A Discrete-Event Network Simulator
API
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
tta-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/tta-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <set>
32 #include <cfloat>
33 
34 NS_LOG_COMPONENT_DEFINE ("TtaFfMacScheduler");
35 
36 namespace ns3 {
37 
39  10, // RGB size 1
40  26, // RGB size 2
41  63, // RGB size 3
42  110 // RGB size 4
43 }; // see table 7.1.6.1-1 of 36.213
44 
45 
46 NS_OBJECT_ENSURE_REGISTERED (TtaFfMacScheduler)
47  ;
48 
49 
50 
52 {
53 public:
55 
56  // inherited from FfMacCschedSapProvider
57  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
58  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
59  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
60  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
61  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
62 
63 private:
66 };
67 
69 {
70 }
71 
73 {
74 }
75 
76 
77 void
79 {
81 }
82 
83 void
85 {
87 }
88 
89 
90 void
92 {
94 }
95 
96 void
98 {
100 }
101 
102 void
104 {
106 }
107 
108 
109 
110 
112 {
113 public:
115 
116  // inherited from FfMacSchedSapProvider
117  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
118  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
119  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
120  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
121  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
122  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
123  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
124  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
125  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
126  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
127  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
128 
129 
130 private:
133 };
134 
135 
136 
138 {
139 }
140 
141 
143  : m_scheduler (scheduler)
144 {
145 }
146 
147 void
149 {
151 }
152 
153 void
155 {
157 }
158 
159 void
161 {
163 }
164 
165 void
167 {
169 }
170 
171 void
173 {
175 }
176 
177 void
179 {
181 }
182 
183 void
185 {
187 }
188 
189 void
191 {
193 }
194 
195 void
197 {
199 }
200 
201 void
203 {
205 }
206 
207 void
209 {
211 }
212 
213 
214 
215 
216 
218  : m_cschedSapUser (0),
219  m_schedSapUser (0),
220  m_nextRntiUl (0)
221 {
222  m_amc = CreateObject <LteAmc> ();
225 }
226 
228 {
229  NS_LOG_FUNCTION (this);
230 }
231 
232 void
234 {
235  NS_LOG_FUNCTION (this);
237  m_dlHarqProcessesTimer.clear ();
239  m_dlInfoListBuffered.clear ();
240  m_ulHarqCurrentProcessId.clear ();
241  m_ulHarqProcessesStatus.clear ();
243  delete m_cschedSapProvider;
244  delete m_schedSapProvider;
245 }
246 
247 TypeId
249 {
250  static TypeId tid = TypeId ("ns3::TtaFfMacScheduler")
252  .AddConstructor<TtaFfMacScheduler> ()
253  .AddAttribute ("CqiTimerThreshold",
254  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
255  UintegerValue (1000),
256  MakeUintegerAccessor (&TtaFfMacScheduler::m_cqiTimersThreshold),
257  MakeUintegerChecker<uint32_t> ())
258  .AddAttribute ("HarqEnabled",
259  "Activate/Deactivate the HARQ [by default is active].",
260  BooleanValue (true),
261  MakeBooleanAccessor (&TtaFfMacScheduler::m_harqOn),
262  MakeBooleanChecker ())
263  .AddAttribute ("UlGrantMcs",
264  "The MCS of the UL grant, must be [0..15] (default 0)",
265  UintegerValue (0),
266  MakeUintegerAccessor (&TtaFfMacScheduler::m_ulGrantMcs),
267  MakeUintegerChecker<uint8_t> ())
268  ;
269  return tid;
270 }
271 
272 
273 
274 void
276 {
277  m_cschedSapUser = s;
278 }
279 
280 void
282 {
283  m_schedSapUser = s;
284 }
285 
288 {
289  return m_cschedSapProvider;
290 }
291 
294 {
295  return m_schedSapProvider;
296 }
297 
298 void
300 {
301  NS_LOG_FUNCTION (this);
302  // Read the subset of parameters used
303  m_cschedCellConfig = params;
306  cnf.m_result = SUCCESS;
308  return;
309 }
310 
311 void
313 {
314  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
315  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
316  if (it == m_uesTxMode.end ())
317  {
318  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
319  // generate HARQ buffers
320  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
321  DlHarqProcessesStatus_t dlHarqPrcStatus;
322  dlHarqPrcStatus.resize (8,0);
323  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
324  DlHarqProcessesTimer_t dlHarqProcessesTimer;
325  dlHarqProcessesTimer.resize (8,0);
326  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
327  DlHarqProcessesDciBuffer_t dlHarqdci;
328  dlHarqdci.resize (8);
329  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
330  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
331  dlHarqRlcPdu.resize (2);
332  dlHarqRlcPdu.at (0).resize (8);
333  dlHarqRlcPdu.at (1).resize (8);
334  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
335  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
336  UlHarqProcessesStatus_t ulHarqPrcStatus;
337  ulHarqPrcStatus.resize (8,0);
338  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
339  UlHarqProcessesDciBuffer_t ulHarqdci;
340  ulHarqdci.resize (8);
341  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
342  }
343  else
344  {
345  (*it).second = params.m_transmissionMode;
346  }
347  return;
348 }
349 
350 void
352 {
353  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
354 
355  std::set <uint16_t>::iterator it;
356  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
357  {
358  it = m_flowStatsDl.find (params.m_rnti);
359 
360  if (it == m_flowStatsDl.end ())
361  {
362  m_flowStatsDl.insert (params.m_rnti);
363  m_flowStatsUl.insert (params.m_rnti);
364  }
365  }
366 
367  return;
368 }
369 
370 void
372 {
373  NS_LOG_FUNCTION (this);
374  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
375  {
376  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
377  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
378  while (it!=m_rlcBufferReq.end ())
379  {
380  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
381  {
382  temp = it;
383  it++;
384  m_rlcBufferReq.erase (temp);
385  }
386  else
387  {
388  it++;
389  }
390  }
391  }
392  return;
393 }
394 
395 void
397 {
398  NS_LOG_FUNCTION (this);
399 
400  m_uesTxMode.erase (params.m_rnti);
401  m_dlHarqCurrentProcessId.erase (params.m_rnti);
402  m_dlHarqProcessesStatus.erase (params.m_rnti);
403  m_dlHarqProcessesTimer.erase (params.m_rnti);
404  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
406  m_ulHarqCurrentProcessId.erase (params.m_rnti);
407  m_ulHarqProcessesStatus.erase (params.m_rnti);
408  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
409  m_flowStatsDl.erase (params.m_rnti);
410  m_flowStatsUl.erase (params.m_rnti);
411  m_ceBsrRxed.erase (params.m_rnti);
412  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
413  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
414  while (it!=m_rlcBufferReq.end ())
415  {
416  if ((*it).first.m_rnti == params.m_rnti)
417  {
418  temp = it;
419  it++;
420  m_rlcBufferReq.erase (temp);
421  }
422  else
423  {
424  it++;
425  }
426  }
427  if (m_nextRntiUl == params.m_rnti)
428  {
429  m_nextRntiUl = 0;
430  }
431 
432  return;
433 }
434 
435 
436 void
438 {
439  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
440  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
441 
442  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
443 
444  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
445 
446  it = m_rlcBufferReq.find (flow);
447 
448  if (it == m_rlcBufferReq.end ())
449  {
450  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
451  }
452  else
453  {
454  (*it).second = params;
455  }
456 
457  return;
458 }
459 
460 void
462 {
463  NS_LOG_FUNCTION (this);
464  NS_FATAL_ERROR ("method not implemented");
465  return;
466 }
467 
468 void
470 {
471  NS_LOG_FUNCTION (this);
472  NS_FATAL_ERROR ("method not implemented");
473  return;
474 }
475 
476 int
478 {
479  for (int i = 0; i < 4; i++)
480  {
481  if (dlbandwidth < TtaType0AllocationRbg[i])
482  {
483  return (i + 1);
484  }
485  }
486 
487  return (-1);
488 }
489 
490 
491 int
493 {
494  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
495  int lcActive = 0;
496  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
497  {
498  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
499  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
500  || ((*it).second.m_rlcStatusPduSize > 0) ))
501  {
502  lcActive++;
503  }
504  if ((*it).first.m_rnti > rnti)
505  {
506  break;
507  }
508  }
509  return (lcActive);
510 
511 }
512 
513 
514 uint8_t
516 {
517  NS_LOG_FUNCTION (this << rnti);
518 
519  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
520  if (it == m_dlHarqCurrentProcessId.end ())
521  {
522  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
523  }
524  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
525  if (itStat == m_dlHarqProcessesStatus.end ())
526  {
527  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
528  }
529  uint8_t i = (*it).second;
530  do
531  {
532  i = (i + 1) % HARQ_PROC_NUM;
533  }
534  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
535  if ((*itStat).second.at (i) == 0)
536  {
537  return (true);
538  }
539  else
540  {
541  return (false); // return a not valid harq proc id
542  }
543 }
544 
545 
546 
547 uint8_t
549 {
550  NS_LOG_FUNCTION (this << rnti);
551 
552  if (m_harqOn == false)
553  {
554  return (0);
555  }
556 
557 
558  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
559  if (it == m_dlHarqCurrentProcessId.end ())
560  {
561  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
562  }
563  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
564  if (itStat == m_dlHarqProcessesStatus.end ())
565  {
566  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
567  }
568  uint8_t i = (*it).second;
569  do
570  {
571  i = (i + 1) % HARQ_PROC_NUM;
572  }
573  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
574  if ((*itStat).second.at (i) == 0)
575  {
576  (*it).second = i;
577  (*itStat).second.at (i) = 1;
578  }
579  else
580  {
581  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
582  }
583 
584  return ((*it).second);
585 }
586 
587 
588 void
590 {
591  NS_LOG_FUNCTION (this);
592 
593  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
594  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
595  {
596  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
597  {
598  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
599  {
600  // reset HARQ process
601 
602  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
603  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
604  if (itStat == m_dlHarqProcessesStatus.end ())
605  {
606  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
607  }
608  (*itStat).second.at (i) = 0;
609  (*itTimers).second.at (i) = 0;
610  }
611  else
612  {
613  (*itTimers).second.at (i)++;
614  }
615  }
616  }
617 
618 }
619 
620 
621 void
623 {
624  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
625  // API generated by RLC for triggering the scheduling of a DL subframe
626 
627 
628  // evaluate the relative channel quality indicator for each UE per each RBG
629  // (since we are using allocation type 0 the small unit of allocation is RBG)
630  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
631 
632  RefreshDlCqiMaps ();
633 
635  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
636  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
637  std::vector <bool> rbgMap; // global RBGs map
638  uint16_t rbgAllocatedNum = 0;
639  std::set <uint16_t> rntiAllocated;
640  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
642 
643  // update UL HARQ proc id
644  std::map <uint16_t, uint8_t>::iterator itProcId;
645  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
646  {
647  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
648  }
649 
650  // RACH Allocation
652  uint16_t rbStart = 0;
653  std::vector <struct RachListElement_s>::iterator itRach;
654  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
655  {
656  NS_ASSERT_MSG (m_amc->GetTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
657  BuildRarListElement_s newRar;
658  newRar.m_rnti = (*itRach).m_rnti;
659  // DL-RACH Allocation
660  // Ideal: no needs of configuring m_dci
661  // UL-RACH Allocation
662  newRar.m_grant.m_rnti = newRar.m_rnti;
663  newRar.m_grant.m_mcs = m_ulGrantMcs;
664  uint16_t rbLen = 1;
665  uint16_t tbSizeBits = 0;
666  // find lowest TB size that fits UL grant estimated size
667  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
668  {
669  rbLen++;
670  tbSizeBits = m_amc->GetTbSizeFromMcs (m_ulGrantMcs, rbLen);
671  }
672  if (tbSizeBits < (*itRach).m_estimatedSize)
673  {
674  // no more allocation space: finish allocation
675  break;
676  }
677  newRar.m_grant.m_rbStart = rbStart;
678  newRar.m_grant.m_rbLen = rbLen;
679  newRar.m_grant.m_tbSize = tbSizeBits / 8;
680  newRar.m_grant.m_hopping = false;
681  newRar.m_grant.m_tpc = 0;
682  newRar.m_grant.m_cqiRequest = false;
683  newRar.m_grant.m_ulDelay = false;
684  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
685  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
686  {
687  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
688  }
689  rbStart = rbStart + rbLen;
690 
691  if (m_harqOn == true)
692  {
693  // generate UL-DCI for HARQ retransmissions
694  UlDciListElement_s uldci;
695  uldci.m_rnti = newRar.m_rnti;
696  uldci.m_rbLen = rbLen;
697  uldci.m_rbStart = rbStart;
698  uldci.m_mcs = m_ulGrantMcs;
699  uldci.m_tbSize = tbSizeBits / 8;
700  uldci.m_ndi = 1;
701  uldci.m_cceIndex = 0;
702  uldci.m_aggrLevel = 1;
703  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
704  uldci.m_hopping = false;
705  uldci.m_n2Dmrs = 0;
706  uldci.m_tpc = 0; // no power control
707  uldci.m_cqiRequest = false; // only period CQI at this stage
708  uldci.m_ulIndex = 0; // TDD parameter
709  uldci.m_dai = 1; // TDD parameter
710  uldci.m_freqHopping = 0;
711  uldci.m_pdcchPowerOffset = 0; // not used
712 
713  uint8_t harqId = 0;
714  std::map <uint16_t, uint8_t>::iterator itProcId;
715  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
716  if (itProcId == m_ulHarqCurrentProcessId.end ())
717  {
718  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
719  }
720  harqId = (*itProcId).second;
721  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
722  if (itDci == m_ulHarqProcessesDciBuffer.end ())
723  {
724  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
725  }
726  (*itDci).second.at (harqId) = uldci;
727  }
728 
729  ret.m_buildRarList.push_back (newRar);
730  }
731  m_rachList.clear ();
732 
733 
734  // Process DL HARQ feedback
736  // retrieve past HARQ retx buffered
737  if (m_dlInfoListBuffered.size () > 0)
738  {
739  if (params.m_dlInfoList.size () > 0)
740  {
741  NS_LOG_INFO (this << " Received DL-HARQ feedback");
742  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
743  }
744  }
745  else
746  {
747  if (params.m_dlInfoList.size () > 0)
748  {
750  }
751  }
752  if (m_harqOn == false)
753  {
754  // Ignore HARQ feedback
755  m_dlInfoListBuffered.clear ();
756  }
757  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
758  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
759  {
760  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
761  if (itRnti != rntiAllocated.end ())
762  {
763  // RNTI already allocated for retx
764  continue;
765  }
766  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
767  std::vector <bool> retx;
768  NS_LOG_INFO (this << " Processing DLHARQ feedback");
769  if (nLayers == 1)
770  {
771  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
772  retx.push_back (false);
773  }
774  else
775  {
776  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
777  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
778  }
779  if (retx.at (0) || retx.at (1))
780  {
781  // retrieve HARQ process information
782  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
783  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
784  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
785  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
786  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
787  {
788  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
789  }
790 
791  DlDciListElement_s dci = (*itHarq).second.at (harqId);
792  int rv = 0;
793  if (dci.m_rv.size () == 1)
794  {
795  rv = dci.m_rv.at (0);
796  }
797  else
798  {
799  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
800  }
801 
802  if (rv == 3)
803  {
804  // maximum number of retx reached -> drop process
805  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
806  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
807  if (it == m_dlHarqProcessesStatus.end ())
808  {
809  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
810  }
811  (*it).second.at (harqId) = 0;
812  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
813  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
814  {
815  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
816  }
817  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
818  {
819  (*itRlcPdu).second.at (k).at (harqId).clear ();
820  }
821  continue;
822  }
823  // check the feasibility of retransmitting on the same RBGs
824  // translate the DCI to Spectrum framework
825  std::vector <int> dciRbg;
826  uint32_t mask = 0x1;
827  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
828  for (int j = 0; j < 32; j++)
829  {
830  if (((dci.m_rbBitmap & mask) >> j) == 1)
831  {
832  dciRbg.push_back (j);
833  NS_LOG_INFO ("\t" << j);
834  }
835  mask = (mask << 1);
836  }
837  bool free = true;
838  for (uint8_t j = 0; j < dciRbg.size (); j++)
839  {
840  if (rbgMap.at (dciRbg.at (j)) == true)
841  {
842  free = false;
843  break;
844  }
845  }
846  if (free)
847  {
848  // use the same RBGs for the retx
849  // reserve RBGs
850  for (uint8_t j = 0; j < dciRbg.size (); j++)
851  {
852  rbgMap.at (dciRbg.at (j)) = true;
853  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
854  rbgAllocatedNum++;
855  }
856 
857  NS_LOG_INFO (this << " Send retx in the same RBGs");
858  }
859  else
860  {
861  // find RBGs for sending HARQ retx
862  uint8_t j = 0;
863  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
864  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
865  std::vector <bool> rbgMapCopy = rbgMap;
866  while ((j < dciRbg.size ())&&(startRbg != rbgId))
867  {
868  if (rbgMapCopy.at (rbgId) == false)
869  {
870  rbgMapCopy.at (rbgId) = true;
871  dciRbg.at (j) = rbgId;
872  j++;
873  }
874  rbgId++;
875  }
876  if (j == dciRbg.size ())
877  {
878  // find new RBGs -> update DCI map
879  uint32_t rbgMask = 0;
880  for (uint16_t k = 0; k < dciRbg.size (); k++)
881  {
882  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
883  rbgAllocatedNum++;
884  }
885  dci.m_rbBitmap = rbgMask;
886  rbgMap = rbgMapCopy;
887  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
888  }
889  else
890  {
891  // HARQ retx cannot be performed on this TTI -> store it
892  dlInfoListUntxed.push_back (params.m_dlInfoList.at (i));
893  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
894  }
895  }
896  // retrieve RLC PDU list for retx TBsize and update DCI
898  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
899  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
900  {
901  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
902  }
903  for (uint8_t j = 0; j < nLayers; j++)
904  {
905  if (retx.at (j))
906  {
907  if (j >= dci.m_ndi.size ())
908  {
909  // for avoiding errors in MIMO transient phases
910  dci.m_ndi.push_back (0);
911  dci.m_rv.push_back (0);
912  dci.m_mcs.push_back (0);
913  dci.m_tbsSize.push_back (0);
914  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
915  }
916  else
917  {
918  dci.m_ndi.at (j) = 0;
919  dci.m_rv.at (j)++;
920  (*itHarq).second.at (harqId).m_rv.at (j)++;
921  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
922  }
923  }
924  else
925  {
926  // empty TB of layer j
927  dci.m_ndi.at (j) = 0;
928  dci.m_rv.at (j) = 0;
929  dci.m_mcs.at (j) = 0;
930  dci.m_tbsSize.at (j) = 0;
931  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
932  }
933  }
934  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
935  {
936  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
937  for (uint8_t j = 0; j < nLayers; j++)
938  {
939  if (retx.at (j))
940  {
941  if (j < dci.m_ndi.size ())
942  {
943  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
944  }
945  }
946  }
947 
948  if (rlcPduListPerLc.size () > 0)
949  {
950  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
951  }
952  }
953  newEl.m_rnti = rnti;
954  newEl.m_dci = dci;
955  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
956  // refresh timer
957  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
958  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
959  {
960  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
961  }
962  (*itHarqTimer).second.at (harqId) = 0;
963  ret.m_buildDataList.push_back (newEl);
964  rntiAllocated.insert (rnti);
965  }
966  else
967  {
968  // update HARQ process status
969  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
970  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
971  if (it == m_dlHarqProcessesStatus.end ())
972  {
973  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
974  }
975  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
976  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
977  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
978  {
979  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
980  }
981  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
982  {
983  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
984  }
985  }
986  }
987  m_dlInfoListBuffered.clear ();
988  m_dlInfoListBuffered = dlInfoListUntxed;
989 
990  if (rbgAllocatedNum == rbgNum)
991  {
992  // all the RBGs are already allocated -> exit
993  if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
994  {
996  }
997  return;
998  }
999 
1000 
1001 
1002  for (int i = 0; i < rbgNum; i++)
1003  {
1004  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1005  if (rbgMap.at (i) == false)
1006  {
1007  std::set <uint16_t>::iterator it;
1008  std::set <uint16_t>::iterator itMax = m_flowStatsDl.end ();
1009  double rcqiMax = 0.0;
1010  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
1011  {
1012  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it));
1013  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it))))
1014  {
1015  // UE already allocated for HARQ or without HARQ process available -> drop it
1016  if (itRnti != rntiAllocated.end ())
1017  {
1018  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it));
1019  }
1020  if (!HarqProcessAvailability ((*it)))
1021  {
1022  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it));
1023  }
1024  continue;
1025  }
1026 
1027  std::map <uint16_t,SbMeasResult_s>::iterator itSbCqi;
1028  itSbCqi = m_a30CqiRxed.find ((*it));
1029  std::map <uint16_t,uint8_t>::iterator itWbCqi;
1030  itWbCqi = m_p10CqiRxed.find ((*it));
1031 
1032  std::map <uint16_t,uint8_t>::iterator itTxMode;
1033  itTxMode = m_uesTxMode.find ((*it));
1034  if (itTxMode == m_uesTxMode.end ())
1035  {
1036  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it));
1037  }
1038  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1039 
1040  std::vector <uint8_t> sbCqi;
1041  if (itSbCqi == m_a30CqiRxed.end ())
1042  {
1043  for (uint8_t k = 0; k < nLayer; k++)
1044  {
1045  sbCqi.push_back (1); // start with lowest value
1046  }
1047  }
1048  else
1049  {
1050  sbCqi = (*itSbCqi).second.m_higherLayerSelected.at (i).m_sbCqi;
1051  }
1052 
1053  uint8_t wbCqi = 0;
1054  if (itWbCqi != m_p10CqiRxed.end ())
1055  {
1056  wbCqi = (*itWbCqi).second;
1057  }
1058  else
1059  {
1060  wbCqi = 1; // lowest value fro trying a transmission
1061  }
1062 
1063  uint8_t cqi1 = sbCqi.at (0);
1064  uint8_t cqi2 = 1;
1065  if (sbCqi.size () > 1)
1066  {
1067  cqi2 = sbCqi.at (1);
1068  }
1069  if ((cqi1 > 0)||(cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1070  {
1071  if (LcActivePerFlow ((*it)) > 0)
1072  {
1073  // this UE has data to transmit
1074  double achievableSbRate = 0.0;
1075  double achievableWbRate = 0.0;
1076  uint8_t sbMcs = 0;
1077  uint8_t wbMcs = 0;
1078  for (uint8_t k = 0; k < nLayer; k++)
1079  {
1080  if (sbCqi.size () > k)
1081  {
1082  sbMcs = m_amc->GetMcsFromCqi (sbCqi.at (k));
1083  }
1084  else
1085  {
1086  // no info on this subband -> worst MCS
1087  sbMcs = 0;
1088  }
1089  achievableSbRate += ((m_amc->GetTbSizeFromMcs (sbMcs, rbgSize) / 8) / 0.001); // = TB size / TTI
1090  wbMcs = m_amc->GetMcsFromCqi (wbCqi);
1091  achievableWbRate += ((m_amc->GetTbSizeFromMcs (wbMcs, rbgSize) / 8) / 0.001); // = TB size / TTI
1092  }
1093 
1094  double metric = achievableSbRate / achievableWbRate;
1095 
1096  if (metric > rcqiMax)
1097  {
1098  rcqiMax = metric;
1099  itMax = it;
1100  }
1101  }
1102  } // end if cqi
1103 
1104  } // end for m_rlcBufferReq
1105 
1106  if (itMax == m_flowStatsDl.end ())
1107  {
1108  // no UE available for this RB
1109  NS_LOG_INFO (this << " any UE found");
1110  }
1111  else
1112  {
1113  rbgMap.at (i) = true;
1114  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1115  itMap = allocationMap.find ((*itMax));
1116  if (itMap == allocationMap.end ())
1117  {
1118  // insert new element
1119  std::vector <uint16_t> tempMap;
1120  tempMap.push_back (i);
1121  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax), tempMap));
1122  }
1123  else
1124  {
1125  (*itMap).second.push_back (i);
1126  }
1127  NS_LOG_INFO (this << " UE assigned " << (*itMax));
1128  }
1129  } // end for RBG free
1130  } // end for RBGs
1131 
1132  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1133  // creating the correspondent DCIs
1134  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1135  while (itMap != allocationMap.end ())
1136  {
1137  // create new BuildDataListElement_s for this LC
1138  BuildDataListElement_s newEl;
1139  newEl.m_rnti = (*itMap).first;
1140  // create the DlDciListElement_s
1141  DlDciListElement_s newDci;
1142  newDci.m_rnti = (*itMap).first;
1143  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1144 
1145  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1146  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1147  if (lcActives == 0)
1148  {
1149  // Set to max value, to avoid divide by 0 below
1150  lcActives = (uint16_t)65535; // UINT16_MAX;
1151  }
1152  uint16_t RgbPerRnti = (*itMap).second.size ();
1153  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1154  itCqi = m_a30CqiRxed.find ((*itMap).first);
1155  std::map <uint16_t,uint8_t>::iterator itTxMode;
1156  itTxMode = m_uesTxMode.find ((*itMap).first);
1157  if (itTxMode == m_uesTxMode.end ())
1158  {
1159  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1160  }
1161  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1162  std::vector <uint8_t> worstCqi (2, 15);
1163  if (itCqi != m_a30CqiRxed.end ())
1164  {
1165  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1166  {
1167  if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1168  {
1169  NS_LOG_INFO (this << " RBG " << (*itMap).second.at (k) << " CQI " << (uint16_t)((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) );
1170  for (uint8_t j = 0; j < nLayer; j++)
1171  {
1172  if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1173  {
1174  if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1175  {
1176  worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1177  }
1178  }
1179  else
1180  {
1181  // no CQI for this layer of this suband -> worst one
1182  worstCqi.at (j) = 1;
1183  }
1184  }
1185  }
1186  else
1187  {
1188  for (uint8_t j = 0; j < nLayer; j++)
1189  {
1190  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1191  }
1192  }
1193  }
1194  }
1195  else
1196  {
1197  for (uint8_t j = 0; j < nLayer; j++)
1198  {
1199  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1200  }
1201  }
1202  for (uint8_t j = 0; j < nLayer; j++)
1203  {
1204  NS_LOG_INFO (this << " Layer " << (uint16_t)j << " CQI selected " << (uint16_t)worstCqi.at (j));
1205  }
1206  uint32_t bytesTxed = 0;
1207  for (uint8_t j = 0; j < nLayer; j++)
1208  {
1209  newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
1210  int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1211  newDci.m_tbsSize.push_back (tbSize);
1212  NS_LOG_INFO (this << " Layer " << (uint16_t)j << " MCS selected" << m_amc->GetMcsFromCqi (worstCqi.at (j)));
1213 
1214  bytesTxed += tbSize;
1215  }
1216 
1217  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1218  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1219  uint32_t rbgMask = 0;
1220  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1221  {
1222  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1223  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1224  }
1225  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1226 
1227  // create the rlc PDUs -> equally divide resources among actives LCs
1228  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1229  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1230  {
1231  if (((*itBufReq).first.m_rnti == (*itMap).first)
1232  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1233  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1234  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1235  {
1236  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1237  for (uint8_t j = 0; j < nLayer; j++)
1238  {
1239  RlcPduListElement_s newRlcEl;
1240  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1241  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1242  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1243  newRlcPduLe.push_back (newRlcEl);
1244  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1245  if (m_harqOn == true)
1246  {
1247  // store RLC PDU list for HARQ
1248  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1249  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1250  {
1251  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1252  }
1253  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1254  }
1255  }
1256  newEl.m_rlcPduList.push_back (newRlcPduLe);
1257  }
1258  if ((*itBufReq).first.m_rnti > (*itMap).first)
1259  {
1260  break;
1261  }
1262  }
1263  for (uint8_t j = 0; j < nLayer; j++)
1264  {
1265  newDci.m_ndi.push_back (1);
1266  newDci.m_rv.push_back (0);
1267  }
1268 
1269  newEl.m_dci = newDci;
1270 
1271  if (m_harqOn == true)
1272  {
1273  // store DCI for HARQ
1274  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1275  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1276  {
1277  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1278  }
1279  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1280  // refresh timer
1281  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1282  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1283  {
1284  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1285  }
1286  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1287  }
1288 
1289  // ...more parameters -> ingored in this version
1290 
1291  ret.m_buildDataList.push_back (newEl);
1292 
1293  itMap++;
1294  } // end while allocation
1295  ret.m_nrOfPdcchOfdmSymbols = 1;
1296 
1298 
1299 
1300  return;
1301 }
1302 
1303 void
1305 {
1306  NS_LOG_FUNCTION (this);
1307 
1308  m_rachList = params.m_rachList;
1309 
1310  return;
1311 }
1312 
1313 void
1315 {
1316  NS_LOG_FUNCTION (this);
1317 
1318  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1319  {
1320  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1321  {
1322  // wideband CQI reporting
1323  std::map <uint16_t,uint8_t>::iterator it;
1324  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1325  it = m_p10CqiRxed.find (rnti);
1326  if (it == m_p10CqiRxed.end ())
1327  {
1328  // create the new entry
1329  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1330  // generate correspondent timer
1331  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1332  }
1333  else
1334  {
1335  // update the CQI value and refresh correspondent timer
1336  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1337  // update correspondent timer
1338  std::map <uint16_t,uint32_t>::iterator itTimers;
1339  itTimers = m_p10CqiTimers.find (rnti);
1340  (*itTimers).second = m_cqiTimersThreshold;
1341  }
1342  }
1343  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1344  {
1345  // subband CQI reporting high layer configured
1346  std::map <uint16_t,SbMeasResult_s>::iterator it;
1347  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1348  it = m_a30CqiRxed.find (rnti);
1349  if (it == m_a30CqiRxed.end ())
1350  {
1351  // create the new entry
1352  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1353  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1354  }
1355  else
1356  {
1357  // update the CQI value and refresh correspondent timer
1358  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1359  std::map <uint16_t,uint32_t>::iterator itTimers;
1360  itTimers = m_a30CqiTimers.find (rnti);
1361  (*itTimers).second = m_cqiTimersThreshold;
1362  }
1363  }
1364  else
1365  {
1366  NS_LOG_ERROR (this << " CQI type unknown");
1367  }
1368  }
1369 
1370  return;
1371 }
1372 
1373 
1374 double
1375 TtaFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1376 {
1377  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1378  if (itCqi == m_ueCqi.end ())
1379  {
1380  // no cqi info about this UE
1381  return (NO_SINR);
1382 
1383  }
1384  else
1385  {
1386  // take the average SINR value among the available
1387  double sinrSum = 0;
1388  int sinrNum = 0;
1389  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1390  {
1391  double sinr = (*itCqi).second.at (i);
1392  if (sinr != NO_SINR)
1393  {
1394  sinrSum += sinr;
1395  sinrNum++;
1396  }
1397  }
1398  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1399  // store the value
1400  (*itCqi).second.at (rb) = estimatedSinr;
1401  return (estimatedSinr);
1402  }
1403 }
1404 
1405 void
1407 {
1408  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1409 
1410  RefreshUlCqiMaps ();
1411 
1412  // Generate RBs map
1414  std::vector <bool> rbMap;
1415  uint16_t rbAllocatedNum = 0;
1416  std::set <uint16_t> rntiAllocated;
1417  std::vector <uint16_t> rbgAllocationMap;
1418  // update with RACH allocation map
1419  rbgAllocationMap = m_rachAllocationMap;
1420  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1421  m_rachAllocationMap.clear ();
1423 
1424  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1425  // remove RACH allocation
1426  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1427  {
1428  if (rbgAllocationMap.at (i) != 0)
1429  {
1430  rbMap.at (i) = true;
1431  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1432  }
1433  }
1434 
1435 
1436  if (m_harqOn == true)
1437  {
1438  // Process UL HARQ feedback
1439  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1440  {
1441  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1442  {
1443  // retx correspondent block: retrieve the UL-DCI
1444  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1445  std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1446  if (itProcId == m_ulHarqCurrentProcessId.end ())
1447  {
1448  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1449  }
1450  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1451  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1452  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1453  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1454  {
1455  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1456  continue;
1457  }
1458  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1459  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1460  if (itStat == m_ulHarqProcessesStatus.end ())
1461  {
1462  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1463  }
1464  if ((*itStat).second.at (harqId) >= 3)
1465  {
1466  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1467  continue;
1468  }
1469  bool free = true;
1470  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1471  {
1472  if (rbMap.at (j) == true)
1473  {
1474  free = false;
1475  NS_LOG_INFO (this << " BUSY " << j);
1476  }
1477  }
1478  if (free)
1479  {
1480  // retx on the same RBs
1481  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1482  {
1483  rbMap.at (j) = true;
1484  rbgAllocationMap.at (j) = dci.m_rnti;
1485  NS_LOG_INFO ("\tRB " << j);
1486  rbAllocatedNum++;
1487  }
1488  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1489  }
1490  else
1491  {
1492  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1493  continue;
1494  }
1495  dci.m_ndi = 0;
1496  // Update HARQ buffers with new HarqId
1497  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1498  (*itStat).second.at (harqId) = 0;
1499  (*itHarq).second.at ((*itProcId).second) = dci;
1500  ret.m_dciList.push_back (dci);
1501  rntiAllocated.insert (dci.m_rnti);
1502  }
1503  else
1504  {
1505  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1506  }
1507  }
1508  }
1509 
1510  std::map <uint16_t,uint32_t>::iterator it;
1511  int nflows = 0;
1512 
1513  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1514  {
1515  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1516  // select UEs with queues not empty and not yet allocated for HARQ
1517  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1518  {
1519  nflows++;
1520  }
1521  }
1522 
1523  if (nflows == 0)
1524  {
1525  if (ret.m_dciList.size () > 0)
1526  {
1528  }
1529 
1530  return; // no flows to be scheduled
1531  }
1532 
1533 
1534  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1535  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1536  if (rbPerFlow < 3)
1537  {
1538  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1539  }
1540  int rbAllocated = 0;
1541 
1542  if (m_nextRntiUl != 0)
1543  {
1544  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1545  {
1546  if ((*it).first == m_nextRntiUl)
1547  {
1548  break;
1549  }
1550  }
1551  if (it == m_ceBsrRxed.end ())
1552  {
1553  NS_LOG_ERROR (this << " no user found");
1554  }
1555  }
1556  else
1557  {
1558  it = m_ceBsrRxed.begin ();
1559  m_nextRntiUl = (*it).first;
1560  }
1561  do
1562  {
1563  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1564  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1565  {
1566  // UE already allocated for UL-HARQ -> skip it
1567  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1568  it++;
1569  if (it == m_ceBsrRxed.end ())
1570  {
1571  // restart from the first
1572  it = m_ceBsrRxed.begin ();
1573  }
1574  continue;
1575  }
1576  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1577  {
1578  // limit to physical resources last resource assignment
1579  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1580  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1581  if (rbPerFlow < 3)
1582  {
1583  // terminate allocation
1584  rbPerFlow = 0;
1585  }
1586  }
1587 
1588  UlDciListElement_s uldci;
1589  uldci.m_rnti = (*it).first;
1590  uldci.m_rbLen = rbPerFlow;
1591  bool allocated = false;
1592  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1593  while ((!allocated)&&((rbAllocated + rbPerFlow - 1) < m_cschedCellConfig.m_ulBandwidth) && (rbPerFlow != 0))
1594  {
1595  // check availability
1596  bool free = true;
1597  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1598  {
1599  if (rbMap.at (j) == true)
1600  {
1601  free = false;
1602  break;
1603  }
1604  }
1605  if (free)
1606  {
1607  uldci.m_rbStart = rbAllocated;
1608 
1609  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1610  {
1611  rbMap.at (j) = true;
1612  // store info on allocation for managing ul-cqi interpretation
1613  rbgAllocationMap.at (j) = (*it).first;
1614  }
1615  rbAllocated += rbPerFlow;
1616  allocated = true;
1617  break;
1618  }
1619  rbAllocated++;
1620  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1621  {
1622  // limit to physical resources last resource assignment
1623  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1624  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1625  if (rbPerFlow < 3)
1626  {
1627  // terminate allocation
1628  rbPerFlow = 0;
1629  }
1630  }
1631  }
1632  if (!allocated)
1633  {
1634  // unable to allocate new resource: finish scheduling
1635  m_nextRntiUl = (*it).first;
1636  if (ret.m_dciList.size () > 0)
1637  {
1639  }
1640  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1641  return;
1642  }
1643 
1644 
1645 
1646  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1647  int cqi = 0;
1648  if (itCqi == m_ueCqi.end ())
1649  {
1650  // no cqi info about this UE
1651  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1652  }
1653  else
1654  {
1655  // take the lowest CQI value (worst RB)
1656  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1657  if (minSinr == NO_SINR)
1658  {
1659  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1660  }
1661  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1662  {
1663  double sinr = (*itCqi).second.at (i);
1664  if (sinr == NO_SINR)
1665  {
1666  sinr = EstimateUlSinr ((*it).first, i);
1667  }
1668  if ((*itCqi).second.at (i) < minSinr)
1669  {
1670  minSinr = (*itCqi).second.at (i);
1671  }
1672  }
1673 
1674  // translate SINR -> cqi: WILD ACK: same as DL
1675  double s = log2 ( 1 + (
1676  std::pow (10, minSinr / 10 ) /
1677  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1678  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1679  if (cqi == 0)
1680  {
1681  it++;
1682  if (it == m_ceBsrRxed.end ())
1683  {
1684  // restart from the first
1685  it = m_ceBsrRxed.begin ();
1686  }
1687  NS_LOG_DEBUG (this << " UE discared for CQI=0, RNTI " << uldci.m_rnti);
1688  // remove UE from allocation map
1689  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1690  {
1691  rbgAllocationMap.at (i) = 0;
1692  }
1693  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1694  }
1695  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1696  }
1697 
1698  uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1699  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1700  uldci.m_ndi = 1;
1701  uldci.m_cceIndex = 0;
1702  uldci.m_aggrLevel = 1;
1703  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1704  uldci.m_hopping = false;
1705  uldci.m_n2Dmrs = 0;
1706  uldci.m_tpc = 0; // no power control
1707  uldci.m_cqiRequest = false; // only period CQI at this stage
1708  uldci.m_ulIndex = 0; // TDD parameter
1709  uldci.m_dai = 1; // TDD parameter
1710  uldci.m_freqHopping = 0;
1711  uldci.m_pdcchPowerOffset = 0; // not used
1712  ret.m_dciList.push_back (uldci);
1713  // store DCI for HARQ_PERIOD
1714  uint8_t harqId = 0;
1715  if (m_harqOn == true)
1716  {
1717  std::map <uint16_t, uint8_t>::iterator itProcId;
1718  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1719  if (itProcId == m_ulHarqCurrentProcessId.end ())
1720  {
1721  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1722  }
1723  harqId = (*itProcId).second;
1724  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1725  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1726  {
1727  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1728  }
1729  (*itDci).second.at (harqId) = uldci;
1730  }
1731 
1732  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1733 
1734 
1735  it++;
1736  if (it == m_ceBsrRxed.end ())
1737  {
1738  // restart from the first
1739  it = m_ceBsrRxed.begin ();
1740  }
1741  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1742  {
1743  // Stop allocation: no more PRBs
1744  m_nextRntiUl = (*it).first;
1745  break;
1746  }
1747  }
1748  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1749 
1750 
1751  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1753 
1754  return;
1755 }
1756 
1757 void
1759 {
1760  NS_LOG_FUNCTION (this);
1761  return;
1762 }
1763 
1764 void
1766 {
1767  NS_LOG_FUNCTION (this);
1768  return;
1769 }
1770 
1771 void
1773 {
1774  NS_LOG_FUNCTION (this);
1775 
1776  std::map <uint16_t,uint32_t>::iterator it;
1777 
1778  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1779  {
1780  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1781  {
1782  // buffer status report
1783  // note that this scheduler does not differentiate the
1784  // allocation according to which LCGs have more/less bytes
1785  // to send.
1786  // Hence the BSR of different LCGs are just summed up to get
1787  // a total queue size that is used for allocation purposes.
1788 
1789  uint32_t buffer = 0;
1790  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1791  {
1792  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1793  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1794  }
1795 
1796  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1797  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1798  it = m_ceBsrRxed.find (rnti);
1799  if (it == m_ceBsrRxed.end ())
1800  {
1801  // create the new entry
1802  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1803  }
1804  else
1805  {
1806  // update the buffer size value
1807  (*it).second = buffer;
1808  }
1809  }
1810  }
1811 
1812  return;
1813 }
1814 
1815 void
1817 {
1818  NS_LOG_FUNCTION (this);
1819 // retrieve the allocation for this subframe
1820  switch (m_ulCqiFilter)
1821  {
1823  {
1824  // filter all the CQIs that are not SRS based
1825  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1826  {
1827  return;
1828  }
1829  }
1830  break;
1832  {
1833  // filter all the CQIs that are not SRS based
1834  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1835  {
1836  return;
1837  }
1838  }
1840  break;
1841 
1842  default:
1843  NS_FATAL_ERROR ("Unknown UL CQI type");
1844  }
1845 
1846  switch (params.m_ulCqi.m_type)
1847  {
1848  case UlCqi_s::PUSCH:
1849  {
1850  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1851  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1852  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1853  itMap = m_allocationMaps.find (params.m_sfnSf);
1854  if (itMap == m_allocationMaps.end ())
1855  {
1856  return;
1857  }
1858  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1859  {
1860  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1861  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1862  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1863  if (itCqi == m_ueCqi.end ())
1864  {
1865  // create a new entry
1866  std::vector <double> newCqi;
1867  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1868  {
1869  if (i == j)
1870  {
1871  newCqi.push_back (sinr);
1872  }
1873  else
1874  {
1875  // initialize with NO_SINR value.
1876  newCqi.push_back (NO_SINR);
1877  }
1878 
1879  }
1880  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1881  // generate correspondent timer
1882  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1883  }
1884  else
1885  {
1886  // update the value
1887  (*itCqi).second.at (i) = sinr;
1888  //NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1889  // update correspondent timer
1890  std::map <uint16_t, uint32_t>::iterator itTimers;
1891  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1892  (*itTimers).second = m_cqiTimersThreshold;
1893 
1894  }
1895 
1896  }
1897  // remove obsolete info on allocation
1898  m_allocationMaps.erase (itMap);
1899  }
1900  break;
1901  case UlCqi_s::SRS:
1902  {
1903  // get the RNTI from vendor specific parameters
1904  uint16_t rnti = 0;
1905  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1906  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1907  {
1908  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1909  {
1910  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1911  rnti = vsp->GetRnti ();
1912  }
1913  }
1914  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1915  itCqi = m_ueCqi.find (rnti);
1916  if (itCqi == m_ueCqi.end ())
1917  {
1918  // create a new entry
1919  std::vector <double> newCqi;
1920  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1921  {
1922  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1923  newCqi.push_back (sinr);
1924  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1925 
1926  }
1927  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1928  // generate correspondent timer
1929  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1930  }
1931  else
1932  {
1933  // update the values
1934  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1935  {
1936  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1937  (*itCqi).second.at (j) = sinr;
1938  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1939  }
1940  // update correspondent timer
1941  std::map <uint16_t, uint32_t>::iterator itTimers;
1942  itTimers = m_ueCqiTimers.find (rnti);
1943  (*itTimers).second = m_cqiTimersThreshold;
1944 
1945  }
1946 
1947 
1948  }
1949  break;
1950  case UlCqi_s::PUCCH_1:
1951  case UlCqi_s::PUCCH_2:
1952  case UlCqi_s::PRACH:
1953  {
1954  NS_FATAL_ERROR ("TtaFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1955  }
1956  break;
1957  default:
1958  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1959  }
1960  return;
1961 }
1962 
1963 void
1965 {
1966  // refresh DL CQI P01 Map
1967  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1968  while (itP10 != m_p10CqiTimers.end ())
1969  {
1970  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1971  if ((*itP10).second == 0)
1972  {
1973  // delete correspondent entries
1974  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1975  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1976  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1977  m_p10CqiRxed.erase (itMap);
1978  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1979  itP10++;
1980  m_p10CqiTimers.erase (temp);
1981  }
1982  else
1983  {
1984  (*itP10).second--;
1985  itP10++;
1986  }
1987  }
1988 
1989  // refresh DL CQI A30 Map
1990  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1991  while (itA30 != m_a30CqiTimers.end ())
1992  {
1993  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1994  if ((*itA30).second == 0)
1995  {
1996  // delete correspondent entries
1997  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1998  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1999  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
2000  m_a30CqiRxed.erase (itMap);
2001  std::map <uint16_t,uint32_t>::iterator temp = itA30;
2002  itA30++;
2003  m_a30CqiTimers.erase (temp);
2004  }
2005  else
2006  {
2007  (*itA30).second--;
2008  itA30++;
2009  }
2010  }
2011 
2012  return;
2013 }
2014 
2015 
2016 void
2018 {
2019  // refresh UL CQI Map
2020  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
2021  while (itUl != m_ueCqiTimers.end ())
2022  {
2023  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2024  if ((*itUl).second == 0)
2025  {
2026  // delete correspondent entries
2027  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
2028  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
2029  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
2030  (*itMap).second.clear ();
2031  m_ueCqi.erase (itMap);
2032  std::map <uint16_t,uint32_t>::iterator temp = itUl;
2033  itUl++;
2034  m_ueCqiTimers.erase (temp);
2035  }
2036  else
2037  {
2038  (*itUl).second--;
2039  itUl++;
2040  }
2041  }
2042 
2043  return;
2044 }
2045 
2046 void
2047 TtaFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
2048 {
2049  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
2050  LteFlowId_t flow (rnti, lcid);
2051  it = m_rlcBufferReq.find (flow);
2052  if (it != m_rlcBufferReq.end ())
2053  {
2054  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2055  // Update queues: RLC tx order Status, ReTx, Tx
2056  // Update status queue
2057  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2058  {
2059  (*it).second.m_rlcStatusPduSize = 0;
2060  }
2061  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
2062  {
2063  (*it).second.m_rlcRetransmissionQueueSize = 0;
2064  }
2065  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2066  {
2067  uint32_t rlcOverhead;
2068  if (lcid == 1)
2069  {
2070  // for SRB1 (using RLC AM) it's better to
2071  // overestimate RLC overhead rather than
2072  // underestimate it and risk unneeded
2073  // segmentation which increases delay
2074  rlcOverhead = 4;
2075  }
2076  else
2077  {
2078  // minimum RLC overhead due to header
2079  rlcOverhead = 2;
2080  }
2081  // update transmission queue
2082  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2083  {
2084  (*it).second.m_rlcTransmissionQueueSize = 0;
2085  }
2086  else
2087  {
2088  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2089  }
2090  }
2091  }
2092  else
2093  {
2094  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2095  }
2096 }
2097 
2098 void
2099 TtaFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2100 {
2101 
2102  size = size - 2; // remove the minimum RLC overhead
2103  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2104  if (it != m_ceBsrRxed.end ())
2105  {
2106  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2107  if ((*it).second >= size)
2108  {
2109  (*it).second -= size;
2110  }
2111  else
2112  {
2113  (*it).second = 0;
2114  }
2115  }
2116  else
2117  {
2118  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2119  }
2120 
2121 }
2122 
2123 void
2125 {
2126  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2128  params.m_rnti = rnti;
2129  params.m_transmissionMode = txMode;
2131 }
2132 
2133 
2134 }
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
FfMacCschedSapUser * m_cschedSapUser
int GetRbgSize(int dlbandwidth)
std::vector< struct UlInfoListElement_s > m_ulInfoList
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:88
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
std::vector< struct RachListElement_s > m_rachList
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
smart pointer class similar to boost::intrusive_ptr
Definition: ptr.h:59
#define NS_LOG_FUNCTION(parameters)
Definition: log.h:345
virtual void SchedUlSrInfoReq(const struct SchedUlSrInfoReqParameters &params)
#define HARQ_PERIOD
Definition: lte-common.h:30
Hold a bool native type.
Definition: boolean.h:38
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
std::map< uint16_t, uint32_t > m_ceBsrRxed
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
virtual void CschedCellConfigReq(const struct CschedCellConfigReqParameters &params)
CSCHED_CELL_CONFIG_REQ.
virtual void SchedDlPagingBufferReq(const struct SchedDlPagingBufferReqParameters &params)
virtual void SchedDlMacBufferReq(const struct SchedDlMacBufferReqParameters &params)
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
virtual void SchedDlCqiInfoReq(const struct SchedDlCqiInfoReqParameters &params)
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
enum ns3::UlCqi_s::Type_e m_type
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
std::vector< uint16_t > m_sinr
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
std::vector< uint8_t > DlHarqProcessesTimer_t
#define NO_SINR
#define NS_ASSERT(condition)
Definition: assert.h:64
NS_OBJECT_ENSURE_REGISTERED(NullMessageSimulatorImpl)
virtual void SchedDlTriggerReq(const struct SchedDlTriggerReqParameters &params)
std::vector< uint8_t > m_mcs
Definition: ff-mac-common.h:95
int TtaType0AllocationRbg[4]
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
std::vector< struct UlDciListElement_s > m_dciList
#define NS_LOG_INFO(msg)
Definition: log.h:298
See section 4.3.10 buildRARListElement.
FfMacSchedSapUser * m_schedSapUser
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
virtual void DoDispose(void)
This method is called by Object::Dispose or by the object's destructor, whichever comes first...
std::map< uint16_t, uint32_t > m_p10CqiTimers
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
#define NS_FATAL_ERROR(msg)
fatal error handling
Definition: fatal-error.h:72
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
virtual void CschedLcReleaseReq(const struct CschedLcReleaseReqParameters &params)
std::map< uint16_t, uint8_t > m_p10CqiRxed
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
virtual void CschedUeConfigReq(const struct CschedUeConfigReqParameters &params)
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
Hold an unsigned integer type.
Definition: uinteger.h:46
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
static uint8_t TxMode2LayerNum(uint8_t txMode)
Definition: lte-common.cc:170
Ptr< SampleEmitter > s
virtual void SchedDlRachInfoReq(const struct SchedDlRachInfoReqParameters &params)
virtual void CschedLcConfigReq(const struct CschedLcConfigReqParameters &params)
std::map< uint16_t, uint8_t > m_uesTxMode
std::vector< uint8_t > m_ndi
Definition: ff-mac-common.h:96
std::map< uint16_t, uint32_t > m_ueCqiTimers
int LcActivePerFlow(uint16_t rnti)
Provides the SCHED SAP.
friend class TtaSchedulerMemberCschedSapProvider
virtual void SchedUlNoiseInterferenceReq(const struct SchedUlNoiseInterferenceReqParameters &params)
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
#define NS_LOG_LOGIC(msg)
Definition: log.h:368
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
std::vector< struct DlInfoListElement_s > m_dlInfoList
friend class TtaSchedulerMemberSchedSapProvider
virtual void SchedUlCqiInfoReq(const struct SchedUlCqiInfoReqParameters &params)
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
virtual void SchedUlTriggerReq(const struct SchedUlTriggerReqParameters &params)
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
static TypeId GetTypeId(void)
std::vector< uint16_t > m_tbsSize
Definition: ff-mac-common.h:94
See section 4.3.9 rlcPDU_ListElement.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::vector< uint8_t > m_rv
Definition: ff-mac-common.h:97
FfMacSchedSapProvider * m_schedSapProvider
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
std::set< uint16_t > m_flowStatsDl
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
UlCqiFilter_t m_ulCqiFilter
#define SRS_CQI_RNTI_VSP
std::set< uint16_t > m_flowStatsUl
This abstract base class identifies the interface by means of which the helper object can plug on the...
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
#define NS_ASSERT_MSG(condition, message)
Definition: assert.h:86
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
bool m_harqOn
m_harqOn when false inhibit te HARQ mechanisms (by default active)
std::map< uint16_t, std::vector< double > > m_ueCqi
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
std::vector< struct RachListElement_s > m_rachList
static double fpS11dot3toDouble(uint16_t val)
Definition: lte-common.cc:114
#define HARQ_PROC_NUM
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
virtual ~TtaFfMacScheduler()
Destructor.
std::vector< uint8_t > UlHarqProcessesStatus_t
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
std::vector< uint8_t > DlHarqProcessesStatus_t
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
static uint32_t BsrId2BufferSize(uint8_t val)
Definition: lte-common.cc:142
virtual void SchedDlRlcBufferReq(const struct SchedDlRlcBufferReqParameters &params)
virtual void CschedUeReleaseReq(const struct CschedUeReleaseReqParameters &params)
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
#define NS_LOG_DEBUG(msg)
Definition: log.h:289
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
virtual void SchedUlMacCtrlInfoReq(const struct SchedUlMacCtrlInfoReqParameters &params)
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
#define NS_LOG_ERROR(msg)
Definition: log.h:271
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_UL_CONFIG_IND primitive.
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
std::vector< uint16_t > m_rachAllocationMap
FfMacCschedSapProvider * m_cschedSapProvider
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
struct DlDciListElement_s m_dci
NS_LOG_COMPONENT_DEFINE("TtaFfMacScheduler")
#define HARQ_DL_TIMEOUT
std::vector< struct BuildRarListElement_s > m_buildRarList
a unique identifier for an interface.
Definition: type-id.h:49
Implements the SCHED SAP and CSCHED SAP for a Throughput to Average scheduler.
TypeId SetParent(TypeId tid)
Definition: type-id.cc:611
std::vector< struct BuildDataListElement_s > m_buildDataList
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
See section 4.3.8 builDataListElement.