A Discrete-Event Network Simulator
API
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
tdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/tdmt-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <set>
32 #include <cfloat>
33 
34 NS_LOG_COMPONENT_DEFINE ("TdMtFfMacScheduler");
35 
36 namespace ns3 {
37 
39  10, // RGB size 1
40  26, // RGB size 2
41  63, // RGB size 3
42  110 // RGB size 4
43 }; // see table 7.1.6.1-1 of 36.213
44 
45 
46 NS_OBJECT_ENSURE_REGISTERED (TdMtFfMacScheduler)
47  ;
48 
49 
50 
52 {
53 public:
55 
56  // inherited from FfMacCschedSapProvider
57  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
58  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
59  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
60  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
61  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
62 
63 private:
66 };
67 
69 {
70 }
71 
73 {
74 }
75 
76 
77 void
79 {
81 }
82 
83 void
85 {
87 }
88 
89 
90 void
92 {
94 }
95 
96 void
98 {
100 }
101 
102 void
104 {
106 }
107 
108 
109 
110 
112 {
113 public:
115 
116  // inherited from FfMacSchedSapProvider
117  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
118  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
119  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
120  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
121  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
122  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
123  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
124  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
125  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
126  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
127  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
128 
129 
130 private:
133 };
134 
135 
136 
138 {
139 }
140 
141 
143  : m_scheduler (scheduler)
144 {
145 }
146 
147 void
149 {
151 }
152 
153 void
155 {
157 }
158 
159 void
161 {
163 }
164 
165 void
167 {
169 }
170 
171 void
173 {
175 }
176 
177 void
179 {
181 }
182 
183 void
185 {
187 }
188 
189 void
191 {
193 }
194 
195 void
197 {
199 }
200 
201 void
203 {
205 }
206 
207 void
209 {
211 }
212 
213 
214 
215 
216 
218  : m_cschedSapUser (0),
219  m_schedSapUser (0),
220  m_nextRntiUl (0)
221 {
222  m_amc = CreateObject <LteAmc> ();
225 }
226 
228 {
229  NS_LOG_FUNCTION (this);
230 }
231 
232 void
234 {
235  NS_LOG_FUNCTION (this);
237  m_dlHarqProcessesTimer.clear ();
239  m_dlInfoListBuffered.clear ();
240  m_ulHarqCurrentProcessId.clear ();
241  m_ulHarqProcessesStatus.clear ();
243  delete m_cschedSapProvider;
244  delete m_schedSapProvider;
245 }
246 
247 TypeId
249 {
250  static TypeId tid = TypeId ("ns3::TdMtFfMacScheduler")
252  .AddConstructor<TdMtFfMacScheduler> ()
253  .AddAttribute ("CqiTimerThreshold",
254  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
255  UintegerValue (1000),
256  MakeUintegerAccessor (&TdMtFfMacScheduler::m_cqiTimersThreshold),
257  MakeUintegerChecker<uint32_t> ())
258  .AddAttribute ("HarqEnabled",
259  "Activate/Deactivate the HARQ [by default is active].",
260  BooleanValue (true),
261  MakeBooleanAccessor (&TdMtFfMacScheduler::m_harqOn),
262  MakeBooleanChecker ())
263  .AddAttribute ("UlGrantMcs",
264  "The MCS of the UL grant, must be [0..15] (default 0)",
265  UintegerValue (0),
266  MakeUintegerAccessor (&TdMtFfMacScheduler::m_ulGrantMcs),
267  MakeUintegerChecker<uint8_t> ())
268  ;
269  return tid;
270 }
271 
272 
273 
274 void
276 {
277  m_cschedSapUser = s;
278 }
279 
280 void
282 {
283  m_schedSapUser = s;
284 }
285 
288 {
289  return m_cschedSapProvider;
290 }
291 
294 {
295  return m_schedSapProvider;
296 }
297 
298 void
300 {
301  NS_LOG_FUNCTION (this);
302  // Read the subset of parameters used
303  m_cschedCellConfig = params;
306  cnf.m_result = SUCCESS;
308  return;
309 }
310 
311 void
313 {
314  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
315  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
316  if (it == m_uesTxMode.end ())
317  {
318  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
319  // generate HARQ buffers
320  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
321  DlHarqProcessesStatus_t dlHarqPrcStatus;
322  dlHarqPrcStatus.resize (8,0);
323  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
324  DlHarqProcessesTimer_t dlHarqProcessesTimer;
325  dlHarqProcessesTimer.resize (8,0);
326  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
327  DlHarqProcessesDciBuffer_t dlHarqdci;
328  dlHarqdci.resize (8);
329  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
330  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
331  dlHarqRlcPdu.resize (2);
332  dlHarqRlcPdu.at (0).resize (8);
333  dlHarqRlcPdu.at (1).resize (8);
334  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
335  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
336  UlHarqProcessesStatus_t ulHarqPrcStatus;
337  ulHarqPrcStatus.resize (8,0);
338  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
339  UlHarqProcessesDciBuffer_t ulHarqdci;
340  ulHarqdci.resize (8);
341  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
342  }
343  else
344  {
345  (*it).second = params.m_transmissionMode;
346  }
347  return;
348 }
349 
350 void
352 {
353  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
354 
355  std::set <uint16_t>::iterator it;
356  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
357  {
358  it = m_flowStatsDl.find (params.m_rnti);
359 
360  if (it == m_flowStatsDl.end ())
361  {
362  m_flowStatsDl.insert (params.m_rnti);
363  m_flowStatsUl.insert (params.m_rnti);
364  }
365  }
366 
367  return;
368 }
369 
370 void
372 {
373  NS_LOG_FUNCTION (this);
374  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
375  {
376  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
377  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
378  while (it!=m_rlcBufferReq.end ())
379  {
380  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
381  {
382  temp = it;
383  it++;
384  m_rlcBufferReq.erase (temp);
385  }
386  else
387  {
388  it++;
389  }
390  }
391  }
392  return;
393 }
394 
395 void
397 {
398  NS_LOG_FUNCTION (this);
399 
400  m_uesTxMode.erase (params.m_rnti);
401  m_dlHarqCurrentProcessId.erase (params.m_rnti);
402  m_dlHarqProcessesStatus.erase (params.m_rnti);
403  m_dlHarqProcessesTimer.erase (params.m_rnti);
404  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
406  m_ulHarqCurrentProcessId.erase (params.m_rnti);
407  m_ulHarqProcessesStatus.erase (params.m_rnti);
408  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
409  m_flowStatsDl.erase (params.m_rnti);
410  m_flowStatsUl.erase (params.m_rnti);
411  m_ceBsrRxed.erase (params.m_rnti);
412  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
413  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
414  while (it!=m_rlcBufferReq.end ())
415  {
416  if ((*it).first.m_rnti == params.m_rnti)
417  {
418  temp = it;
419  it++;
420  m_rlcBufferReq.erase (temp);
421  }
422  else
423  {
424  it++;
425  }
426  }
427  if (m_nextRntiUl == params.m_rnti)
428  {
429  m_nextRntiUl = 0;
430  }
431 
432  return;
433 }
434 
435 
436 void
438 {
439  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
440  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
441 
442  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
443 
444  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
445 
446  it = m_rlcBufferReq.find (flow);
447 
448  if (it == m_rlcBufferReq.end ())
449  {
450  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
451  }
452  else
453  {
454  (*it).second = params;
455  }
456 
457  return;
458 }
459 
460 void
462 {
463  NS_LOG_FUNCTION (this);
464  NS_FATAL_ERROR ("method not implemented");
465  return;
466 }
467 
468 void
470 {
471  NS_LOG_FUNCTION (this);
472  NS_FATAL_ERROR ("method not implemented");
473  return;
474 }
475 
476 int
478 {
479  for (int i = 0; i < 4; i++)
480  {
481  if (dlbandwidth < TdMtType0AllocationRbg[i])
482  {
483  return (i + 1);
484  }
485  }
486 
487  return (-1);
488 }
489 
490 
491 int
493 {
494  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
495  int lcActive = 0;
496  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
497  {
498  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
499  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
500  || ((*it).second.m_rlcStatusPduSize > 0) ))
501  {
502  lcActive++;
503  }
504  if ((*it).first.m_rnti > rnti)
505  {
506  break;
507  }
508  }
509  return (lcActive);
510 
511 }
512 
513 
514 uint8_t
516 {
517  NS_LOG_FUNCTION (this << rnti);
518 
519  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
520  if (it == m_dlHarqCurrentProcessId.end ())
521  {
522  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
523  }
524  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
525  if (itStat == m_dlHarqProcessesStatus.end ())
526  {
527  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
528  }
529  uint8_t i = (*it).second;
530  do
531  {
532  i = (i + 1) % HARQ_PROC_NUM;
533  }
534  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
535  if ((*itStat).second.at (i) == 0)
536  {
537  return (true);
538  }
539  else
540  {
541  return (false); // return a not valid harq proc id
542  }
543 }
544 
545 
546 
547 uint8_t
549 {
550  NS_LOG_FUNCTION (this << rnti);
551 
552  if (m_harqOn == false)
553  {
554  return (0);
555  }
556 
557 
558  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
559  if (it == m_dlHarqCurrentProcessId.end ())
560  {
561  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
562  }
563  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
564  if (itStat == m_dlHarqProcessesStatus.end ())
565  {
566  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
567  }
568  uint8_t i = (*it).second;
569  do
570  {
571  i = (i + 1) % HARQ_PROC_NUM;
572  }
573  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
574  if ((*itStat).second.at (i) == 0)
575  {
576  (*it).second = i;
577  (*itStat).second.at (i) = 1;
578  }
579  else
580  {
581  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
582  }
583 
584  return ((*it).second);
585 }
586 
587 
588 void
590 {
591  NS_LOG_FUNCTION (this);
592 
593  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
594  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
595  {
596  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
597  {
598  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
599  {
600  // reset HARQ process
601 
602  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
603  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
604  if (itStat == m_dlHarqProcessesStatus.end ())
605  {
606  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
607  }
608  (*itStat).second.at (i) = 0;
609  (*itTimers).second.at (i) = 0;
610  }
611  else
612  {
613  (*itTimers).second.at (i)++;
614  }
615  }
616  }
617 
618 }
619 
620 
621 void
623 {
624  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
625  // API generated by RLC for triggering the scheduling of a DL subframe
626 
627 
628  // evaluate the relative channel quality indicator for each UE per each RBG
629  // (since we are using allocation type 0 the small unit of allocation is RBG)
630  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
631 
632  RefreshDlCqiMaps ();
633 
635  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
636  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
637  std::vector <bool> rbgMap; // global RBGs map
638  uint16_t rbgAllocatedNum = 0;
639  std::set <uint16_t> rntiAllocated;
640  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
642 
643  // update UL HARQ proc id
644  std::map <uint16_t, uint8_t>::iterator itProcId;
645  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
646  {
647  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
648  }
649 
650  // RACH Allocation
652  uint16_t rbStart = 0;
653  std::vector <struct RachListElement_s>::iterator itRach;
654  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
655  {
656  NS_ASSERT_MSG (m_amc->GetTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
657  BuildRarListElement_s newRar;
658  newRar.m_rnti = (*itRach).m_rnti;
659  // DL-RACH Allocation
660  // Ideal: no needs of configuring m_dci
661  // UL-RACH Allocation
662  newRar.m_grant.m_rnti = newRar.m_rnti;
663  newRar.m_grant.m_mcs = m_ulGrantMcs;
664  uint16_t rbLen = 1;
665  uint16_t tbSizeBits = 0;
666  // find lowest TB size that fits UL grant estimated size
667  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
668  {
669  rbLen++;
670  tbSizeBits = m_amc->GetTbSizeFromMcs (m_ulGrantMcs, rbLen);
671  }
672  if (tbSizeBits < (*itRach).m_estimatedSize)
673  {
674  // no more allocation space: finish allocation
675  break;
676  }
677  newRar.m_grant.m_rbStart = rbStart;
678  newRar.m_grant.m_rbLen = rbLen;
679  newRar.m_grant.m_tbSize = tbSizeBits / 8;
680  newRar.m_grant.m_hopping = false;
681  newRar.m_grant.m_tpc = 0;
682  newRar.m_grant.m_cqiRequest = false;
683  newRar.m_grant.m_ulDelay = false;
684  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
685  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
686  {
687  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
688  }
689  rbStart = rbStart + rbLen;
690 
691  if (m_harqOn == true)
692  {
693  // generate UL-DCI for HARQ retransmissions
694  UlDciListElement_s uldci;
695  uldci.m_rnti = newRar.m_rnti;
696  uldci.m_rbLen = rbLen;
697  uldci.m_rbStart = rbStart;
698  uldci.m_mcs = m_ulGrantMcs;
699  uldci.m_tbSize = tbSizeBits / 8;
700  uldci.m_ndi = 1;
701  uldci.m_cceIndex = 0;
702  uldci.m_aggrLevel = 1;
703  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
704  uldci.m_hopping = false;
705  uldci.m_n2Dmrs = 0;
706  uldci.m_tpc = 0; // no power control
707  uldci.m_cqiRequest = false; // only period CQI at this stage
708  uldci.m_ulIndex = 0; // TDD parameter
709  uldci.m_dai = 1; // TDD parameter
710  uldci.m_freqHopping = 0;
711  uldci.m_pdcchPowerOffset = 0; // not used
712 
713  uint8_t harqId = 0;
714  std::map <uint16_t, uint8_t>::iterator itProcId;
715  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
716  if (itProcId == m_ulHarqCurrentProcessId.end ())
717  {
718  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
719  }
720  harqId = (*itProcId).second;
721  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
722  if (itDci == m_ulHarqProcessesDciBuffer.end ())
723  {
724  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
725  }
726  (*itDci).second.at (harqId) = uldci;
727  }
728 
729  ret.m_buildRarList.push_back (newRar);
730  }
731  m_rachList.clear ();
732 
733 
734  // Process DL HARQ feedback
736  // retrieve past HARQ retx buffered
737  if (m_dlInfoListBuffered.size () > 0)
738  {
739  if (params.m_dlInfoList.size () > 0)
740  {
741  NS_LOG_INFO (this << " Received DL-HARQ feedback");
742  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
743  }
744  }
745  else
746  {
747  if (params.m_dlInfoList.size () > 0)
748  {
750  }
751  }
752  if (m_harqOn == false)
753  {
754  // Ignore HARQ feedback
755  m_dlInfoListBuffered.clear ();
756  }
757  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
758  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
759  {
760  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
761  if (itRnti != rntiAllocated.end ())
762  {
763  // RNTI already allocated for retx
764  continue;
765  }
766  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
767  std::vector <bool> retx;
768  NS_LOG_INFO (this << " Processing DLHARQ feedback");
769  if (nLayers == 1)
770  {
771  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
772  retx.push_back (false);
773  }
774  else
775  {
776  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
777  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
778  }
779  if (retx.at (0) || retx.at (1))
780  {
781  // retrieve HARQ process information
782  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
783  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
784  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
785  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
786  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
787  {
788  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
789  }
790 
791  DlDciListElement_s dci = (*itHarq).second.at (harqId);
792  int rv = 0;
793  if (dci.m_rv.size () == 1)
794  {
795  rv = dci.m_rv.at (0);
796  }
797  else
798  {
799  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
800  }
801 
802  if (rv == 3)
803  {
804  // maximum number of retx reached -> drop process
805  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
806  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
807  if (it == m_dlHarqProcessesStatus.end ())
808  {
809  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
810  }
811  (*it).second.at (harqId) = 0;
812  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
813  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
814  {
815  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
816  }
817  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
818  {
819  (*itRlcPdu).second.at (k).at (harqId).clear ();
820  }
821  continue;
822  }
823  // check the feasibility of retransmitting on the same RBGs
824  // translate the DCI to Spectrum framework
825  std::vector <int> dciRbg;
826  uint32_t mask = 0x1;
827  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
828  for (int j = 0; j < 32; j++)
829  {
830  if (((dci.m_rbBitmap & mask) >> j) == 1)
831  {
832  dciRbg.push_back (j);
833  NS_LOG_INFO ("\t" << j);
834  }
835  mask = (mask << 1);
836  }
837  bool free = true;
838  for (uint8_t j = 0; j < dciRbg.size (); j++)
839  {
840  if (rbgMap.at (dciRbg.at (j)) == true)
841  {
842  free = false;
843  break;
844  }
845  }
846  if (free)
847  {
848  // use the same RBGs for the retx
849  // reserve RBGs
850  for (uint8_t j = 0; j < dciRbg.size (); j++)
851  {
852  rbgMap.at (dciRbg.at (j)) = true;
853  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
854  rbgAllocatedNum++;
855  }
856 
857  NS_LOG_INFO (this << " Send retx in the same RBGs");
858  }
859  else
860  {
861  // find RBGs for sending HARQ retx
862  uint8_t j = 0;
863  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
864  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
865  std::vector <bool> rbgMapCopy = rbgMap;
866  while ((j < dciRbg.size ())&&(startRbg != rbgId))
867  {
868  if (rbgMapCopy.at (rbgId) == false)
869  {
870  rbgMapCopy.at (rbgId) = true;
871  dciRbg.at (j) = rbgId;
872  j++;
873  }
874  rbgId++;
875  }
876  if (j == dciRbg.size ())
877  {
878  // find new RBGs -> update DCI map
879  uint32_t rbgMask = 0;
880  for (uint16_t k = 0; k < dciRbg.size (); k++)
881  {
882  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
883  rbgAllocatedNum++;
884  }
885  dci.m_rbBitmap = rbgMask;
886  rbgMap = rbgMapCopy;
887  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
888  }
889  else
890  {
891  // HARQ retx cannot be performed on this TTI -> store it
892  dlInfoListUntxed.push_back (params.m_dlInfoList.at (i));
893  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
894  }
895  }
896  // retrieve RLC PDU list for retx TBsize and update DCI
898  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
899  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
900  {
901  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
902  }
903  for (uint8_t j = 0; j < nLayers; j++)
904  {
905  if (retx.at (j))
906  {
907  if (j >= dci.m_ndi.size ())
908  {
909  // for avoiding errors in MIMO transient phases
910  dci.m_ndi.push_back (0);
911  dci.m_rv.push_back (0);
912  dci.m_mcs.push_back (0);
913  dci.m_tbsSize.push_back (0);
914  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
915  }
916  else
917  {
918  dci.m_ndi.at (j) = 0;
919  dci.m_rv.at (j)++;
920  (*itHarq).second.at (harqId).m_rv.at (j)++;
921  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
922  }
923  }
924  else
925  {
926  // empty TB of layer j
927  dci.m_ndi.at (j) = 0;
928  dci.m_rv.at (j) = 0;
929  dci.m_mcs.at (j) = 0;
930  dci.m_tbsSize.at (j) = 0;
931  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
932  }
933  }
934  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
935  {
936  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
937  for (uint8_t j = 0; j < nLayers; j++)
938  {
939  if (retx.at (j))
940  {
941  if (j < dci.m_ndi.size ())
942  {
943  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
944  }
945  }
946  }
947 
948  if (rlcPduListPerLc.size () > 0)
949  {
950  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
951  }
952  }
953  newEl.m_rnti = rnti;
954  newEl.m_dci = dci;
955  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
956  // refresh timer
957  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
958  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
959  {
960  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
961  }
962  (*itHarqTimer).second.at (harqId) = 0;
963  ret.m_buildDataList.push_back (newEl);
964  rntiAllocated.insert (rnti);
965  }
966  else
967  {
968  // update HARQ process status
969  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
970  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
971  if (it == m_dlHarqProcessesStatus.end ())
972  {
973  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
974  }
975  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
976  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
977  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
978  {
979  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
980  }
981  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
982  {
983  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
984  }
985  }
986  }
987  m_dlInfoListBuffered.clear ();
988  m_dlInfoListBuffered = dlInfoListUntxed;
989 
990  if (rbgAllocatedNum == rbgNum)
991  {
992  // all the RBGs are already allocated -> exit
993  if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
994  {
996  }
997  return;
998  }
999 
1000 
1001  std::set <uint16_t>::iterator it;
1002  std::set <uint16_t>::iterator itMax = m_flowStatsDl.end ();
1003  double metricMax = 0.0;
1004  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
1005  {
1006  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it));
1007  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it))))
1008  {
1009  // UE already allocated for HARQ or without HARQ process available -> drop it
1010  if (itRnti != rntiAllocated.end ())
1011  {
1012  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it));
1013  }
1014  if (!HarqProcessAvailability ((*it)))
1015  {
1016  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it));
1017  }
1018 
1019  continue;
1020  }
1021 
1022  std::map <uint16_t,uint8_t>::iterator itTxMode;
1023  itTxMode = m_uesTxMode.find ((*it));
1024  if (itTxMode == m_uesTxMode.end ())
1025  {
1026  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it));
1027  }
1028  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1029  std::map <uint16_t,uint8_t>::iterator itCqi = m_p10CqiRxed.find ((*it));
1030  uint8_t wbCqi = 0;
1031  if (itCqi != m_p10CqiRxed.end ())
1032  {
1033  wbCqi = (*itCqi).second;
1034  }
1035  else
1036  {
1037  wbCqi = 1; // lowest value fro trying a transmission
1038  }
1039 
1040  if (wbCqi != 0)
1041  {
1042  // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1043  if (LcActivePerFlow (*it) > 0)
1044  {
1045  // this UE has data to transmit
1046  double achievableRate = 0.0;
1047  for (uint8_t k = 0; k < nLayer; k++)
1048  {
1049  uint8_t mcs = 0;
1050  mcs = m_amc->GetMcsFromCqi (wbCqi);
1051  achievableRate += ((m_amc->GetTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
1052 
1053  NS_LOG_DEBUG (this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate );
1054  }
1055 
1056  double metric = achievableRate;
1057 
1058  if (metric > metricMax)
1059  {
1060  metricMax = metric;
1061  itMax = it;
1062  }
1063  } // LcActivePerFlow
1064 
1065  } // cqi
1066 
1067  } // end for m_flowStatsDl
1068 
1069  if (itMax == m_flowStatsDl.end ())
1070  {
1071  // no UE available for downlink
1072  NS_LOG_INFO (this << " any UE found");
1073  }
1074  else
1075  {
1076  // assign all free RBGs to this UE
1077  std::vector <uint16_t> tempMap;
1078  for (int i = 0; i < rbgNum; i++)
1079  {
1080  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1081  NS_LOG_DEBUG (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1082  if (rbgMap.at (i) == false)
1083  {
1084  rbgMap.at (i) = true;
1085  tempMap.push_back (i);
1086  } // end for RBG free
1087 
1088  } // end for RBGs
1089 
1090  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax), tempMap));
1091  }
1092 
1093  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1094  // creating the correspondent DCIs
1095  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1096  while (itMap != allocationMap.end ())
1097  {
1098  // create new BuildDataListElement_s for this LC
1099  BuildDataListElement_s newEl;
1100  newEl.m_rnti = (*itMap).first;
1101  // create the DlDciListElement_s
1102  DlDciListElement_s newDci;
1103  newDci.m_rnti = (*itMap).first;
1104  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1105 
1106  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1107  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1108  if (lcActives == 0)
1109  {
1110  // Set to max value, to avoid divide by 0 below
1111  lcActives = (uint16_t)65535; // UINT16_MAX;
1112  }
1113  uint16_t RgbPerRnti = (*itMap).second.size ();
1114  std::map <uint16_t,uint8_t>::iterator itCqi;
1115  itCqi = m_p10CqiRxed.find ((*itMap).first);
1116  std::map <uint16_t,uint8_t>::iterator itTxMode;
1117  itTxMode = m_uesTxMode.find ((*itMap).first);
1118  if (itTxMode == m_uesTxMode.end ())
1119  {
1120  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1121  }
1122  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1123  for (uint8_t j = 0; j < nLayer; j++)
1124  {
1125  if (itCqi == m_p10CqiRxed.end ())
1126  {
1127  newDci.m_mcs.push_back (0); // no info on this user -> lowest MCS
1128  }
1129  else
1130  {
1131  newDci.m_mcs.push_back ( m_amc->GetMcsFromCqi ((*itCqi).second) );
1132  }
1133 
1134  int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1135  newDci.m_tbsSize.push_back (tbSize);
1136  }
1137 
1138  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1139  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1140  uint32_t rbgMask = 0;
1141  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1142  {
1143  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1144  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1145  }
1146  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1147 
1148  // create the rlc PDUs -> equally divide resources among actives LCs
1149  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1150  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1151  {
1152  if (((*itBufReq).first.m_rnti == (*itMap).first)
1153  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1154  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1155  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1156  {
1157  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1158  for (uint8_t j = 0; j < nLayer; j++)
1159  {
1160  RlcPduListElement_s newRlcEl;
1161  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1162  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1163  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1164  newRlcPduLe.push_back (newRlcEl);
1165  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1166  if (m_harqOn == true)
1167  {
1168  // store RLC PDU list for HARQ
1169  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1170  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1171  {
1172  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1173  }
1174  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1175  }
1176  }
1177  newEl.m_rlcPduList.push_back (newRlcPduLe);
1178  }
1179  if ((*itBufReq).first.m_rnti > (*itMap).first)
1180  {
1181  break;
1182  }
1183  }
1184  for (uint8_t j = 0; j < nLayer; j++)
1185  {
1186  newDci.m_ndi.push_back (1);
1187  newDci.m_rv.push_back (0);
1188  }
1189 
1190  newEl.m_dci = newDci;
1191 
1192  if (m_harqOn == true)
1193  {
1194  // store DCI for HARQ
1195  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1196  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1197  {
1198  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1199  }
1200  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1201  // refresh timer
1202  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1203  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1204  {
1205  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1206  }
1207  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1208  }
1209 
1210  // ...more parameters -> ingored in this version
1211 
1212  ret.m_buildDataList.push_back (newEl);
1213 
1214  itMap++;
1215  } // end while allocation
1216  ret.m_nrOfPdcchOfdmSymbols = 1;
1217 
1219 
1220 
1221  return;
1222 }
1223 
1224 void
1226 {
1227  NS_LOG_FUNCTION (this);
1228 
1229  m_rachList = params.m_rachList;
1230 
1231  return;
1232 }
1233 
1234 void
1236 {
1237  NS_LOG_FUNCTION (this);
1238 
1239  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1240  {
1241  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1242  {
1243  // wideband CQI reporting
1244  std::map <uint16_t,uint8_t>::iterator it;
1245  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1246  it = m_p10CqiRxed.find (rnti);
1247  if (it == m_p10CqiRxed.end ())
1248  {
1249  // create the new entry
1250  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1251  // generate correspondent timer
1252  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1253  }
1254  else
1255  {
1256  // update the CQI value and refresh correspondent timer
1257  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1258  // update correspondent timer
1259  std::map <uint16_t,uint32_t>::iterator itTimers;
1260  itTimers = m_p10CqiTimers.find (rnti);
1261  (*itTimers).second = m_cqiTimersThreshold;
1262  }
1263  }
1264  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1265  {
1266  // subband CQI reporting high layer configured
1267  std::map <uint16_t,SbMeasResult_s>::iterator it;
1268  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1269  it = m_a30CqiRxed.find (rnti);
1270  if (it == m_a30CqiRxed.end ())
1271  {
1272  // create the new entry
1273  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1274  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1275  }
1276  else
1277  {
1278  // update the CQI value and refresh correspondent timer
1279  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1280  std::map <uint16_t,uint32_t>::iterator itTimers;
1281  itTimers = m_a30CqiTimers.find (rnti);
1282  (*itTimers).second = m_cqiTimersThreshold;
1283  }
1284  }
1285  else
1286  {
1287  NS_LOG_ERROR (this << " CQI type unknown");
1288  }
1289  }
1290 
1291  return;
1292 }
1293 
1294 
1295 double
1296 TdMtFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1297 {
1298  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1299  if (itCqi == m_ueCqi.end ())
1300  {
1301  // no cqi info about this UE
1302  return (NO_SINR);
1303 
1304  }
1305  else
1306  {
1307  // take the average SINR value among the available
1308  double sinrSum = 0;
1309  int sinrNum = 0;
1310  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1311  {
1312  double sinr = (*itCqi).second.at (i);
1313  if (sinr != NO_SINR)
1314  {
1315  sinrSum += sinr;
1316  sinrNum++;
1317  }
1318  }
1319  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1320  // store the value
1321  (*itCqi).second.at (rb) = estimatedSinr;
1322  return (estimatedSinr);
1323  }
1324 }
1325 
1326 void
1328 {
1329  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1330 
1331  RefreshUlCqiMaps ();
1332 
1333  // Generate RBs map
1335  std::vector <bool> rbMap;
1336  uint16_t rbAllocatedNum = 0;
1337  std::set <uint16_t> rntiAllocated;
1338  std::vector <uint16_t> rbgAllocationMap;
1339  // update with RACH allocation map
1340  rbgAllocationMap = m_rachAllocationMap;
1341  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1342  m_rachAllocationMap.clear ();
1344 
1345  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1346  // remove RACH allocation
1347  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1348  {
1349  if (rbgAllocationMap.at (i) != 0)
1350  {
1351  rbMap.at (i) = true;
1352  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1353  }
1354  }
1355 
1356 
1357  if (m_harqOn == true)
1358  {
1359  // Process UL HARQ feedback
1360  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1361  {
1362  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1363  {
1364  // retx correspondent block: retrieve the UL-DCI
1365  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1366  std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1367  if (itProcId == m_ulHarqCurrentProcessId.end ())
1368  {
1369  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1370  }
1371  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1372  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1373  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1374  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1375  {
1376  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1377  continue;
1378  }
1379  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1380  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1381  if (itStat == m_ulHarqProcessesStatus.end ())
1382  {
1383  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1384  }
1385  if ((*itStat).second.at (harqId) >= 3)
1386  {
1387  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1388  continue;
1389  }
1390  bool free = true;
1391  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1392  {
1393  if (rbMap.at (j) == true)
1394  {
1395  free = false;
1396  NS_LOG_INFO (this << " BUSY " << j);
1397  }
1398  }
1399  if (free)
1400  {
1401  // retx on the same RBs
1402  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1403  {
1404  rbMap.at (j) = true;
1405  rbgAllocationMap.at (j) = dci.m_rnti;
1406  NS_LOG_INFO ("\tRB " << j);
1407  rbAllocatedNum++;
1408  }
1409  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1410  }
1411  else
1412  {
1413  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1414  continue;
1415  }
1416  dci.m_ndi = 0;
1417  // Update HARQ buffers with new HarqId
1418  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1419  (*itStat).second.at (harqId) = 0;
1420  (*itHarq).second.at ((*itProcId).second) = dci;
1421  ret.m_dciList.push_back (dci);
1422  rntiAllocated.insert (dci.m_rnti);
1423  }
1424  else
1425  {
1426  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1427  }
1428  }
1429  }
1430 
1431  std::map <uint16_t,uint32_t>::iterator it;
1432  int nflows = 0;
1433 
1434  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1435  {
1436  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1437  // select UEs with queues not empty and not yet allocated for HARQ
1438  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1439  {
1440  nflows++;
1441  }
1442  }
1443 
1444  if (nflows == 0)
1445  {
1446  if (ret.m_dciList.size () > 0)
1447  {
1449  }
1450 
1451  return; // no flows to be scheduled
1452  }
1453 
1454 
1455  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1456  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1457  if (rbPerFlow < 3)
1458  {
1459  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1460  }
1461  int rbAllocated = 0;
1462 
1463  if (m_nextRntiUl != 0)
1464  {
1465  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1466  {
1467  if ((*it).first == m_nextRntiUl)
1468  {
1469  break;
1470  }
1471  }
1472  if (it == m_ceBsrRxed.end ())
1473  {
1474  NS_LOG_ERROR (this << " no user found");
1475  }
1476  }
1477  else
1478  {
1479  it = m_ceBsrRxed.begin ();
1480  m_nextRntiUl = (*it).first;
1481  }
1482  do
1483  {
1484  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1485  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1486  {
1487  // UE already allocated for UL-HARQ -> skip it
1488  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1489  it++;
1490  if (it == m_ceBsrRxed.end ())
1491  {
1492  // restart from the first
1493  it = m_ceBsrRxed.begin ();
1494  }
1495  continue;
1496  }
1497  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1498  {
1499  // limit to physical resources last resource assignment
1500  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1501  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1502  if (rbPerFlow < 3)
1503  {
1504  // terminate allocation
1505  rbPerFlow = 0;
1506  }
1507  }
1508 
1509  UlDciListElement_s uldci;
1510  uldci.m_rnti = (*it).first;
1511  uldci.m_rbLen = rbPerFlow;
1512  bool allocated = false;
1513  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1514  while ((!allocated)&&((rbAllocated + rbPerFlow - 1) < m_cschedCellConfig.m_ulBandwidth) && (rbPerFlow != 0))
1515  {
1516  // check availability
1517  bool free = true;
1518  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1519  {
1520  if (rbMap.at (j) == true)
1521  {
1522  free = false;
1523  break;
1524  }
1525  }
1526  if (free)
1527  {
1528  uldci.m_rbStart = rbAllocated;
1529 
1530  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1531  {
1532  rbMap.at (j) = true;
1533  // store info on allocation for managing ul-cqi interpretation
1534  rbgAllocationMap.at (j) = (*it).first;
1535  }
1536  rbAllocated += rbPerFlow;
1537  allocated = true;
1538  break;
1539  }
1540  rbAllocated++;
1541  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1542  {
1543  // limit to physical resources last resource assignment
1544  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1545  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1546  if (rbPerFlow < 3)
1547  {
1548  // terminate allocation
1549  rbPerFlow = 0;
1550  }
1551  }
1552  }
1553  if (!allocated)
1554  {
1555  // unable to allocate new resource: finish scheduling
1556  m_nextRntiUl = (*it).first;
1557  if (ret.m_dciList.size () > 0)
1558  {
1560  }
1561  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1562  return;
1563  }
1564 
1565 
1566 
1567  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1568  int cqi = 0;
1569  if (itCqi == m_ueCqi.end ())
1570  {
1571  // no cqi info about this UE
1572  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1573  }
1574  else
1575  {
1576  // take the lowest CQI value (worst RB)
1577  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1578  if (minSinr == NO_SINR)
1579  {
1580  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1581  }
1582  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1583  {
1584  double sinr = (*itCqi).second.at (i);
1585  if (sinr == NO_SINR)
1586  {
1587  sinr = EstimateUlSinr ((*it).first, i);
1588  }
1589  if ((*itCqi).second.at (i) < minSinr)
1590  {
1591  minSinr = (*itCqi).second.at (i);
1592  }
1593  }
1594 
1595  // translate SINR -> cqi: WILD ACK: same as DL
1596  double s = log2 ( 1 + (
1597  std::pow (10, minSinr / 10 ) /
1598  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1599  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1600  if (cqi == 0)
1601  {
1602  it++;
1603  if (it == m_ceBsrRxed.end ())
1604  {
1605  // restart from the first
1606  it = m_ceBsrRxed.begin ();
1607  }
1608  NS_LOG_DEBUG (this << " UE discared for CQI=0, RNTI " << uldci.m_rnti);
1609  // remove UE from allocation map
1610  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1611  {
1612  rbgAllocationMap.at (i) = 0;
1613  }
1614  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1615  }
1616  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1617  }
1618 
1619  uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1620  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1621  uldci.m_ndi = 1;
1622  uldci.m_cceIndex = 0;
1623  uldci.m_aggrLevel = 1;
1624  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1625  uldci.m_hopping = false;
1626  uldci.m_n2Dmrs = 0;
1627  uldci.m_tpc = 0; // no power control
1628  uldci.m_cqiRequest = false; // only period CQI at this stage
1629  uldci.m_ulIndex = 0; // TDD parameter
1630  uldci.m_dai = 1; // TDD parameter
1631  uldci.m_freqHopping = 0;
1632  uldci.m_pdcchPowerOffset = 0; // not used
1633  ret.m_dciList.push_back (uldci);
1634  // store DCI for HARQ_PERIOD
1635  uint8_t harqId = 0;
1636  if (m_harqOn == true)
1637  {
1638  std::map <uint16_t, uint8_t>::iterator itProcId;
1639  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1640  if (itProcId == m_ulHarqCurrentProcessId.end ())
1641  {
1642  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1643  }
1644  harqId = (*itProcId).second;
1645  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1646  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1647  {
1648  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1649  }
1650  (*itDci).second.at (harqId) = uldci;
1651  }
1652 
1653  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1654 
1655 
1656  it++;
1657  if (it == m_ceBsrRxed.end ())
1658  {
1659  // restart from the first
1660  it = m_ceBsrRxed.begin ();
1661  }
1662  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1663  {
1664  // Stop allocation: no more PRBs
1665  m_nextRntiUl = (*it).first;
1666  break;
1667  }
1668  }
1669  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1670 
1671 
1672  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1674 
1675  return;
1676 }
1677 
1678 void
1680 {
1681  NS_LOG_FUNCTION (this);
1682  return;
1683 }
1684 
1685 void
1687 {
1688  NS_LOG_FUNCTION (this);
1689  return;
1690 }
1691 
1692 void
1694 {
1695  NS_LOG_FUNCTION (this);
1696 
1697  std::map <uint16_t,uint32_t>::iterator it;
1698 
1699  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1700  {
1701  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1702  {
1703  // buffer status report
1704  // note that this scheduler does not differentiate the
1705  // allocation according to which LCGs have more/less bytes
1706  // to send.
1707  // Hence the BSR of different LCGs are just summed up to get
1708  // a total queue size that is used for allocation purposes.
1709 
1710  uint32_t buffer = 0;
1711  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1712  {
1713  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1714  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1715  }
1716 
1717  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1718  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1719  it = m_ceBsrRxed.find (rnti);
1720  if (it == m_ceBsrRxed.end ())
1721  {
1722  // create the new entry
1723  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1724  }
1725  else
1726  {
1727  // update the buffer size value
1728  (*it).second = buffer;
1729  }
1730  }
1731  }
1732 
1733  return;
1734 }
1735 
1736 void
1738 {
1739  NS_LOG_FUNCTION (this);
1740 // retrieve the allocation for this subframe
1741  switch (m_ulCqiFilter)
1742  {
1744  {
1745  // filter all the CQIs that are not SRS based
1746  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1747  {
1748  return;
1749  }
1750  }
1751  break;
1753  {
1754  // filter all the CQIs that are not SRS based
1755  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1756  {
1757  return;
1758  }
1759  }
1761  break;
1762 
1763  default:
1764  NS_FATAL_ERROR ("Unknown UL CQI type");
1765  }
1766 
1767  switch (params.m_ulCqi.m_type)
1768  {
1769  case UlCqi_s::PUSCH:
1770  {
1771  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1772  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1773  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1774  itMap = m_allocationMaps.find (params.m_sfnSf);
1775  if (itMap == m_allocationMaps.end ())
1776  {
1777  return;
1778  }
1779  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1780  {
1781  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1782  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1783  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1784  if (itCqi == m_ueCqi.end ())
1785  {
1786  // create a new entry
1787  std::vector <double> newCqi;
1788  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1789  {
1790  if (i == j)
1791  {
1792  newCqi.push_back (sinr);
1793  }
1794  else
1795  {
1796  // initialize with NO_SINR value.
1797  newCqi.push_back (NO_SINR);
1798  }
1799 
1800  }
1801  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1802  // generate correspondent timer
1803  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1804  }
1805  else
1806  {
1807  // update the value
1808  (*itCqi).second.at (i) = sinr;
1809  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1810  // update correspondent timer
1811  std::map <uint16_t, uint32_t>::iterator itTimers;
1812  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1813  (*itTimers).second = m_cqiTimersThreshold;
1814 
1815  }
1816 
1817  }
1818  // remove obsolete info on allocation
1819  m_allocationMaps.erase (itMap);
1820  }
1821  break;
1822  case UlCqi_s::SRS:
1823  {
1824  // get the RNTI from vendor specific parameters
1825  uint16_t rnti = 0;
1826  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1827  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1828  {
1829  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1830  {
1831  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1832  rnti = vsp->GetRnti ();
1833  }
1834  }
1835  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1836  itCqi = m_ueCqi.find (rnti);
1837  if (itCqi == m_ueCqi.end ())
1838  {
1839  // create a new entry
1840  std::vector <double> newCqi;
1841  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1842  {
1843  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1844  newCqi.push_back (sinr);
1845  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1846 
1847  }
1848  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1849  // generate correspondent timer
1850  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1851  }
1852  else
1853  {
1854  // update the values
1855  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1856  {
1857  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1858  (*itCqi).second.at (j) = sinr;
1859  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1860  }
1861  // update correspondent timer
1862  std::map <uint16_t, uint32_t>::iterator itTimers;
1863  itTimers = m_ueCqiTimers.find (rnti);
1864  (*itTimers).second = m_cqiTimersThreshold;
1865 
1866  }
1867 
1868 
1869  }
1870  break;
1871  case UlCqi_s::PUCCH_1:
1872  case UlCqi_s::PUCCH_2:
1873  case UlCqi_s::PRACH:
1874  {
1875  NS_FATAL_ERROR ("TdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1876  }
1877  break;
1878  default:
1879  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1880  }
1881  return;
1882 }
1883 
1884 void
1886 {
1887  // refresh DL CQI P01 Map
1888  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1889  while (itP10 != m_p10CqiTimers.end ())
1890  {
1891  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1892  if ((*itP10).second == 0)
1893  {
1894  // delete correspondent entries
1895  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1896  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1897  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1898  m_p10CqiRxed.erase (itMap);
1899  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1900  itP10++;
1901  m_p10CqiTimers.erase (temp);
1902  }
1903  else
1904  {
1905  (*itP10).second--;
1906  itP10++;
1907  }
1908  }
1909 
1910  // refresh DL CQI A30 Map
1911  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1912  while (itA30 != m_a30CqiTimers.end ())
1913  {
1914  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1915  if ((*itA30).second == 0)
1916  {
1917  // delete correspondent entries
1918  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1919  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1920  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
1921  m_a30CqiRxed.erase (itMap);
1922  std::map <uint16_t,uint32_t>::iterator temp = itA30;
1923  itA30++;
1924  m_a30CqiTimers.erase (temp);
1925  }
1926  else
1927  {
1928  (*itA30).second--;
1929  itA30++;
1930  }
1931  }
1932 
1933  return;
1934 }
1935 
1936 
1937 void
1939 {
1940  // refresh UL CQI Map
1941  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
1942  while (itUl != m_ueCqiTimers.end ())
1943  {
1944  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1945  if ((*itUl).second == 0)
1946  {
1947  // delete correspondent entries
1948  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
1949  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
1950  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
1951  (*itMap).second.clear ();
1952  m_ueCqi.erase (itMap);
1953  std::map <uint16_t,uint32_t>::iterator temp = itUl;
1954  itUl++;
1955  m_ueCqiTimers.erase (temp);
1956  }
1957  else
1958  {
1959  (*itUl).second--;
1960  itUl++;
1961  }
1962  }
1963 
1964  return;
1965 }
1966 
1967 void
1968 TdMtFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
1969 {
1970  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1971  LteFlowId_t flow (rnti, lcid);
1972  it = m_rlcBufferReq.find (flow);
1973  if (it != m_rlcBufferReq.end ())
1974  {
1975  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1976  // Update queues: RLC tx order Status, ReTx, Tx
1977  // Update status queue
1978  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1979  {
1980  (*it).second.m_rlcStatusPduSize = 0;
1981  }
1982  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
1983  {
1984  (*it).second.m_rlcRetransmissionQueueSize = 0;
1985  }
1986  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1987  {
1988  uint32_t rlcOverhead;
1989  if (lcid == 1)
1990  {
1991  // for SRB1 (using RLC AM) it's better to
1992  // overestimate RLC overhead rather than
1993  // underestimate it and risk unneeded
1994  // segmentation which increases delay
1995  rlcOverhead = 4;
1996  }
1997  else
1998  {
1999  // minimum RLC overhead due to header
2000  rlcOverhead = 2;
2001  }
2002  // update transmission queue
2003  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2004  {
2005  (*it).second.m_rlcTransmissionQueueSize = 0;
2006  }
2007  else
2008  {
2009  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2010  }
2011  }
2012  }
2013  else
2014  {
2015  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2016  }
2017 }
2018 
2019 void
2020 TdMtFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2021 {
2022 
2023  size = size - 2; // remove the minimum RLC overhead
2024  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2025  if (it != m_ceBsrRxed.end ())
2026  {
2027  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2028  if ((*it).second >= size)
2029  {
2030  (*it).second -= size;
2031  }
2032  else
2033  {
2034  (*it).second = 0;
2035  }
2036  }
2037  else
2038  {
2039  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2040  }
2041 
2042 }
2043 
2044 void
2046 {
2047  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2049  params.m_rnti = rnti;
2050  params.m_transmissionMode = txMode;
2052 }
2053 
2054 
2055 }
virtual void SchedDlTriggerReq(const struct SchedDlTriggerReqParameters &params)
std::vector< struct UlInfoListElement_s > m_ulInfoList
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:88
std::set< uint16_t > m_flowStatsDl
virtual void CschedLcConfigReq(const struct CschedLcConfigReqParameters &params)
std::map< uint16_t, uint8_t > m_uesTxMode
smart pointer class similar to boost::intrusive_ptr
Definition: ptr.h:59
#define NS_LOG_FUNCTION(parameters)
Definition: log.h:345
#define HARQ_PERIOD
Definition: lte-common.h:30
Hold a bool native type.
Definition: boolean.h:38
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
std::map< uint16_t, uint32_t > m_ceBsrRxed
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
virtual void SchedUlCqiInfoReq(const struct SchedUlCqiInfoReqParameters &params)
std::map< uint16_t, std::vector< double > > m_ueCqi
enum ns3::UlCqi_s::Type_e m_type
NS_LOG_COMPONENT_DEFINE("TdMtFfMacScheduler")
virtual void CschedCellConfigReq(const struct CschedCellConfigReqParameters &params)
CSCHED_CELL_CONFIG_REQ.
friend class TdMtSchedulerMemberSchedSapProvider
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
std::vector< uint16_t > m_sinr
std::vector< uint8_t > DlHarqProcessesTimer_t
#define NO_SINR
#define NS_ASSERT(condition)
Definition: assert.h:64
NS_OBJECT_ENSURE_REGISTERED(NullMessageSimulatorImpl)
std::vector< uint8_t > m_mcs
Definition: ff-mac-common.h:95
virtual ~TdMtFfMacScheduler()
Destructor.
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
std::vector< struct UlDciListElement_s > m_dciList
std::set< uint16_t > m_flowStatsUl
#define NS_LOG_INFO(msg)
Definition: log.h:298
See section 4.3.10 buildRARListElement.
FfMacCschedSapProvider * m_cschedSapProvider
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
virtual void SchedUlMacCtrlInfoReq(const struct SchedUlMacCtrlInfoReqParameters &params)
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
#define NS_FATAL_ERROR(msg)
fatal error handling
Definition: fatal-error.h:72
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
std::map< uint16_t, uint32_t > m_p10CqiTimers
std::vector< struct RachListElement_s > m_rachList
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
virtual void SchedUlTriggerReq(const struct SchedUlTriggerReqParameters &params)
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
int TdMtType0AllocationRbg[4]
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
bool m_harqOn
m_harqOn when false inhibit te HARQ mechanisms (by default active)
friend class TdMtSchedulerMemberCschedSapProvider
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
virtual void SchedDlRachInfoReq(const struct SchedDlRachInfoReqParameters &params)
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
Hold an unsigned integer type.
Definition: uinteger.h:46
static uint8_t TxMode2LayerNum(uint8_t txMode)
Definition: lte-common.cc:170
Ptr< SampleEmitter > s
std::vector< uint8_t > m_ndi
Definition: ff-mac-common.h:96
Provides the SCHED SAP.
int LcActivePerFlow(uint16_t rnti)
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
virtual void SchedUlNoiseInterferenceReq(const struct SchedUlNoiseInterferenceReqParameters &params)
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
#define NS_LOG_LOGIC(msg)
Definition: log.h:368
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
std::vector< struct DlInfoListElement_s > m_dlInfoList
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
virtual void CschedLcReleaseReq(const struct CschedLcReleaseReqParameters &params)
virtual void SchedUlSrInfoReq(const struct SchedUlSrInfoReqParameters &params)
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
std::vector< uint16_t > m_tbsSize
Definition: ff-mac-common.h:94
See section 4.3.9 rlcPDU_ListElement.
virtual void SchedDlMacBufferReq(const struct SchedDlMacBufferReqParameters &params)
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
virtual void SchedDlRlcBufferReq(const struct SchedDlRlcBufferReqParameters &params)
std::map< uint16_t, uint32_t > m_a30CqiTimers
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
std::vector< uint8_t > m_rv
Definition: ff-mac-common.h:97
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
UlCqiFilter_t m_ulCqiFilter
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
#define SRS_CQI_RNTI_VSP
This abstract base class identifies the interface by means of which the helper object can plug on the...
std::vector< uint16_t > m_rachAllocationMap
#define NS_ASSERT_MSG(condition, message)
Definition: assert.h:86
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
std::vector< struct RachListElement_s > m_rachList
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
static double fpS11dot3toDouble(uint16_t val)
Definition: lte-common.cc:114
#define HARQ_PROC_NUM
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
FfMacCschedSapUser * m_cschedSapUser
std::vector< uint8_t > UlHarqProcessesStatus_t
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
std::vector< uint8_t > DlHarqProcessesStatus_t
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
static uint32_t BsrId2BufferSize(uint8_t val)
Definition: lte-common.cc:142
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
virtual void CschedUeConfigReq(const struct CschedUeConfigReqParameters &params)
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
#define NS_LOG_DEBUG(msg)
Definition: log.h:289
virtual void SchedDlPagingBufferReq(const struct SchedDlPagingBufferReqParameters &params)
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
virtual void CschedUeReleaseReq(const struct CschedUeReleaseReqParameters &params)
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
std::map< uint16_t, uint8_t > m_p10CqiRxed
#define NS_LOG_ERROR(msg)
Definition: log.h:271
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_UL_CONFIG_IND primitive.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
virtual void DoDispose(void)
This method is called by Object::Dispose or by the object's destructor, whichever comes first...
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
FfMacSchedSapProvider * m_schedSapProvider
Implements the SCHED SAP and CSCHED SAP for a Time Domain Maximize Throughput scheduler.
struct DlDciListElement_s m_dci
#define HARQ_DL_TIMEOUT
std::vector< struct BuildRarListElement_s > m_buildRarList
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
a unique identifier for an interface.
Definition: type-id.h:49
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
TypeId SetParent(TypeId tid)
Definition: type-id.cc:611
virtual void SchedDlCqiInfoReq(const struct SchedDlCqiInfoReqParameters &params)
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
int GetRbgSize(int dlbandwidth)
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
FfMacSchedSapUser * m_schedSapUser
std::vector< struct BuildDataListElement_s > m_buildDataList
See section 4.3.8 builDataListElement.
std::map< uint16_t, uint32_t > m_ueCqiTimers