(msg);
679 // get the tx power spectral density according to DL-DCI(s)
680 // translate the DCI to Spectrum framework
681 uint32_t mask = 0x1;
682 for (int i = 0; i < 32; i++)
683 {
684 if (((dci->GetDci().m_rbBitmap & mask) >> i) == 1)
685 {
686 for (int k = 0; k < GetRbgSize(); k++)
687 {
688 m_dlDataRbMap.push_back((i * GetRbgSize()) + k);
689 // NS_LOG_DEBUG(this << " [enb]DL-DCI allocated PRB " <<
690 // (i*GetRbgSize()) + k);
691 GeneratePowerAllocationMap(dci->GetDci().m_rnti,
692 (i * GetRbgSize()) + k);
693 }
694 }
695 mask = (mask << 1);
696 }
697 // fire trace of DL Tx PHY stats
698 for (std::size_t i = 0; i < dci->GetDci().m_mcs.size(); i++)
699 {
701 params.m_cellId = m_cellId;
702 params.m_imsi = 0; // it will be set by DlPhyTransmissionCallback in LteHelper
703 params.m_timestamp = Simulator::Now().GetMilliSeconds();
704 params.m_rnti = dci->GetDci().m_rnti;
705 params.m_txMode = 0; // TBD
706 params.m_layer = i;
707 params.m_mcs = dci->GetDci().m_mcs.at(i);
708 params.m_size = dci->GetDci().m_tbsSize.at(i);
709 params.m_rv = dci->GetDci().m_rv.at(i);
710 params.m_ndi = dci->GetDci().m_ndi.at(i);
711 params.m_ccId = m_componentCarrierId;
712 m_dlPhyTransmission(params);
713 }
714 }
715 else if (msg->GetMessageType() == LteControlMessage::UL_DCI)
716 {
717 Ptr<UlDciLteControlMessage> dci = DynamicCast<UlDciLteControlMessage>(msg);
718 QueueUlDci(*dci);
719 }
720 else if (msg->GetMessageType() == LteControlMessage::RAR)
721 {
722 Ptr<RarLteControlMessage> rarMsg = DynamicCast<RarLteControlMessage>(msg);
723 for (auto it = rarMsg->RarListBegin(); it != rarMsg->RarListEnd(); ++it)
724 {
725 if (it->rarPayload.m_grant.m_ulDelay)
726 {
727 NS_FATAL_ERROR(" RAR delay is not yet implemented");
728 }
729 UlGrant_s ulGrant = it->rarPayload.m_grant;
730 // translate the UL grant in a standard UL-DCI and queue it
732 dci.m_rnti = ulGrant.m_rnti;
733 dci.m_rbStart = ulGrant.m_rbStart;
734 dci.m_rbLen = ulGrant.m_rbLen;
735 dci.m_tbSize = ulGrant.m_tbSize;
736 dci.m_mcs = ulGrant.m_mcs;
737 dci.m_hopping = ulGrant.m_hopping;
738 dci.m_tpc = ulGrant.m_tpc;
739 dci.m_cqiRequest = ulGrant.m_cqiRequest;
740 dci.m_ndi = 1;
742 msg.SetDci(dci);
743 QueueUlDci(msg);
744 }
745 }
746 it++;
747 }
748 }
749
750 SendControlChannels(ctrlMsg);
751
752 // send data frame
754 if (pb)
755 {
756 Simulator::Schedule(DL_CTRL_DELAY_FROM_SUBFRAME_START, // ctrl frame fixed to 3 symbols
758 this,
759 pb);
760 }
761
762 // trigger the MAC
764
766}
767
768void
770{
771 NS_LOG_FUNCTION(this << " eNB " << m_cellId << " start tx ctrl frame");
772 // set the current tx power spectral density (full bandwidth)
773 std::vector<int> dlRb;
774 for (uint16_t i = 0; i < m_dlBandwidth; i++)
775 {
776 dlRb.push_back(i);
777 }
779 NS_LOG_LOGIC(this << " eNB start TX CTRL");
780 bool pss = false;
781 if ((m_nrSubFrames == 1) || (m_nrSubFrames == 6))
782 {
783 pss = true;
784 }
785 m_downlinkSpectrumPhy->StartTxDlCtrlFrame(ctrlMsgList, pss);
786}
787
788void
790{
791 // set the current tx power spectral density
793 // send the current burts of packets
794 NS_LOG_LOGIC(this << " eNB start TX DATA");
795 std::list<Ptr<LteControlMessage>> ctrlMsgList;
796 ctrlMsgList.clear();
797 m_downlinkSpectrumPhy->StartTxDataFrame(pb, ctrlMsgList, DL_DATA_DURATION);
798}
799
800void
802{
804 if (m_nrSubFrames == 10)
805 {
807 }
808 else
809 {
811 }
812}
813
814void
816{
819}
820
821void
823{
824 NS_LOG_FUNCTION(this << sinr << Simulator::Now() << m_srsStartTime);
825 // avoid processing SRSs sent with an old SRS configuration index
827 {
830 }
831}
832
833void
835{
836 NS_LOG_FUNCTION(this << sinr);
839}
840
841void
843{
844 NS_LOG_FUNCTION(this << interf);
845 Ptr<SpectrumValue> interfCopy = Create<SpectrumValue>(interf);
848 {
851 }
852}
853
854void
856{
857 // not used by eNB
858}
859
862{
863 NS_LOG_FUNCTION(this << sinr);
865 ulcqi.m_ulCqi.m_type = UlCqi_s::PUSCH;
866 for (auto it = sinr.ConstValuesBegin(); it != sinr.ConstValuesEnd(); it++)
867 {
868 double sinrdb = 10 * std::log10(*it);
869 // NS_LOG_DEBUG ("ULCQI RB " << i << " value " << sinrdb);
870 // convert from double to fixed point notation Sxxxxxxxxxxx.xxx
871 int16_t sinrFp = LteFfConverter::double2fpS11dot3(sinrdb);
872 ulcqi.m_ulCqi.m_sinr.push_back(sinrFp);
873 }
874 return ulcqi;
875}
876
877void
878LteEnbPhy::DoSetBandwidth(uint16_t ulBandwidth, uint16_t dlBandwidth)
879{
880 NS_LOG_FUNCTION(this << (uint32_t)ulBandwidth << (uint32_t)dlBandwidth);
881 m_ulBandwidth = ulBandwidth;
882 m_dlBandwidth = dlBandwidth;
883
884 static const int Type0AllocationRbg[4] = {
885 10, // RBG size 1
886 26, // RBG size 2
887 63, // RBG size 3
888 110, // RBG size 4
889 }; // see table 7.1.6.1-1 of 36.213
890 for (int i = 0; i < 4; i++)
891 {
892 if (dlBandwidth < Type0AllocationRbg[i])
893 {
894 m_rbgSize = i + 1;
895 break;
896 }
897 }
898}
899
900void
902{
903 NS_LOG_FUNCTION(this << ulEarfcn << dlEarfcn);
904 m_ulEarfcn = ulEarfcn;
905 m_dlEarfcn = dlEarfcn;
906}
907
908void
909LteEnbPhy::DoAddUe(uint16_t rnti)
910{
911 NS_LOG_FUNCTION(this << rnti);
912
913 bool success = AddUePhy(rnti);
914 NS_ASSERT_MSG(success, "AddUePhy() failed");
915
916 // add default P_A value
917 DoSetPa(rnti, 0);
918}
919
920void
922{
923 NS_LOG_FUNCTION(this << rnti);
924
925 bool success = DeleteUePhy(rnti);
926 NS_ASSERT_MSG(success, "DeleteUePhy() failed");
927
928 // remove also P_A value
929 auto it = m_paMap.find(rnti);
930 if (it != m_paMap.end())
931 {
932 m_paMap.erase(it);
933 }
934
935 // additional data to be removed
936 m_uplinkSpectrumPhy->RemoveExpectedTb(rnti);
937 // remove srs info to avoid trace errors
938 auto sit = m_srsSampleCounterMap.find(rnti);
939 if (sit != m_srsSampleCounterMap.end())
940 {
941 m_srsSampleCounterMap.erase(rnti);
942 }
943 // remove DL_DCI message otherwise errors occur for m_dlPhyTransmission trace
944 // remove also any UL_DCI message for the UE to be removed
945
946 for (auto& ctrlMessageList : m_controlMessagesQueue)
947 {
948 auto ctrlMsgListIt = ctrlMessageList.begin();
949 while (ctrlMsgListIt != ctrlMessageList.end())
950 {
951 Ptr<LteControlMessage> msg = (*ctrlMsgListIt);
952 if (msg->GetMessageType() == LteControlMessage::DL_DCI)
953 {
954 auto dci = DynamicCast<DlDciLteControlMessage>(msg);
955 if (dci->GetDci().m_rnti == rnti)
956 {
957 NS_LOG_INFO("DL_DCI to be sent from cell id : " << m_cellId << " to RNTI : "
958 << rnti << " is deleted");
959 ctrlMsgListIt = ctrlMessageList.erase(ctrlMsgListIt);
960 }
961 else
962 {
963 ++ctrlMsgListIt;
964 }
965 }
966 else if (msg->GetMessageType() == LteControlMessage::UL_DCI)
967 {
968 auto dci = DynamicCast<UlDciLteControlMessage>(msg);
969 if (dci->GetDci().m_rnti == rnti)
970 {
971 NS_LOG_INFO("UL_DCI to be sent from cell id : " << m_cellId << " to RNTI : "
972 << rnti << " is deleted");
973 ctrlMsgListIt = ctrlMessageList.erase(ctrlMsgListIt);
974 }
975 else
976 {
977 ++ctrlMsgListIt;
978 }
979 }
980 else
981 {
982 ++ctrlMsgListIt;
983 }
984 }
985 }
986}
987
988void
989LteEnbPhy::DoSetPa(uint16_t rnti, double pa)
990{
991 NS_LOG_FUNCTION(this << rnti);
992
993 auto it = m_paMap.find(rnti);
994
995 if (it == m_paMap.end())
996 {
997 m_paMap.insert(std::pair<uint16_t, double>(rnti, pa));
998 }
999 else
1000 {
1001 it->second = pa;
1002 }
1003}
1004
1007{
1008 NS_LOG_FUNCTION(this << sinr);
1010 ulcqi.m_ulCqi.m_type = UlCqi_s::SRS;
1011 int i = 0;
1012 double srsSum = 0.0;
1013 for (auto it = sinr.ConstValuesBegin(); it != sinr.ConstValuesEnd(); it++)
1014 {
1015 double sinrdb = 10 * log10(*it);
1016 // NS_LOG_DEBUG ("ULCQI RB " << i << " value " << sinrdb);
1017 // convert from double to fixed point notation Sxxxxxxxxxxx.xxx
1018 int16_t sinrFp = LteFfConverter::double2fpS11dot3(sinrdb);
1019 srsSum += (*it);
1020 ulcqi.m_ulCqi.m_sinr.push_back(sinrFp);
1021 i++;
1022 }
1023 // Insert the user generated the srs as a vendor specific parameter
1024 NS_LOG_DEBUG(this << " ENB RX UL-CQI of " << m_srsUeOffset.at(m_currentSrsOffset));
1027 vsp.m_length = sizeof(SrsCqiRntiVsp);
1028 Ptr<SrsCqiRntiVsp> rnti = Create<SrsCqiRntiVsp>(m_srsUeOffset.at(m_currentSrsOffset));
1029 vsp.m_value = rnti;
1030 ulcqi.m_vendorSpecificList.push_back(vsp);
1031 // call SRS tracing method
1032 CreateSrsReport(m_srsUeOffset.at(m_currentSrsOffset), (i > 0) ? (srsSum / i) : DBL_MAX);
1033 return ulcqi;
1034}
1035
1036void
1037LteEnbPhy::CreateSrsReport(uint16_t rnti, double srs)
1038{
1039 NS_LOG_FUNCTION(this << rnti << srs);
1040 auto it = m_srsSampleCounterMap.find(rnti);
1041 if (it == m_srsSampleCounterMap.end())
1042 {
1043 // create new entry
1044 m_srsSampleCounterMap.insert(std::pair<uint16_t, uint16_t>(rnti, 0));
1045 it = m_srsSampleCounterMap.find(rnti);
1046 }
1047 (*it).second++;
1048 if ((*it).second == m_srsSamplePeriod)
1049 {
1050 m_reportUeSinr(m_cellId, rnti, srs, (uint16_t)m_componentCarrierId);
1051 (*it).second = 0;
1052 }
1053}
1054
1055void
1056LteEnbPhy::DoSetTransmissionMode(uint16_t rnti, uint8_t txMode)
1057{
1058 NS_LOG_FUNCTION(this << rnti << (uint16_t)txMode);
1059 // UL supports only SISO MODE
1060}
1061
1062void
1064{
1065 NS_LOG_FUNCTION(this);
1066 m_ulDciQueue.at(UL_PUSCH_TTIS_DELAY - 1).push_back(m);
1067}
1068
1069std::list<UlDciLteControlMessage>
1071{
1072 NS_LOG_FUNCTION(this);
1073 if (!m_ulDciQueue.at(0).empty())
1074 {
1075 std::list<UlDciLteControlMessage> ret = m_ulDciQueue.at(0);
1076 m_ulDciQueue.erase(m_ulDciQueue.begin());
1077 std::list<UlDciLteControlMessage> l;
1078 m_ulDciQueue.push_back(l);
1079 return ret;
1080 }
1081 else
1082 {
1083 m_ulDciQueue.erase(m_ulDciQueue.begin());
1084 std::list<UlDciLteControlMessage> l;
1085 m_ulDciQueue.push_back(l);
1086 std::list<UlDciLteControlMessage> emptylist;
1087 return emptylist;
1088 }
1089}
1090
1091void
1092LteEnbPhy::DoSetSrsConfigurationIndex(uint16_t rnti, uint16_t srcCi)
1093{
1094 NS_LOG_FUNCTION(this);
1095 uint16_t p = GetSrsPeriodicity(srcCi);
1096 if (p != m_srsPeriodicity)
1097 {
1098 // resize the array of offset -> re-initialize variables
1099 m_srsUeOffset.clear();
1100 m_srsUeOffset.resize(p, 0);
1101 m_srsPeriodicity = p;
1102 // inhibit SRS until RRC Connection Reconfiguration propagates
1103 // to UEs, otherwise we might be wrong in determining the UE who
1104 // actually sent the SRS (if the UE was using a stale SRS config)
1105 // if we use a static SRS configuration index, we can have a 0ms guard time
1107 }
1108
1109 NS_LOG_DEBUG(this << " ENB SRS P " << m_srsPeriodicity << " RNTI " << rnti << " offset "
1110 << GetSrsSubframeOffset(srcCi) << " CI " << srcCi);
1111 auto it = m_srsCounter.find(rnti);
1112 if (it != m_srsCounter.end())
1113 {
1114 (*it).second = GetSrsSubframeOffset(srcCi) + 1;
1115 }
1116 else
1117 {
1118 m_srsCounter.insert(std::pair<uint16_t, uint16_t>(rnti, GetSrsSubframeOffset(srcCi) + 1));
1119 }
1120 m_srsUeOffset.at(GetSrsSubframeOffset(srcCi)) = rnti;
1121}
1122
1123void
1125{
1126 NS_LOG_FUNCTION(this);
1127 m_mib = mib;
1128}
1129
1130void
1132{
1133 NS_LOG_FUNCTION(this);
1134 m_sib1 = sib1;
1135}
1136
1137void
1139{
1140 m_harqPhyModule = harq;
1141}
1142
1143void
1145{
1146 NS_LOG_FUNCTION(this);
1147 // forward to scheduler
1149}
1150
1151} // namespace ns3
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
void SendMacPdu(Ptr< Packet > p) override
Send the MAC PDU to the channel.
Definition: lte-enb-phy.cc:108
EnbMemberLteEnbPhySapProvider(LteEnbPhy *phy)
Constructor.
Definition: lte-enb-phy.cc:102
virtual void SetBandwidth(uint16_t ulBandwidth, uint16_t dlBandwidth)
Set bandwidth function.
Definition: lte-enb-phy.cc:114
uint8_t GetMacChTtiDelay() override
Get the delay from MAC to Channel expressed in TTIs.
Definition: lte-enb-phy.cc:132
LteEnbPhy * m_phy
the ENB Phy
Definition: lte-enb-phy.cc:99
virtual void SetCellId(uint16_t cellId)
Set Cell ID function.
Definition: lte-enb-phy.cc:120
void SendLteControlMessage(Ptr< LteControlMessage > msg) override
Send SendLteControlMessage (PDCCH map, CQI feedbacks) using the ideal control channel.
Definition: lte-enb-phy.cc:126
Service Access Point (SAP) offered by the UE PHY to the UE RRC for control purposes.
Service Access Point (SAP) offered by the UE PHY to the UE RRC for control purposes.
LteEnbPhy models the physical layer for the eNodeB.
Definition: lte-enb-phy.h:45
uint16_t m_srsPeriodicity
SRS periodicity.
Definition: lte-enb-phy.h:461
double GetTxPower() const
Definition: lte-enb-phy.cc:311
Time m_srsStartTime
SRS start time.
Definition: lte-enb-phy.h:462
int8_t DoGetReferenceSignalPower() const
Definition: lte-enb-phy.cc:318
void StartSubFrame()
Start a LTE sub frame.
Definition: lte-enb-phy.cc:593
void CreateSrsReport(uint16_t rnti, double srs)
Create SRS report function.
uint16_t m_interferenceSamplePeriod
The InterferenceSamplePeriod attribute.
Definition: lte-enb-phy.h:506
virtual void ReportUlHarqFeedback(UlInfoListElement_s mes)
Report the uplink HARQ feedback generated by LteSpectrumPhy to MAC.
std::list< UlDciLteControlMessage > DequeueUlDci()
uint16_t m_srsSamplePeriod
The UeSinrSamplePeriod trace source.
Definition: lte-enb-phy.h:490
void SetLteEnbCphySapUser(LteEnbCphySapUser *s)
Set the CPHY SAP User.
Definition: lte-enb-phy.cc:290
FfMacSchedSapProvider::SchedUlCqiInfoReqParameters CreatePuschCqiReport(const SpectrumValue &sinr)
Create the UL CQI feedback from SINR values perceived at the physical layer with the PUSCH signal rec...
Definition: lte-enb-phy.cc:861
uint32_t m_nrSubFrames
The subframe number currently served.
Definition: lte-enb-phy.h:459
std::set< uint16_t > m_ueAttached
List of RNTI of attached UEs.
Definition: lte-enb-phy.h:422
LteEnbPhySapProvider * GetLteEnbPhySapProvider()
Get the PHY SAP provider.
Definition: lte-enb-phy.cc:284
void SetLteEnbPhySapUser(LteEnbPhySapUser *s)
Set the PHY SAP User.
Definition: lte-enb-phy.cc:278
void DoSetMasterInformationBlock(LteRrcSap::MasterInformationBlock mib)
Set master information block.
bool DeleteUePhy(uint16_t rnti)
Remove the given RNTI from the list of attached UE m_ueAttached.
Definition: lte-enb-phy.cc:395
std::vector< std::list< UlDciLteControlMessage > > m_ulDciQueue
For storing info on future receptions.
Definition: lte-enb-phy.h:441
double GetNoiseFigure() const
Definition: lte-enb-phy.cc:332
void SetTxPower(double pow)
Definition: lte-enb-phy.cc:304
std::vector< int > m_dlDataRbMap
DL data RB map.
Definition: lte-enb-phy.h:438
TracedCallback< uint16_t, uint16_t, double, uint8_t > m_reportUeSinr
The ReportUeSinr trace source.
Definition: lte-enb-phy.h:485
~LteEnbPhy() override
Definition: lte-enb-phy.cc:239
Ptr< LteSpectrumPhy > GetDlSpectrumPhy() const
Definition: lte-enb-phy.cc:366
void DoDispose() override
Destructor implementation.
Definition: lte-enb-phy.cc:244
void GenerateCtrlCqiReport(const SpectrumValue &sinr) override
generate a CQI report based on the given SINR of Ctrl frame
Definition: lte-enb-phy.cc:822
void GenerateDataCqiReport(const SpectrumValue &sinr) override
generate a CQI report based on the given SINR of Data frame (used for PUSCH CQIs)
Definition: lte-enb-phy.cc:834
void SendDataChannels(Ptr< PacketBurst > pb)
Send the PDSCH.
Definition: lte-enb-phy.cc:789
std::map< uint16_t, uint16_t > m_srsSampleCounterMap
SRS sample counter map.
Definition: lte-enb-phy.h:491
void DoSetSrsConfigurationIndex(uint16_t rnti, uint16_t srcCi)
Set source configuration index.
void PhyPduReceived(Ptr< Packet > p)
PhySpectrum received a new PHY-PDU.
Definition: lte-enb-phy.cc:425
FfMacSchedSapProvider::SchedUlCqiInfoReqParameters CreateSrsCqiReport(const SpectrumValue &sinr)
Create the UL CQI feedback from SINR values perceived at the physical layer with the SRS signal recei...
LteEnbPhySapUser * m_enbPhySapUser
ENB Phy SAP user.
Definition: lte-enb-phy.h:444
void EndFrame()
End a LTE frame.
Definition: lte-enb-phy.cc:815
void CalcChannelQualityForUe(std::vector< double > sinr, Ptr< LteSpectrumPhy > ue)
Calculate the channel quality for a given UE.
Definition: lte-enb-phy.cc:501
void DoSetPa(uint16_t rnti, double pa)
Set PA.
Definition: lte-enb-phy.cc:989
uint8_t GetMacChDelay() const
Definition: lte-enb-phy.cc:360
uint16_t m_currentSrsOffset
current SRS offset
Definition: lte-enb-phy.h:465
void DoSetEarfcn(uint32_t dlEarfcn, uint32_t ulEarfcn)
Set EARFCN.
Definition: lte-enb-phy.cc:901
Ptr< SpectrumValue > CreateTxPowerSpectralDensity() override
Create the PSD for TX.
Definition: lte-enb-phy.cc:472
void DoSetTransmissionMode(uint16_t rnti, uint8_t txMode)
Set transmission mode.
LteEnbPhySapProvider * m_enbPhySapProvider
ENB Phy SAP provider.
Definition: lte-enb-phy.h:443
uint8_t DoGetMacChTtiDelay()
Get MAC ch TTI delay function.
Definition: lte-enb-phy.cc:419
std::map< int, double > m_dlPowerAllocationMap
DL power allocation map.
Definition: lte-enb-phy.h:428
std::vector< int > m_listOfDownlinkSubchannel
A vector of integers, if the i-th value is j it means that the j-th resource block is used for transm...
Definition: lte-enb-phy.h:436
void GeneratePowerAllocationMap(uint16_t rnti, int rbId)
Generate power allocation map (i.e.
Definition: lte-enb-phy.cc:457
void QueueUlDci(UlDciLteControlMessage m)
void SetNoiseFigure(double pow)
Definition: lte-enb-phy.cc:325
std::map< uint16_t, uint16_t > m_srsCounter
SRS counter.
Definition: lte-enb-phy.h:463
void SetMacChDelay(uint8_t delay)
Definition: lte-enb-phy.cc:339
void SetHarqPhyModule(Ptr< LteHarqPhy > harq)
Set the HARQ Phy module.
virtual void ReceiveLteControlMessageList(std::list< Ptr< LteControlMessage > > msgList)
PhySpectrum received a new list of LteControlMessage.
Definition: lte-enb-phy.cc:523
void SendControlChannels(std::list< Ptr< LteControlMessage > > ctrlMsgList)
Send the PDCCH and PCFICH in the first 3 symbols.
Definition: lte-enb-phy.cc:769
void DoRemoveUe(uint16_t rnti)
Remove UE.
Definition: lte-enb-phy.cc:921
void SetDownlinkSubChannelsWithPowerAllocation(std::vector< int > mask)
set the resource blocks (a.k.a.
Definition: lte-enb-phy.cc:441
void ReportRsReceivedPower(const SpectrumValue &power) override
generate a report based on the linear RS power perceived during CTRL frame NOTE: used only by UE for ...
Definition: lte-enb-phy.cc:855
LteRrcSap::MasterInformationBlock m_mib
The Master Information Block message to be broadcasted every frame.
Definition: lte-enb-phy.h:471
void DoSendMacPdu(Ptr< Packet > p) override
Queue the MAC PDU to be sent (according to m_macChTtiDelay)
Definition: lte-enb-phy.cc:412
void ReportInterference(const SpectrumValue &interf) override
generate a report based on the linear interference and noise power perceived during DATA frame NOTE: ...
Definition: lte-enb-phy.cc:842
TracedCallback< uint16_t, Ptr< SpectrumValue > > m_reportInterferenceTrace
The ReportInterference trace source.
Definition: lte-enb-phy.h:500
Ptr< LteSpectrumPhy > GetUlSpectrumPhy() const
Definition: lte-enb-phy.cc:372
void DoAddUe(uint16_t rnti)
Add UE.
Definition: lte-enb-phy.cc:909
friend class EnbMemberLteEnbPhySapProvider
allow EnbMemberLteEnbPhySapProvider class friend access
Definition: lte-enb-phy.h:47
void DoSetSystemInformationBlockType1(LteRrcSap::SystemInformationBlockType1 sib1)
Set system information block.
void DoSendLteControlMessage(Ptr< LteControlMessage > msg)
Send LTE Control Message function.
Definition: lte-enb-phy.cc:507
virtual Ptr< SpectrumValue > CreateTxPowerSpectralDensityWithPowerAllocation()
Create the PSD for TX with power allocation for each RB.
Definition: lte-enb-phy.cc:486
bool AddUePhy(uint16_t rnti)
Add the given RNTI to the list of attached UE m_ueAttached.
Definition: lte-enb-phy.cc:378
void DoInitialize() override
Initialize() implementation.
Definition: lte-enb-phy.cc:255
LteRrcSap::SystemInformationBlockType1 m_sib1
The System Information Block Type 1 message to be broadcasted.
Definition: lte-enb-phy.h:477
std::map< uint16_t, double > m_paMap
P_A per UE RNTI.
Definition: lte-enb-phy.h:425
void DoSetBandwidth(uint16_t ulBandwidth, uint16_t dlBandwidth)
Set bandwidth function.
Definition: lte-enb-phy.cc:878
void EndSubFrame()
End a LTE sub frame.
Definition: lte-enb-phy.cc:801
LteEnbCphySapUser * m_enbCphySapUser
ENB CPhy SAP user.
Definition: lte-enb-phy.h:447
uint16_t m_interferenceSampleCounter
interference sample counter
Definition: lte-enb-phy.h:507
void SetDownlinkSubChannels(std::vector< int > mask)
set the resource blocks (a.k.a.
Definition: lte-enb-phy.cc:432
virtual void ReceiveLteControlMessage(Ptr< LteControlMessage > msg)
Receive the control message.
Definition: lte-enb-phy.cc:515
void StartFrame()
Start a LTE frame.
Definition: lte-enb-phy.cc:575
uint32_t m_nrFrames
The frame number currently served.
Definition: lte-enb-phy.h:453
LteEnbCphySapProvider * m_enbCphySapProvider
ENB CPhy SAP provider.
Definition: lte-enb-phy.h:446
std::vector< uint16_t > m_srsUeOffset
SRS UE offset.
Definition: lte-enb-phy.h:464
LteEnbCphySapProvider * GetLteEnbCphySapProvider()
Get the CPHY SAP provider.
Definition: lte-enb-phy.cc:297
TracedCallback< PhyTransmissionStatParameters > m_dlPhyTransmission
The DlPhyTransmission trace source.
Definition: lte-enb-phy.h:514
std::vector< int > GetDownlinkSubChannels()
Definition: lte-enb-phy.cc:450
Ptr< LteHarqPhy > m_harqPhyModule
HARQ Phy module.
Definition: lte-enb-phy.h:479
friend class MemberLteEnbCphySapProvider< LteEnbPhy >
allow MemberLteEnbCphySapProvider<LteEnbPhy> class friend access
Definition: lte-enb-phy.h:49
static TypeId GetTypeId()
Get the type ID.
Definition: lte-enb-phy.cc:166
Service Access Point (SAP) offered by the eNB-PHY to the eNB-MAC.
Service Access Point (SAP) offered by the eNB-PHY to the eNB-MAC.
virtual void ReceivePhyPdu(Ptr< Packet > p)=0
Called by the Phy to notify the MAC of the reception of a new PHY-PDU.
virtual void UlCqiReport(FfMacSchedSapProvider::SchedUlCqiInfoReqParameters ulcqi)=0
Returns to MAC level the UL-CQI evaluated.
virtual void UlInfoListElementHarqFeedback(UlInfoListElement_s params)=0
Notify the HARQ on the UL transmission status.
virtual void ReceiveLteControlMessage(Ptr< LteControlMessage > msg)=0
Receive SendLteControlMessage (PDCCH map, CQI feedbacks) using the ideal control channel.
virtual void ReceiveRachPreamble(uint32_t prachId)=0
notify the reception of a RACH preamble on the PRACH
virtual void SubframeIndication(uint32_t frameNo, uint32_t subframeNo)=0
Trigger the start from a new frame (input from Phy layer)
static uint16_t double2fpS11dot3(double val)
Convert from double to fixed point S11.3 notation.
Definition: lte-common.cc:134
The LtePhy models the physical layer of LTE.
Definition: lte-phy.h:51
void DoSetCellId(uint16_t cellId)
Definition: lte-phy.cc:240
double m_txPower
Transmission power in dBm.
Definition: lte-phy.h:241
uint8_t GetRbgSize() const
Definition: lte-phy.cc:180
void DoDispose() override
Destructor implementation.
Definition: lte-phy.cc:76
uint16_t GetSrsPeriodicity(uint16_t srcCi) const
Definition: lte-phy.cc:144
std::vector< Ptr< PacketBurst > > m_packetBurstQueue
A queue of packet bursts to be sent.
Definition: lte-phy.h:281
uint16_t m_ulBandwidth
The UL bandwidth in number of PRBs.
Definition: lte-phy.h:261
Ptr< PacketBurst > GetPacketBurst()
Definition: lte-phy.cc:192
uint8_t m_componentCarrierId
component carrier Id used to address sap
Definition: lte-phy.h:303
double m_noiseFigure
Loss (dB) in the Signal-to-Noise-Ratio due to non-idealities in the receiver.
Definition: lte-phy.h:253
uint32_t m_ulEarfcn
The uplink carrier frequency.
Definition: lte-phy.h:278
uint16_t m_dlBandwidth
The DL bandwidth in number of PRBs.
Definition: lte-phy.h:266
Ptr< LteSpectrumPhy > m_downlinkSpectrumPhy
The downlink LteSpectrumPhy associated to this LtePhy.
Definition: lte-phy.h:230
void SetMacPdu(Ptr< Packet > p)
Definition: lte-phy.cc:186
std::list< Ptr< LteControlMessage > > GetControlMessages()
Definition: lte-phy.cc:218
uint16_t GetSrsSubframeOffset(uint16_t srcCi) const
Definition: lte-phy.cc:162
Ptr< LteNetDevice > m_netDevice
Pointer to the NetDevice where this PHY layer is attached.
Definition: lte-phy.h:224
uint16_t m_cellId
Cell identifier.
Definition: lte-phy.h:300
void SetControlMessages(Ptr< LteControlMessage > m)
Definition: lte-phy.cc:210
uint32_t m_dlEarfcn
The downlink carrier frequency.
Definition: lte-phy.h:273
Ptr< LteSpectrumPhy > m_uplinkSpectrumPhy
The uplink LteSpectrumPhy associated to this LtePhy.
Definition: lte-phy.h:235
double GetTti() const
Definition: lte-phy.cc:137
std::vector< std::list< Ptr< LteControlMessage > > > m_controlMessagesQueue
A queue of control messages to be sent.
Definition: lte-phy.h:283
uint8_t m_rbgSize
The RB group size according to the bandwidth.
Definition: lte-phy.h:268
uint8_t m_macChTtiDelay
Delay between MAC and channel layer in terms of TTIs.
Definition: lte-phy.h:293
static Ptr< SpectrumValue > CreateNoisePowerSpectralDensity(uint32_t earfcn, uint16_t bandwidth, double noiseFigure)
create a SpectrumValue that models the power spectral density of AWGN
static Ptr< SpectrumValue > CreateTxPowerSpectralDensity(uint32_t earfcn, uint16_t bandwidth, double powerTx, std::vector< int > activeRbs)
create a spectrum value representing the power spectral density of a signal to be transmitted.
virtual void DoInitialize()
Initialize() implementation.
Definition: object.cc:451
AttributeValue implementation for Pointer.
Definition: pointer.h:48
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:571
static void ScheduleWithContext(uint32_t context, const Time &delay, FUNC f, Ts &&... args)
Schedule an event with the given context.
Definition: simulator.h:588
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
static EventId ScheduleNow(FUNC f, Ts &&... args)
Schedule an event to expire Now.
Definition: simulator.h:605
Set of values corresponding to a given SpectrumModel.
Values::const_iterator ConstValuesBegin() const
Values::const_iterator ConstValuesEnd() const
Define the RNTI that has generated the.
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
int64_t GetMilliSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:408
@ S
second
Definition: nstime.h:116
a unique identifier for an interface.
Definition: type-id.h:59
@ ATTR_GET
The attribute can be read.
Definition: type-id.h:64
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:932
Hold an unsigned integer type.
Definition: uinteger.h:45
The Uplink Data Control Indicator messages defines the RB allocation for the users in the uplink.
void SetDci(UlDciListElement_s dci)
add a DCI into the message
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeDoubleAccessor(T1 a1)
Definition: double.h:43
Ptr< const AttributeAccessor > MakePointerAccessor(T1 a1)
Definition: pointer.h:259
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
Time NanoSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1355
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1319
Time MilliSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1331
Ptr< const TraceSourceAccessor > MakeTraceSourceAccessor(T a)
Create a TraceSourceAccessor which will control access to the underlying trace source.
#define UL_PUSCH_TTIS_DELAY
Definition: lte-common.h:28
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
static const Time DL_CTRL_DELAY_FROM_SUBFRAME_START
Delay from the start of a DL subframe to transmission of the data portion.
Definition: lte-enb-phy.cc:63
static const Time DL_DATA_DURATION
Duration of the data portion of a DL subframe.
Definition: lte-enb-phy.cc:56
static const int Type0AllocationRbg[4]
Type 0 RBG allocation.
See section 4.3.24 cqiListElement.
uint16_t m_rnti
RNTI.
See section 4.3.23 dlInfoListElement.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::vector< VendorSpecificListElement_s > m_vendorSpecificList
vendor specific list
MasterInformationBlock structure.
Definition: lte-rrc-sap.h:622
uint16_t systemFrameNumber
system frame number
Definition: lte-rrc-sap.h:624
SystemInformationBlockType1 structure.
Definition: lte-rrc-sap.h:629
See section 4.3.14 macCEListElement.
PhyTransmissionStatParameters structure.
Definition: lte-common.h:188
std::vector< uint16_t > m_sinr
SINR.
See section 4.3.2 ulDciListElement.
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request.
Substitutive structure for specifying BuildRarListElement_s::m_grant field.
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
See section 4.3.12 ulInfoListElement.
See section 4.3.3 vendorSpecificListElement.
Ptr< VendorSpecificValue > m_value
value