A Discrete-Event Network Simulator
API
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
tdtbfq-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/tdtbfq-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <ns3/integer.h>
32 #include <set>
33 #include <cfloat>
34 
35 NS_LOG_COMPONENT_DEFINE ("TdTbfqFfMacScheduler");
36 
37 namespace ns3 {
38 
40  10, // RGB size 1
41  26, // RGB size 2
42  63, // RGB size 3
43  110 // RGB size 4
44 }; // see table 7.1.6.1-1 of 36.213
45 
46 
47 NS_OBJECT_ENSURE_REGISTERED (TdTbfqFfMacScheduler)
48  ;
49 
50 
51 
53 {
54 public:
56 
57  // inherited from FfMacCschedSapProvider
58  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
59  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
60  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
61  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
62  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
63 
64 private:
67 };
68 
70 {
71 }
72 
74 {
75 }
76 
77 
78 void
80 {
82 }
83 
84 void
86 {
88 }
89 
90 
91 void
93 {
95 }
96 
97 void
99 {
101 }
102 
103 void
105 {
107 }
108 
109 
110 
111 
113 {
114 public:
116 
117  // inherited from FfMacSchedSapProvider
118  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
119  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
120  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
121  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
122  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
123  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
124  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
125  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
126  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
127  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
128  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
129 
130 
131 private:
134 };
135 
136 
137 
139 {
140 }
141 
142 
144  : m_scheduler (scheduler)
145 {
146 }
147 
148 void
150 {
152 }
153 
154 void
156 {
158 }
159 
160 void
162 {
164 }
165 
166 void
168 {
170 }
171 
172 void
174 {
176 }
177 
178 void
180 {
182 }
183 
184 void
186 {
188 }
189 
190 void
192 {
194 }
195 
196 void
198 {
200 }
201 
202 void
204 {
206 }
207 
208 void
210 {
212 }
213 
214 
215 
216 
217 
219  : m_cschedSapUser (0),
220  m_schedSapUser (0),
221  m_nextRntiUl (0),
222  bankSize (0)
223 {
224  m_amc = CreateObject <LteAmc> ();
227 }
228 
230 {
231  NS_LOG_FUNCTION (this);
232 }
233 
234 void
236 {
237  NS_LOG_FUNCTION (this);
239  m_dlHarqProcessesTimer.clear ();
241  m_dlInfoListBuffered.clear ();
242  m_ulHarqCurrentProcessId.clear ();
243  m_ulHarqProcessesStatus.clear ();
245  delete m_cschedSapProvider;
246  delete m_schedSapProvider;
247 }
248 
249 TypeId
251 {
252  static TypeId tid = TypeId ("ns3::TdTbfqFfMacScheduler")
254  .AddConstructor<TdTbfqFfMacScheduler> ()
255  .AddAttribute ("CqiTimerThreshold",
256  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
257  UintegerValue (1000),
258  MakeUintegerAccessor (&TdTbfqFfMacScheduler::m_cqiTimersThreshold),
259  MakeUintegerChecker<uint32_t> ())
260  .AddAttribute ("DebtLimit",
261  "Flow debt limit (default -625000 bytes)",
262  IntegerValue (-625000),
263  MakeIntegerAccessor (&TdTbfqFfMacScheduler::m_debtLimit),
264  MakeIntegerChecker<int> ())
265  .AddAttribute ("CreditLimit",
266  "Flow credit limit (default 625000 bytes)",
267  UintegerValue (625000),
268  MakeUintegerAccessor (&TdTbfqFfMacScheduler::m_creditLimit),
269  MakeUintegerChecker<uint32_t> ())
270  .AddAttribute ("TokenPoolSize",
271  "The maximum value of flow token pool (default 1 bytes)",
272  UintegerValue (1),
273  MakeUintegerAccessor (&TdTbfqFfMacScheduler::m_tokenPoolSize),
274  MakeUintegerChecker<uint32_t> ())
275  .AddAttribute ("CreditableThreshold",
276  "Threshold of flow credit (default 0 bytes)",
277  UintegerValue (0),
278  MakeUintegerAccessor (&TdTbfqFfMacScheduler::m_creditableThreshold),
279  MakeUintegerChecker<uint32_t> ())
280 
281  .AddAttribute ("HarqEnabled",
282  "Activate/Deactivate the HARQ [by default is active].",
283  BooleanValue (true),
284  MakeBooleanAccessor (&TdTbfqFfMacScheduler::m_harqOn),
285  MakeBooleanChecker ())
286  .AddAttribute ("UlGrantMcs",
287  "The MCS of the UL grant, must be [0..15] (default 0)",
288  UintegerValue (0),
289  MakeUintegerAccessor (&TdTbfqFfMacScheduler::m_ulGrantMcs),
290  MakeUintegerChecker<uint8_t> ())
291  ;
292  return tid;
293 }
294 
295 
296 
297 void
299 {
300  m_cschedSapUser = s;
301 }
302 
303 void
305 {
306  m_schedSapUser = s;
307 }
308 
311 {
312  return m_cschedSapProvider;
313 }
314 
317 {
318  return m_schedSapProvider;
319 }
320 
321 void
323 {
324  NS_LOG_FUNCTION (this);
325  // Read the subset of parameters used
326  m_cschedCellConfig = params;
329  cnf.m_result = SUCCESS;
331  return;
332 }
333 
334 void
336 {
337  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
338  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
339  if (it == m_uesTxMode.end ())
340  {
341  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
342  // generate HARQ buffers
343  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
344  DlHarqProcessesStatus_t dlHarqPrcStatus;
345  dlHarqPrcStatus.resize (8,0);
346  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
347  DlHarqProcessesTimer_t dlHarqProcessesTimer;
348  dlHarqProcessesTimer.resize (8,0);
349  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
350  DlHarqProcessesDciBuffer_t dlHarqdci;
351  dlHarqdci.resize (8);
352  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
353  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
354  dlHarqRlcPdu.resize (2);
355  dlHarqRlcPdu.at (0).resize (8);
356  dlHarqRlcPdu.at (1).resize (8);
357  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
358  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
359  UlHarqProcessesStatus_t ulHarqPrcStatus;
360  ulHarqPrcStatus.resize (8,0);
361  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
362  UlHarqProcessesDciBuffer_t ulHarqdci;
363  ulHarqdci.resize (8);
364  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
365  }
366  else
367  {
368  (*it).second = params.m_transmissionMode;
369  }
370  return;
371 }
372 
373 void
375 {
376  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
377 
378  std::map <uint16_t, tdtbfqsFlowPerf_t>::iterator it;
379  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
380  {
381  it = m_flowStatsDl.find (params.m_rnti);
382 
383  if (it == m_flowStatsDl.end ())
384  {
385  uint64_t mbrDlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateDl / 8; // byte/s
386  uint64_t mbrUlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateUl / 8; // byte/s
387 
388  tdtbfqsFlowPerf_t flowStatsDl;
389  flowStatsDl.flowStart = Simulator::Now ();
390  flowStatsDl.packetArrivalRate = 0;
391  flowStatsDl.tokenGenerationRate = mbrDlInBytes;
392  flowStatsDl.tokenPoolSize = 0;
393  flowStatsDl.maxTokenPoolSize = m_tokenPoolSize;
394  flowStatsDl.counter = 0;
395  flowStatsDl.burstCredit = m_creditLimit; // bytes
396  flowStatsDl.debtLimit = m_debtLimit; // bytes
398  m_flowStatsDl.insert (std::pair<uint16_t, tdtbfqsFlowPerf_t> (params.m_rnti, flowStatsDl));
399  tdtbfqsFlowPerf_t flowStatsUl;
400  flowStatsUl.flowStart = Simulator::Now ();
401  flowStatsUl.packetArrivalRate = 0;
402  flowStatsUl.tokenGenerationRate = mbrUlInBytes;
403  flowStatsUl.tokenPoolSize = 0;
404  flowStatsUl.maxTokenPoolSize = m_tokenPoolSize;
405  flowStatsUl.counter = 0;
406  flowStatsUl.burstCredit = m_creditLimit; // bytes
407  flowStatsUl.debtLimit = m_debtLimit; // bytes
409  m_flowStatsUl.insert (std::pair<uint16_t, tdtbfqsFlowPerf_t> (params.m_rnti, flowStatsUl));
410  }
411  else
412  {
413  // update MBR and GBR from UeManager::SetupDataRadioBearer ()
414  uint64_t mbrDlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateDl / 8; // byte/s
415  uint64_t mbrUlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateUl / 8; // byte/s
416  m_flowStatsDl[(*it).first].tokenGenerationRate = mbrDlInBytes;
417  m_flowStatsUl[(*it).first].tokenGenerationRate = mbrUlInBytes;
418 
419  }
420  }
421 
422  return;
423 }
424 
425 void
427 {
428  NS_LOG_FUNCTION (this);
429  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
430  {
431  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
432  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
433  while (it!=m_rlcBufferReq.end ())
434  {
435  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
436  {
437  temp = it;
438  it++;
439  m_rlcBufferReq.erase (temp);
440  }
441  else
442  {
443  it++;
444  }
445  }
446  }
447  return;
448 }
449 
450 void
452 {
453  NS_LOG_FUNCTION (this);
454 
455  m_uesTxMode.erase (params.m_rnti);
456  m_dlHarqCurrentProcessId.erase (params.m_rnti);
457  m_dlHarqProcessesStatus.erase (params.m_rnti);
458  m_dlHarqProcessesTimer.erase (params.m_rnti);
459  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
461  m_ulHarqCurrentProcessId.erase (params.m_rnti);
462  m_ulHarqProcessesStatus.erase (params.m_rnti);
463  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
464  m_flowStatsDl.erase (params.m_rnti);
465  m_flowStatsUl.erase (params.m_rnti);
466  m_ceBsrRxed.erase (params.m_rnti);
467  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
468  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
469  while (it!=m_rlcBufferReq.end ())
470  {
471  if ((*it).first.m_rnti == params.m_rnti)
472  {
473  temp = it;
474  it++;
475  m_rlcBufferReq.erase (temp);
476  }
477  else
478  {
479  it++;
480  }
481  }
482  if (m_nextRntiUl == params.m_rnti)
483  {
484  m_nextRntiUl = 0;
485  }
486 
487  return;
488 }
489 
490 
491 void
493 {
494  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
495  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
496 
497  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
498 
499  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
500 
501  it = m_rlcBufferReq.find (flow);
502 
503  if (it == m_rlcBufferReq.end ())
504  {
505  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
506  }
507  else
508  {
509  (*it).second = params;
510  }
511 
512  return;
513 }
514 
515 void
517 {
518  NS_LOG_FUNCTION (this);
519  NS_FATAL_ERROR ("method not implemented");
520  return;
521 }
522 
523 void
525 {
526  NS_LOG_FUNCTION (this);
527  NS_FATAL_ERROR ("method not implemented");
528  return;
529 }
530 
531 int
533 {
534  for (int i = 0; i < 4; i++)
535  {
536  if (dlbandwidth < TdTbfqType0AllocationRbg[i])
537  {
538  return (i + 1);
539  }
540  }
541 
542  return (-1);
543 }
544 
545 
546 int
548 {
549  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
550  int lcActive = 0;
551  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
552  {
553  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
554  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
555  || ((*it).second.m_rlcStatusPduSize > 0) ))
556  {
557  lcActive++;
558  }
559  if ((*it).first.m_rnti > rnti)
560  {
561  break;
562  }
563  }
564  return (lcActive);
565 
566 }
567 
568 
569 uint8_t
571 {
572  NS_LOG_FUNCTION (this << rnti);
573 
574  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
575  if (it == m_dlHarqCurrentProcessId.end ())
576  {
577  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
578  }
579  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
580  if (itStat == m_dlHarqProcessesStatus.end ())
581  {
582  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
583  }
584  uint8_t i = (*it).second;
585  do
586  {
587  i = (i + 1) % HARQ_PROC_NUM;
588  }
589  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
590  if ((*itStat).second.at (i) == 0)
591  {
592  return (true);
593  }
594  else
595  {
596  return (false); // return a not valid harq proc id
597  }
598 }
599 
600 
601 
602 uint8_t
604 {
605  NS_LOG_FUNCTION (this << rnti);
606 
607  if (m_harqOn == false)
608  {
609  return (0);
610  }
611 
612 
613  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
614  if (it == m_dlHarqCurrentProcessId.end ())
615  {
616  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
617  }
618  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
619  if (itStat == m_dlHarqProcessesStatus.end ())
620  {
621  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
622  }
623  uint8_t i = (*it).second;
624  do
625  {
626  i = (i + 1) % HARQ_PROC_NUM;
627  }
628  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
629  if ((*itStat).second.at (i) == 0)
630  {
631  (*it).second = i;
632  (*itStat).second.at (i) = 1;
633  }
634  else
635  {
636  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
637  }
638 
639  return ((*it).second);
640 }
641 
642 
643 void
645 {
646  NS_LOG_FUNCTION (this);
647 
648  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
649  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
650  {
651  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
652  {
653  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
654  {
655  // reset HARQ process
656 
657  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
658  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
659  if (itStat == m_dlHarqProcessesStatus.end ())
660  {
661  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
662  }
663  (*itStat).second.at (i) = 0;
664  (*itTimers).second.at (i) = 0;
665  }
666  else
667  {
668  (*itTimers).second.at (i)++;
669  }
670  }
671  }
672 
673 }
674 
675 
676 void
678 {
679  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
680  // API generated by RLC for triggering the scheduling of a DL subframe
681 
682 
683  // evaluate the relative channel quality indicator for each UE per each RBG
684  // (since we are using allocation type 0 the small unit of allocation is RBG)
685  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
686 
687  RefreshDlCqiMaps ();
688 
690  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
691  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
692  std::vector <bool> rbgMap; // global RBGs map
693  uint16_t rbgAllocatedNum = 0;
694  std::set <uint16_t> rntiAllocated;
695  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
697 
698  // update UL HARQ proc id
699  std::map <uint16_t, uint8_t>::iterator itProcId;
700  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
701  {
702  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
703  }
704 
705  // RACH Allocation
707  uint16_t rbStart = 0;
708  std::vector <struct RachListElement_s>::iterator itRach;
709  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
710  {
711  NS_ASSERT_MSG (m_amc->GetTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
712  BuildRarListElement_s newRar;
713  newRar.m_rnti = (*itRach).m_rnti;
714  // DL-RACH Allocation
715  // Ideal: no needs of configuring m_dci
716  // UL-RACH Allocation
717  newRar.m_grant.m_rnti = newRar.m_rnti;
718  newRar.m_grant.m_mcs = m_ulGrantMcs;
719  uint16_t rbLen = 1;
720  uint16_t tbSizeBits = 0;
721  // find lowest TB size that fits UL grant estimated size
722  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
723  {
724  rbLen++;
725  tbSizeBits = m_amc->GetTbSizeFromMcs (m_ulGrantMcs, rbLen);
726  }
727  if (tbSizeBits < (*itRach).m_estimatedSize)
728  {
729  // no more allocation space: finish allocation
730  break;
731  }
732  newRar.m_grant.m_rbStart = rbStart;
733  newRar.m_grant.m_rbLen = rbLen;
734  newRar.m_grant.m_tbSize = tbSizeBits / 8;
735  newRar.m_grant.m_hopping = false;
736  newRar.m_grant.m_tpc = 0;
737  newRar.m_grant.m_cqiRequest = false;
738  newRar.m_grant.m_ulDelay = false;
739  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
740  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
741  {
742  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
743  }
744  rbStart = rbStart + rbLen;
745 
746  if (m_harqOn == true)
747  {
748  // generate UL-DCI for HARQ retransmissions
749  UlDciListElement_s uldci;
750  uldci.m_rnti = newRar.m_rnti;
751  uldci.m_rbLen = rbLen;
752  uldci.m_rbStart = rbStart;
753  uldci.m_mcs = m_ulGrantMcs;
754  uldci.m_tbSize = tbSizeBits / 8;
755  uldci.m_ndi = 1;
756  uldci.m_cceIndex = 0;
757  uldci.m_aggrLevel = 1;
758  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
759  uldci.m_hopping = false;
760  uldci.m_n2Dmrs = 0;
761  uldci.m_tpc = 0; // no power control
762  uldci.m_cqiRequest = false; // only period CQI at this stage
763  uldci.m_ulIndex = 0; // TDD parameter
764  uldci.m_dai = 1; // TDD parameter
765  uldci.m_freqHopping = 0;
766  uldci.m_pdcchPowerOffset = 0; // not used
767 
768  uint8_t harqId = 0;
769  std::map <uint16_t, uint8_t>::iterator itProcId;
770  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
771  if (itProcId == m_ulHarqCurrentProcessId.end ())
772  {
773  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
774  }
775  harqId = (*itProcId).second;
776  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
777  if (itDci == m_ulHarqProcessesDciBuffer.end ())
778  {
779  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
780  }
781  (*itDci).second.at (harqId) = uldci;
782  }
783 
784  ret.m_buildRarList.push_back (newRar);
785  }
786  m_rachList.clear ();
787 
788 
789  // Process DL HARQ feedback
791  // retrieve past HARQ retx buffered
792  if (m_dlInfoListBuffered.size () > 0)
793  {
794  if (params.m_dlInfoList.size () > 0)
795  {
796  NS_LOG_INFO (this << " Received DL-HARQ feedback");
797  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
798  }
799  }
800  else
801  {
802  if (params.m_dlInfoList.size () > 0)
803  {
805  }
806  }
807  if (m_harqOn == false)
808  {
809  // Ignore HARQ feedback
810  m_dlInfoListBuffered.clear ();
811  }
812  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
813  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
814  {
815  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
816  if (itRnti != rntiAllocated.end ())
817  {
818  // RNTI already allocated for retx
819  continue;
820  }
821  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
822  std::vector <bool> retx;
823  NS_LOG_INFO (this << " Processing DLHARQ feedback");
824  if (nLayers == 1)
825  {
826  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
827  retx.push_back (false);
828  }
829  else
830  {
831  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
832  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
833  }
834  if (retx.at (0) || retx.at (1))
835  {
836  // retrieve HARQ process information
837  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
838  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
839  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
840  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
841  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
842  {
843  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
844  }
845 
846  DlDciListElement_s dci = (*itHarq).second.at (harqId);
847  int rv = 0;
848  if (dci.m_rv.size () == 1)
849  {
850  rv = dci.m_rv.at (0);
851  }
852  else
853  {
854  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
855  }
856 
857  if (rv == 3)
858  {
859  // maximum number of retx reached -> drop process
860  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
861  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
862  if (it == m_dlHarqProcessesStatus.end ())
863  {
864  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
865  }
866  (*it).second.at (harqId) = 0;
867  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
868  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
869  {
870  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
871  }
872  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
873  {
874  (*itRlcPdu).second.at (k).at (harqId).clear ();
875  }
876  continue;
877  }
878  // check the feasibility of retransmitting on the same RBGs
879  // translate the DCI to Spectrum framework
880  std::vector <int> dciRbg;
881  uint32_t mask = 0x1;
882  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
883  for (int j = 0; j < 32; j++)
884  {
885  if (((dci.m_rbBitmap & mask) >> j) == 1)
886  {
887  dciRbg.push_back (j);
888  NS_LOG_INFO ("\t" << j);
889  }
890  mask = (mask << 1);
891  }
892  bool free = true;
893  for (uint8_t j = 0; j < dciRbg.size (); j++)
894  {
895  if (rbgMap.at (dciRbg.at (j)) == true)
896  {
897  free = false;
898  break;
899  }
900  }
901  if (free)
902  {
903  // use the same RBGs for the retx
904  // reserve RBGs
905  for (uint8_t j = 0; j < dciRbg.size (); j++)
906  {
907  rbgMap.at (dciRbg.at (j)) = true;
908  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
909  rbgAllocatedNum++;
910  }
911 
912  NS_LOG_INFO (this << " Send retx in the same RBGs");
913  }
914  else
915  {
916  // find RBGs for sending HARQ retx
917  uint8_t j = 0;
918  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
919  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
920  std::vector <bool> rbgMapCopy = rbgMap;
921  while ((j < dciRbg.size ())&&(startRbg != rbgId))
922  {
923  if (rbgMapCopy.at (rbgId) == false)
924  {
925  rbgMapCopy.at (rbgId) = true;
926  dciRbg.at (j) = rbgId;
927  j++;
928  }
929  rbgId++;
930  }
931  if (j == dciRbg.size ())
932  {
933  // find new RBGs -> update DCI map
934  uint32_t rbgMask = 0;
935  for (uint16_t k = 0; k < dciRbg.size (); k++)
936  {
937  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
938  rbgAllocatedNum++;
939  }
940  dci.m_rbBitmap = rbgMask;
941  rbgMap = rbgMapCopy;
942  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
943  }
944  else
945  {
946  // HARQ retx cannot be performed on this TTI -> store it
947  dlInfoListUntxed.push_back (params.m_dlInfoList.at (i));
948  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
949  }
950  }
951  // retrieve RLC PDU list for retx TBsize and update DCI
953  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
954  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
955  {
956  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
957  }
958  for (uint8_t j = 0; j < nLayers; j++)
959  {
960  if (retx.at (j))
961  {
962  if (j >= dci.m_ndi.size ())
963  {
964  // for avoiding errors in MIMO transient phases
965  dci.m_ndi.push_back (0);
966  dci.m_rv.push_back (0);
967  dci.m_mcs.push_back (0);
968  dci.m_tbsSize.push_back (0);
969  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
970  }
971  else
972  {
973  dci.m_ndi.at (j) = 0;
974  dci.m_rv.at (j)++;
975  (*itHarq).second.at (harqId).m_rv.at (j)++;
976  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
977  }
978  }
979  else
980  {
981  // empty TB of layer j
982  dci.m_ndi.at (j) = 0;
983  dci.m_rv.at (j) = 0;
984  dci.m_mcs.at (j) = 0;
985  dci.m_tbsSize.at (j) = 0;
986  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
987  }
988  }
989  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
990  {
991  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
992  for (uint8_t j = 0; j < nLayers; j++)
993  {
994  if (retx.at (j))
995  {
996  if (j < dci.m_ndi.size ())
997  {
998  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
999  }
1000  }
1001  }
1002 
1003  if (rlcPduListPerLc.size () > 0)
1004  {
1005  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
1006  }
1007  }
1008  newEl.m_rnti = rnti;
1009  newEl.m_dci = dci;
1010  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
1011  // refresh timer
1012  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
1013  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1014  {
1015  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
1016  }
1017  (*itHarqTimer).second.at (harqId) = 0;
1018  ret.m_buildDataList.push_back (newEl);
1019  rntiAllocated.insert (rnti);
1020  }
1021  else
1022  {
1023  // update HARQ process status
1024  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
1025  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
1026  if (it == m_dlHarqProcessesStatus.end ())
1027  {
1028  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
1029  }
1030  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
1031  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
1032  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1033  {
1034  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
1035  }
1036  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
1037  {
1038  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
1039  }
1040  }
1041  }
1042  m_dlInfoListBuffered.clear ();
1043  m_dlInfoListBuffered = dlInfoListUntxed;
1044 
1045  if (rbgAllocatedNum == rbgNum)
1046  {
1047  // all the RBGs are already allocated -> exit
1048  if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
1049  {
1051  }
1052  return;
1053  }
1054 
1055 
1056  // update token pool, counter and bank size
1057  std::map <uint16_t, tdtbfqsFlowPerf_t>::iterator itStats;
1058  for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
1059  {
1060  if ( (*itStats).second.tokenGenerationRate / 1000 + (*itStats).second.tokenPoolSize > (*itStats).second.maxTokenPoolSize )
1061  {
1062  (*itStats).second.counter += (*itStats).second.tokenGenerationRate / 1000 - ( (*itStats).second.maxTokenPoolSize - (*itStats).second.tokenPoolSize );
1063  (*itStats).second.tokenPoolSize = (*itStats).second.maxTokenPoolSize;
1064  bankSize += (*itStats).second.tokenGenerationRate / 1000 - ( (*itStats).second.maxTokenPoolSize - (*itStats).second.tokenPoolSize );
1065  }
1066  else
1067  {
1068  (*itStats).second.tokenPoolSize += (*itStats).second.tokenGenerationRate / 1000;
1069  }
1070  }
1071 
1072 
1073  // select UE with largest metric
1074  std::map <uint16_t, tdtbfqsFlowPerf_t>::iterator it;
1075  std::map <uint16_t, tdtbfqsFlowPerf_t>::iterator itMax = m_flowStatsDl.end ();
1076  double metricMax = 0.0;
1077  bool firstRnti = true;
1078  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
1079  {
1080  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1081  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it).first)))
1082  {
1083  // UE already allocated for HARQ or without HARQ process available -> drop it
1084  if (itRnti != rntiAllocated.end ())
1085  {
1086  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it).first);
1087  }
1088  if (!HarqProcessAvailability ((*it).first))
1089  {
1090  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it).first);
1091  }
1092  continue;
1093  }
1094 
1095  /*
1096  if (LcActivePerFlow ((*it).first) == 0)
1097  {
1098  continue;
1099  }
1100  */
1101 
1102  double metric = ( ( (double)(*it).second.counter ) / ( (double)(*it).second.tokenGenerationRate ) );
1103 
1104  if (firstRnti == true)
1105  {
1106  metricMax = metric;
1107  itMax = it;
1108  firstRnti = false;
1109  continue;
1110  }
1111  if (metric > metricMax)
1112  {
1113  metricMax = metric;
1114  itMax = it;
1115  }
1116  } // end for m_flowStatsDl
1117 
1118  if (itMax == m_flowStatsDl.end ())
1119  {
1120  // all UEs are allocated RBG or all UEs already allocated for HARQ or without HARQ process available
1121  return;
1122  }
1123  else
1124  {
1125  // assign all RBGs to this UE
1126  std::vector <uint16_t> tempMap;
1127  for (int i = 0; i < rbgNum; i++)
1128  {
1129  if ( rbgMap.at (i) == true) // this RBG is allocated in RACH procedure
1130  continue;
1131 
1132  tempMap.push_back (i);
1133  rbgMap.at (i) = true;
1134  }
1135  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax).first, tempMap));
1136  }
1137 
1138 
1139 
1140  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1141  // creating the correspondent DCIs
1142  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1143  while (itMap != allocationMap.end ())
1144  {
1145  // create new BuildDataListElement_s for this LC
1146  BuildDataListElement_s newEl;
1147  newEl.m_rnti = (*itMap).first;
1148  // create the DlDciListElement_s
1149  DlDciListElement_s newDci;
1150  newDci.m_rnti = (*itMap).first;
1151  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1152 
1153  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1154  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1155  if (lcActives == 0)
1156  {
1157  // Set to max value, to avoid divide by 0 below
1158  lcActives = (uint16_t)65535; // UINT16_MAX;
1159  }
1160  uint16_t RgbPerRnti = (*itMap).second.size ();
1161  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1162  itCqi = m_a30CqiRxed.find ((*itMap).first);
1163  std::map <uint16_t,uint8_t>::iterator itTxMode;
1164  itTxMode = m_uesTxMode.find ((*itMap).first);
1165  if (itTxMode == m_uesTxMode.end ())
1166  {
1167  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1168  }
1169  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1170  std::vector <uint8_t> worstCqi (2, 15);
1171  if (itCqi != m_a30CqiRxed.end ())
1172  {
1173  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1174  {
1175  if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1176  {
1177  for (uint8_t j = 0; j < nLayer; j++)
1178  {
1179  if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1180  {
1181  if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1182  {
1183  worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1184  }
1185  }
1186  else
1187  {
1188  // no CQI for this layer of this suband -> worst one
1189  worstCqi.at (j) = 1;
1190  }
1191  }
1192  }
1193  else
1194  {
1195  for (uint8_t j = 0; j < nLayer; j++)
1196  {
1197  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1198  }
1199  }
1200  }
1201  }
1202  else
1203  {
1204  for (uint8_t j = 0; j < nLayer; j++)
1205  {
1206  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1207  }
1208  }
1209  uint32_t bytesTxed = 0;
1210  for (uint8_t j = 0; j < nLayer; j++)
1211  {
1212  newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
1213  int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1214  newDci.m_tbsSize.push_back (tbSize);
1215  bytesTxed += tbSize;
1216  }
1217 
1218  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1219  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1220  uint32_t rbgMask = 0;
1221  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1222  {
1223  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1224  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1225  }
1226  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1227 
1228  // create the rlc PDUs -> equally divide resources among actives LCs
1229  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1230  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1231  {
1232  if (((*itBufReq).first.m_rnti == (*itMap).first)
1233  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1234  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1235  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1236  {
1237  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1238  for (uint8_t j = 0; j < nLayer; j++)
1239  {
1240  RlcPduListElement_s newRlcEl;
1241  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1242  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1243  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1244  newRlcPduLe.push_back (newRlcEl);
1245  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1246  if (m_harqOn == true)
1247  {
1248  // store RLC PDU list for HARQ
1249  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1250  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1251  {
1252  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1253  }
1254  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1255  }
1256  }
1257  newEl.m_rlcPduList.push_back (newRlcPduLe);
1258  }
1259  if ((*itBufReq).first.m_rnti > (*itMap).first)
1260  {
1261  break;
1262  }
1263  }
1264  for (uint8_t j = 0; j < nLayer; j++)
1265  {
1266  newDci.m_ndi.push_back (1);
1267  newDci.m_rv.push_back (0);
1268  }
1269 
1270  newEl.m_dci = newDci;
1271 
1272  if (m_harqOn == true)
1273  {
1274  // store DCI for HARQ
1275  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1276  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1277  {
1278  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1279  }
1280  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1281  // refresh timer
1282  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1283  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1284  {
1285  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1286  }
1287  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1288  }
1289 
1290 
1291  // update UE stats
1292  if ( bytesTxed <= (*itMax).second.tokenPoolSize )
1293  {
1294  (*itMax).second.tokenPoolSize -= bytesTxed;
1295  }
1296  else
1297  {
1298  (*itMax).second.counter = (*itMax).second.counter - ( bytesTxed - (*itMax).second.tokenPoolSize );
1299  (*itMax).second.tokenPoolSize = 0;
1300  if (bankSize <= ( bytesTxed - (*itMax).second.tokenPoolSize ))
1301  bankSize = 0;
1302  else
1303  bankSize = bankSize - ( bytesTxed - (*itMax).second.tokenPoolSize );
1304  }
1305 
1306 
1307  // ...more parameters -> ingored in this version
1308 
1309  ret.m_buildDataList.push_back (newEl);
1310 
1311  itMap++;
1312  } // end while allocation
1313  ret.m_nrOfPdcchOfdmSymbols = 1;
1314 
1316 
1317 
1318  return;
1319 }
1320 
1321 void
1323 {
1324  NS_LOG_FUNCTION (this);
1325 
1326  m_rachList = params.m_rachList;
1327 
1328  return;
1329 }
1330 
1331 void
1333 {
1334  NS_LOG_FUNCTION (this);
1335 
1336  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1337  {
1338  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1339  {
1340  // wideband CQI reporting
1341  std::map <uint16_t,uint8_t>::iterator it;
1342  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1343  it = m_p10CqiRxed.find (rnti);
1344  if (it == m_p10CqiRxed.end ())
1345  {
1346  // create the new entry
1347  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1348  // generate correspondent timer
1349  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1350  }
1351  else
1352  {
1353  // update the CQI value and refresh correspondent timer
1354  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1355  // update correspondent timer
1356  std::map <uint16_t,uint32_t>::iterator itTimers;
1357  itTimers = m_p10CqiTimers.find (rnti);
1358  (*itTimers).second = m_cqiTimersThreshold;
1359  }
1360  }
1361  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1362  {
1363  // subband CQI reporting high layer configured
1364  std::map <uint16_t,SbMeasResult_s>::iterator it;
1365  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1366  it = m_a30CqiRxed.find (rnti);
1367  if (it == m_a30CqiRxed.end ())
1368  {
1369  // create the new entry
1370  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1371  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1372  }
1373  else
1374  {
1375  // update the CQI value and refresh correspondent timer
1376  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1377  std::map <uint16_t,uint32_t>::iterator itTimers;
1378  itTimers = m_a30CqiTimers.find (rnti);
1379  (*itTimers).second = m_cqiTimersThreshold;
1380  }
1381  }
1382  else
1383  {
1384  NS_LOG_ERROR (this << " CQI type unknown");
1385  }
1386  }
1387 
1388  return;
1389 }
1390 
1391 
1392 double
1393 TdTbfqFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1394 {
1395  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1396  if (itCqi == m_ueCqi.end ())
1397  {
1398  // no cqi info about this UE
1399  return (NO_SINR);
1400 
1401  }
1402  else
1403  {
1404  // take the average SINR value among the available
1405  double sinrSum = 0;
1406  int sinrNum = 0;
1407  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1408  {
1409  double sinr = (*itCqi).second.at (i);
1410  if (sinr != NO_SINR)
1411  {
1412  sinrSum += sinr;
1413  sinrNum++;
1414  }
1415  }
1416  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1417  // store the value
1418  (*itCqi).second.at (rb) = estimatedSinr;
1419  return (estimatedSinr);
1420  }
1421 }
1422 
1423 void
1425 {
1426  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1427 
1428  RefreshUlCqiMaps ();
1429 
1430  // Generate RBs map
1432  std::vector <bool> rbMap;
1433  uint16_t rbAllocatedNum = 0;
1434  std::set <uint16_t> rntiAllocated;
1435  std::vector <uint16_t> rbgAllocationMap;
1436  // update with RACH allocation map
1437  rbgAllocationMap = m_rachAllocationMap;
1438  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1439  m_rachAllocationMap.clear ();
1441 
1442  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1443  // remove RACH allocation
1444  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1445  {
1446  if (rbgAllocationMap.at (i) != 0)
1447  {
1448  rbMap.at (i) = true;
1449  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1450  }
1451  }
1452 
1453 
1454  if (m_harqOn == true)
1455  {
1456  // Process UL HARQ feedback
1457  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1458  {
1459  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1460  {
1461  // retx correspondent block: retrieve the UL-DCI
1462  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1463  std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1464  if (itProcId == m_ulHarqCurrentProcessId.end ())
1465  {
1466  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1467  }
1468  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1469  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1470  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1471  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1472  {
1473  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1474  continue;
1475  }
1476  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1477  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1478  if (itStat == m_ulHarqProcessesStatus.end ())
1479  {
1480  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1481  }
1482  if ((*itStat).second.at (harqId) >= 3)
1483  {
1484  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1485  continue;
1486  }
1487  bool free = true;
1488  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1489  {
1490  if (rbMap.at (j) == true)
1491  {
1492  free = false;
1493  NS_LOG_INFO (this << " BUSY " << j);
1494  }
1495  }
1496  if (free)
1497  {
1498  // retx on the same RBs
1499  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1500  {
1501  rbMap.at (j) = true;
1502  rbgAllocationMap.at (j) = dci.m_rnti;
1503  NS_LOG_INFO ("\tRB " << j);
1504  rbAllocatedNum++;
1505  }
1506  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1507  }
1508  else
1509  {
1510  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1511  continue;
1512  }
1513  dci.m_ndi = 0;
1514  // Update HARQ buffers with new HarqId
1515  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1516  (*itStat).second.at (harqId) = 0;
1517  (*itHarq).second.at ((*itProcId).second) = dci;
1518  ret.m_dciList.push_back (dci);
1519  rntiAllocated.insert (dci.m_rnti);
1520  }
1521  else
1522  {
1523  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1524  }
1525  }
1526  }
1527 
1528  std::map <uint16_t,uint32_t>::iterator it;
1529  int nflows = 0;
1530 
1531  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1532  {
1533  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1534  // select UEs with queues not empty and not yet allocated for HARQ
1535  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1536  {
1537  nflows++;
1538  }
1539  }
1540 
1541  if (nflows == 0)
1542  {
1543  if (ret.m_dciList.size () > 0)
1544  {
1546  }
1547 
1548  return; // no flows to be scheduled
1549  }
1550 
1551 
1552  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1553  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1554  if (rbPerFlow < 3)
1555  {
1556  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1557  }
1558  int rbAllocated = 0;
1559 
1560  std::map <uint16_t, tdtbfqsFlowPerf_t>::iterator itStats;
1561  if (m_nextRntiUl != 0)
1562  {
1563  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1564  {
1565  if ((*it).first == m_nextRntiUl)
1566  {
1567  break;
1568  }
1569  }
1570  if (it == m_ceBsrRxed.end ())
1571  {
1572  NS_LOG_ERROR (this << " no user found");
1573  }
1574  }
1575  else
1576  {
1577  it = m_ceBsrRxed.begin ();
1578  m_nextRntiUl = (*it).first;
1579  }
1580  do
1581  {
1582  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1583  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1584  {
1585  // UE already allocated for UL-HARQ -> skip it
1586  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1587  it++;
1588  if (it == m_ceBsrRxed.end ())
1589  {
1590  // restart from the first
1591  it = m_ceBsrRxed.begin ();
1592  }
1593  continue;
1594  }
1595  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1596  {
1597  // limit to physical resources last resource assignment
1598  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1599  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1600  if (rbPerFlow < 3)
1601  {
1602  // terminate allocation
1603  rbPerFlow = 0;
1604  }
1605  }
1606 
1607  UlDciListElement_s uldci;
1608  uldci.m_rnti = (*it).first;
1609  uldci.m_rbLen = rbPerFlow;
1610  bool allocated = false;
1611  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1612  while ((!allocated)&&((rbAllocated + rbPerFlow - 1) < m_cschedCellConfig.m_ulBandwidth) && (rbPerFlow != 0))
1613  {
1614  // check availability
1615  bool free = true;
1616  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1617  {
1618  if (rbMap.at (j) == true)
1619  {
1620  free = false;
1621  break;
1622  }
1623  }
1624  if (free)
1625  {
1626  uldci.m_rbStart = rbAllocated;
1627 
1628  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1629  {
1630  rbMap.at (j) = true;
1631  // store info on allocation for managing ul-cqi interpretation
1632  rbgAllocationMap.at (j) = (*it).first;
1633  }
1634  rbAllocated += rbPerFlow;
1635  allocated = true;
1636  break;
1637  }
1638  rbAllocated++;
1639  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1640  {
1641  // limit to physical resources last resource assignment
1642  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1643  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1644  if (rbPerFlow < 3)
1645  {
1646  // terminate allocation
1647  rbPerFlow = 0;
1648  }
1649  }
1650  }
1651  if (!allocated)
1652  {
1653  // unable to allocate new resource: finish scheduling
1654  m_nextRntiUl = (*it).first;
1655  if (ret.m_dciList.size () > 0)
1656  {
1658  }
1659  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1660  return;
1661  }
1662 
1663 
1664 
1665  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1666  int cqi = 0;
1667  if (itCqi == m_ueCqi.end ())
1668  {
1669  // no cqi info about this UE
1670  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1671  }
1672  else
1673  {
1674  // take the lowest CQI value (worst RB)
1675  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1676  if (minSinr == NO_SINR)
1677  {
1678  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1679  }
1680  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1681  {
1682  double sinr = (*itCqi).second.at (i);
1683  if (sinr == NO_SINR)
1684  {
1685  sinr = EstimateUlSinr ((*it).first, i);
1686  }
1687  if ((*itCqi).second.at (i) < minSinr)
1688  {
1689  minSinr = (*itCqi).second.at (i);
1690  }
1691  }
1692 
1693  // translate SINR -> cqi: WILD ACK: same as DL
1694  double s = log2 ( 1 + (
1695  std::pow (10, minSinr / 10 ) /
1696  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1697  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1698  if (cqi == 0)
1699  {
1700  it++;
1701  if (it == m_ceBsrRxed.end ())
1702  {
1703  // restart from the first
1704  it = m_ceBsrRxed.begin ();
1705  }
1706  NS_LOG_DEBUG (this << " UE discared for CQI=0, RNTI " << uldci.m_rnti);
1707  // remove UE from allocation map
1708  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1709  {
1710  rbgAllocationMap.at (i) = 0;
1711  }
1712  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1713  }
1714  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1715  }
1716 
1717  uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1718  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1719  uldci.m_ndi = 1;
1720  uldci.m_cceIndex = 0;
1721  uldci.m_aggrLevel = 1;
1722  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1723  uldci.m_hopping = false;
1724  uldci.m_n2Dmrs = 0;
1725  uldci.m_tpc = 0; // no power control
1726  uldci.m_cqiRequest = false; // only period CQI at this stage
1727  uldci.m_ulIndex = 0; // TDD parameter
1728  uldci.m_dai = 1; // TDD parameter
1729  uldci.m_freqHopping = 0;
1730  uldci.m_pdcchPowerOffset = 0; // not used
1731  ret.m_dciList.push_back (uldci);
1732  // store DCI for HARQ_PERIOD
1733  uint8_t harqId = 0;
1734  if (m_harqOn == true)
1735  {
1736  std::map <uint16_t, uint8_t>::iterator itProcId;
1737  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1738  if (itProcId == m_ulHarqCurrentProcessId.end ())
1739  {
1740  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1741  }
1742  harqId = (*itProcId).second;
1743  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1744  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1745  {
1746  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1747  }
1748  (*itDci).second.at (harqId) = uldci;
1749  }
1750 
1751  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1752 
1753  it++;
1754  if (it == m_ceBsrRxed.end ())
1755  {
1756  // restart from the first
1757  it = m_ceBsrRxed.begin ();
1758  }
1759  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1760  {
1761  // Stop allocation: no more PRBs
1762  m_nextRntiUl = (*it).first;
1763  break;
1764  }
1765  }
1766  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1767 
1768 
1769  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1771 
1772  return;
1773 }
1774 
1775 void
1777 {
1778  NS_LOG_FUNCTION (this);
1779  return;
1780 }
1781 
1782 void
1784 {
1785  NS_LOG_FUNCTION (this);
1786  return;
1787 }
1788 
1789 void
1791 {
1792  NS_LOG_FUNCTION (this);
1793 
1794  std::map <uint16_t,uint32_t>::iterator it;
1795 
1796  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1797  {
1798  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1799  {
1800  // buffer status report
1801  // note that this scheduler does not differentiate the
1802  // allocation according to which LCGs have more/less bytes
1803  // to send.
1804  // Hence the BSR of different LCGs are just summed up to get
1805  // a total queue size that is used for allocation purposes.
1806 
1807  uint32_t buffer = 0;
1808  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1809  {
1810  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1811  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1812  }
1813 
1814  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1815  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1816  it = m_ceBsrRxed.find (rnti);
1817  if (it == m_ceBsrRxed.end ())
1818  {
1819  // create the new entry
1820  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1821  }
1822  else
1823  {
1824  // update the buffer size value
1825  (*it).second = buffer;
1826  }
1827  }
1828  }
1829 
1830  return;
1831 }
1832 
1833 void
1835 {
1836  NS_LOG_FUNCTION (this);
1837 // retrieve the allocation for this subframe
1838  switch (m_ulCqiFilter)
1839  {
1841  {
1842  // filter all the CQIs that are not SRS based
1843  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1844  {
1845  return;
1846  }
1847  }
1848  break;
1850  {
1851  // filter all the CQIs that are not SRS based
1852  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1853  {
1854  return;
1855  }
1856  }
1858  break;
1859 
1860  default:
1861  NS_FATAL_ERROR ("Unknown UL CQI type");
1862  }
1863 
1864  switch (params.m_ulCqi.m_type)
1865  {
1866  case UlCqi_s::PUSCH:
1867  {
1868  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1869  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1870  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1871  itMap = m_allocationMaps.find (params.m_sfnSf);
1872  if (itMap == m_allocationMaps.end ())
1873  {
1874  return;
1875  }
1876  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1877  {
1878  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1879  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1880  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1881  if (itCqi == m_ueCqi.end ())
1882  {
1883  // create a new entry
1884  std::vector <double> newCqi;
1885  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1886  {
1887  if (i == j)
1888  {
1889  newCqi.push_back (sinr);
1890  }
1891  else
1892  {
1893  // initialize with NO_SINR value.
1894  newCqi.push_back (NO_SINR);
1895  }
1896 
1897  }
1898  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1899  // generate correspondent timer
1900  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1901  }
1902  else
1903  {
1904  // update the value
1905  (*itCqi).second.at (i) = sinr;
1906  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1907  // update correspondent timer
1908  std::map <uint16_t, uint32_t>::iterator itTimers;
1909  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1910  (*itTimers).second = m_cqiTimersThreshold;
1911 
1912  }
1913 
1914  }
1915  // remove obsolete info on allocation
1916  m_allocationMaps.erase (itMap);
1917  }
1918  break;
1919  case UlCqi_s::SRS:
1920  {
1921  // get the RNTI from vendor specific parameters
1922  uint16_t rnti = 0;
1923  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1924  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1925  {
1926  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1927  {
1928  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1929  rnti = vsp->GetRnti ();
1930  }
1931  }
1932  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1933  itCqi = m_ueCqi.find (rnti);
1934  if (itCqi == m_ueCqi.end ())
1935  {
1936  // create a new entry
1937  std::vector <double> newCqi;
1938  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1939  {
1940  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1941  newCqi.push_back (sinr);
1942  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1943 
1944  }
1945  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1946  // generate correspondent timer
1947  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1948  }
1949  else
1950  {
1951  // update the values
1952  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1953  {
1954  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1955  (*itCqi).second.at (j) = sinr;
1956  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1957  }
1958  // update correspondent timer
1959  std::map <uint16_t, uint32_t>::iterator itTimers;
1960  itTimers = m_ueCqiTimers.find (rnti);
1961  (*itTimers).second = m_cqiTimersThreshold;
1962 
1963  }
1964 
1965 
1966  }
1967  break;
1968  case UlCqi_s::PUCCH_1:
1969  case UlCqi_s::PUCCH_2:
1970  case UlCqi_s::PRACH:
1971  {
1972  NS_FATAL_ERROR ("TdTbfqFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1973  }
1974  break;
1975  default:
1976  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1977  }
1978  return;
1979 }
1980 
1981 void
1983 {
1984  // refresh DL CQI P01 Map
1985  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1986  while (itP10 != m_p10CqiTimers.end ())
1987  {
1988  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1989  if ((*itP10).second == 0)
1990  {
1991  // delete correspondent entries
1992  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1993  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1994  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1995  m_p10CqiRxed.erase (itMap);
1996  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1997  itP10++;
1998  m_p10CqiTimers.erase (temp);
1999  }
2000  else
2001  {
2002  (*itP10).second--;
2003  itP10++;
2004  }
2005  }
2006 
2007  // refresh DL CQI A30 Map
2008  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
2009  while (itA30 != m_a30CqiTimers.end ())
2010  {
2011  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2012  if ((*itA30).second == 0)
2013  {
2014  // delete correspondent entries
2015  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
2016  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
2017  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
2018  m_a30CqiRxed.erase (itMap);
2019  std::map <uint16_t,uint32_t>::iterator temp = itA30;
2020  itA30++;
2021  m_a30CqiTimers.erase (temp);
2022  }
2023  else
2024  {
2025  (*itA30).second--;
2026  itA30++;
2027  }
2028  }
2029 
2030  return;
2031 }
2032 
2033 
2034 void
2036 {
2037  // refresh UL CQI Map
2038  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
2039  while (itUl != m_ueCqiTimers.end ())
2040  {
2041  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2042  if ((*itUl).second == 0)
2043  {
2044  // delete correspondent entries
2045  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
2046  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
2047  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
2048  (*itMap).second.clear ();
2049  m_ueCqi.erase (itMap);
2050  std::map <uint16_t,uint32_t>::iterator temp = itUl;
2051  itUl++;
2052  m_ueCqiTimers.erase (temp);
2053  }
2054  else
2055  {
2056  (*itUl).second--;
2057  itUl++;
2058  }
2059  }
2060 
2061  return;
2062 }
2063 
2064 void
2065 TdTbfqFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
2066 {
2067  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
2068  LteFlowId_t flow (rnti, lcid);
2069  it = m_rlcBufferReq.find (flow);
2070  if (it != m_rlcBufferReq.end ())
2071  {
2072  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2073  // Update queues: RLC tx order Status, ReTx, Tx
2074  // Update status queue
2075  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2076  {
2077  (*it).second.m_rlcStatusPduSize = 0;
2078  }
2079  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
2080  {
2081  (*it).second.m_rlcRetransmissionQueueSize = 0;
2082  }
2083  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2084  {
2085  uint32_t rlcOverhead;
2086  if (lcid == 1)
2087  {
2088  // for SRB1 (using RLC AM) it's better to
2089  // overestimate RLC overhead rather than
2090  // underestimate it and risk unneeded
2091  // segmentation which increases delay
2092  rlcOverhead = 4;
2093  }
2094  else
2095  {
2096  // minimum RLC overhead due to header
2097  rlcOverhead = 2;
2098  }
2099  // update transmission queue
2100  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2101  {
2102  (*it).second.m_rlcTransmissionQueueSize = 0;
2103  }
2104  else
2105  {
2106  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2107  }
2108  }
2109  }
2110  else
2111  {
2112  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2113  }
2114 }
2115 
2116 void
2117 TdTbfqFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2118 {
2119 
2120  size = size - 2; // remove the minimum RLC overhead
2121  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2122  if (it != m_ceBsrRxed.end ())
2123  {
2124  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2125  if ((*it).second >= size)
2126  {
2127  (*it).second -= size;
2128  }
2129  else
2130  {
2131  (*it).second = 0;
2132  }
2133  }
2134  else
2135  {
2136  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2137  }
2138 
2139 }
2140 
2141 void
2143 {
2144  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2146  params.m_rnti = rnti;
2147  params.m_transmissionMode = txMode;
2149 }
2150 
2151 
2152 }
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
std::vector< struct UlInfoListElement_s > m_ulInfoList
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:88
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
smart pointer class similar to boost::intrusive_ptr
Definition: ptr.h:59
#define NS_LOG_FUNCTION(parameters)
Definition: log.h:345
NS_LOG_COMPONENT_DEFINE("TdTbfqFfMacScheduler")
virtual void DoDispose(void)
This method is called by Object::Dispose or by the object's destructor, whichever comes first...
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
#define HARQ_PERIOD
Definition: lte-common.h:30
Hold a bool native type.
Definition: boolean.h:38
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
friend class TdTbfqSchedulerMemberCschedSapProvider
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
uint32_t burstCredit
the number of token borrow or given to token bank
FfMacSchedSapProvider * m_schedSapProvider
enum ns3::UlCqi_s::Type_e m_type
friend class TdTbfqSchedulerMemberSchedSapProvider
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
uint32_t maxTokenPoolSize
current size of token pool (byte)
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
std::vector< uint16_t > m_sinr
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
std::vector< uint8_t > DlHarqProcessesTimer_t
#define NO_SINR
#define NS_ASSERT(condition)
Definition: assert.h:64
virtual ~TdTbfqFfMacScheduler()
Destructor.
Hold a signed integer type.
Definition: integer.h:45
NS_OBJECT_ENSURE_REGISTERED(NullMessageSimulatorImpl)
virtual void CschedLcReleaseReq(const struct CschedLcReleaseReqParameters &params)
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
std::vector< uint8_t > m_mcs
Definition: ff-mac-common.h:95
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
std::vector< struct UlDciListElement_s > m_dciList
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
#define NS_LOG_INFO(msg)
Definition: log.h:298
See section 4.3.10 buildRARListElement.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
int counter
maximum size of token pool (byte)
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
virtual void CschedLcConfigReq(const struct CschedLcConfigReqParameters &params)
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
Implements the SCHED SAP and CSCHED SAP for a Time Domain Token Bank Fair Queue scheduler.
std::vector< struct RachListElement_s > m_rachList
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
#define NS_FATAL_ERROR(msg)
fatal error handling
Definition: fatal-error.h:72
FfMacCschedSapUser * m_cschedSapUser
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
virtual void SchedUlNoiseInterferenceReq(const struct SchedUlNoiseInterferenceReqParameters &params)
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
virtual void SchedUlMacCtrlInfoReq(const struct SchedUlMacCtrlInfoReqParameters &params)
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
int debtLimit
the maximum number of tokens connection i can borrow from the bank each time
Hold an unsigned integer type.
Definition: uinteger.h:46
static uint8_t TxMode2LayerNum(uint8_t txMode)
Definition: lte-common.cc:170
Ptr< SampleEmitter > s
std::map< uint16_t, uint32_t > m_a30CqiTimers
virtual void SchedDlCqiInfoReq(const struct SchedDlCqiInfoReqParameters &params)
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
std::vector< uint8_t > m_ndi
Definition: ff-mac-common.h:96
virtual void SchedDlTriggerReq(const struct SchedDlTriggerReqParameters &params)
Provides the SCHED SAP.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
#define NS_LOG_LOGIC(msg)
Definition: log.h:368
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
std::vector< struct DlInfoListElement_s > m_dlInfoList
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
std::vector< uint16_t > m_tbsSize
Definition: ff-mac-common.h:94
See section 4.3.9 rlcPDU_ListElement.
uint64_t tokenGenerationRate
packet arrival rate( byte/s)
virtual void SchedDlPagingBufferReq(const struct SchedDlPagingBufferReqParameters &params)
std::map< uint16_t, std::vector< double > > m_ueCqi
virtual void SchedDlRachInfoReq(const struct SchedDlRachInfoReqParameters &params)
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
virtual void SchedDlRlcBufferReq(const struct SchedDlRlcBufferReqParameters &params)
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::vector< uint8_t > m_rv
Definition: ff-mac-common.h:97
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
std::map< uint16_t, uint8_t > m_p10CqiRxed
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
static Time Now(void)
Return the "current simulation time".
Definition: simulator.cc:180
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
uint32_t creditableThreshold
counter threshold that the flow cannot further borrow tokens from bank
UlCqiFilter_t m_ulCqiFilter
uint32_t tokenPoolSize
token generation rate ( byte/s )
#define SRS_CQI_RNTI_VSP
This abstract base class identifies the interface by means of which the helper object can plug on the...
virtual void CschedCellConfigReq(const struct CschedCellConfigReqParameters &params)
CSCHED_CELL_CONFIG_REQ.
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
#define NS_ASSERT_MSG(condition, message)
Definition: assert.h:86
virtual void CschedUeConfigReq(const struct CschedUeConfigReqParameters &params)
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
std::map< uint16_t, tdtbfqsFlowPerf_t > m_flowStatsDl
std::vector< struct RachListElement_s > m_rachList
static double fpS11dot3toDouble(uint16_t val)
Definition: lte-common.cc:114
#define HARQ_PROC_NUM
bool m_harqOn
m_harqOn when false inhibit te HARQ mechanisms (by default active)
virtual void SchedUlSrInfoReq(const struct SchedUlSrInfoReqParameters &params)
std::map< uint16_t, uint8_t > m_uesTxMode
std::vector< uint8_t > UlHarqProcessesStatus_t
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
std::map< uint16_t, uint32_t > m_ueCqiTimers
std::vector< uint8_t > DlHarqProcessesStatus_t
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
static uint32_t BsrId2BufferSize(uint8_t val)
Definition: lte-common.cc:142
virtual void SchedDlMacBufferReq(const struct SchedDlMacBufferReqParameters &params)
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
#define NS_LOG_DEBUG(msg)
Definition: log.h:289
virtual void CschedUeReleaseReq(const struct CschedUeReleaseReqParameters &params)
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
int TdTbfqType0AllocationRbg[4]
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
virtual void SchedUlTriggerReq(const struct SchedUlTriggerReqParameters &params)
FfMacCschedSapProvider * m_cschedSapProvider
#define NS_LOG_ERROR(msg)
Definition: log.h:271
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_UL_CONFIG_IND primitive.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
virtual void SchedUlCqiInfoReq(const struct SchedUlCqiInfoReqParameters &params)
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
std::vector< uint16_t > m_rachAllocationMap
struct DlDciListElement_s m_dci
#define HARQ_DL_TIMEOUT
std::vector< struct BuildRarListElement_s > m_buildRarList
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
std::map< uint16_t, uint32_t > m_ceBsrRxed
a unique identifier for an interface.
Definition: type-id.h:49
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
std::map< uint16_t, uint32_t > m_p10CqiTimers
TypeId SetParent(TypeId tid)
Definition: type-id.cc:611
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
std::vector< struct BuildDataListElement_s > m_buildDataList
std::map< uint16_t, tdtbfqsFlowPerf_t > m_flowStatsUl
See section 4.3.8 builDataListElement.