A Discrete-Event Network Simulator
API
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
fdbet-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/fdbet-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <set>
32 #include <cfloat>
33 
34 NS_LOG_COMPONENT_DEFINE ("FdBetFfMacScheduler");
35 
36 namespace ns3 {
37 
38 static const int FdBetType0AllocationRbg[4] = {
39  10, // RGB size 1
40  26, // RGB size 2
41  63, // RGB size 3
42  110 // RGB size 4
43 }; // see table 7.1.6.1-1 of 36.213
44 
45 
46 NS_OBJECT_ENSURE_REGISTERED (FdBetFfMacScheduler);
47 
48 
49 
51 {
52 public:
54 
55  // inherited from FfMacCschedSapProvider
56  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
57  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
58  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
59  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
60  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
61 
62 private:
65 };
66 
68 {
69 }
70 
72 {
73 }
74 
75 
76 void
78 {
80 }
81 
82 void
84 {
86 }
87 
88 
89 void
91 {
93 }
94 
95 void
97 {
99 }
100 
101 void
103 {
105 }
106 
107 
108 
109 
111 {
112 public:
114 
115  // inherited from FfMacSchedSapProvider
116  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
117  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
118  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
119  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
120  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
121  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
122  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
123  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
124  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
125  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
126  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
127 
128 
129 private:
132 };
133 
134 
135 
137 {
138 }
139 
140 
142  : m_scheduler (scheduler)
143 {
144 }
145 
146 void
148 {
150 }
151 
152 void
154 {
156 }
157 
158 void
160 {
162 }
163 
164 void
166 {
168 }
169 
170 void
172 {
174 }
175 
176 void
178 {
180 }
181 
182 void
184 {
186 }
187 
188 void
190 {
192 }
193 
194 void
196 {
198 }
199 
200 void
202 {
204 }
205 
206 void
208 {
210 }
211 
212 
213 
214 
215 
217  : m_cschedSapUser (0),
218  m_schedSapUser (0),
219  m_timeWindow (99.0),
220  m_nextRntiUl (0)
221 {
222  m_amc = CreateObject <LteAmc> ();
225 }
226 
228 {
229  NS_LOG_FUNCTION (this);
230 }
231 
232 void
234 {
235  NS_LOG_FUNCTION (this);
237  m_dlHarqProcessesTimer.clear ();
239  m_dlInfoListBuffered.clear ();
240  m_ulHarqCurrentProcessId.clear ();
241  m_ulHarqProcessesStatus.clear ();
243  delete m_cschedSapProvider;
244  delete m_schedSapProvider;
245 }
246 
247 TypeId
249 {
250  static TypeId tid = TypeId ("ns3::FdBetFfMacScheduler")
252  .AddConstructor<FdBetFfMacScheduler> ()
253  .AddAttribute ("CqiTimerThreshold",
254  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
255  UintegerValue (1000),
256  MakeUintegerAccessor (&FdBetFfMacScheduler::m_cqiTimersThreshold),
257  MakeUintegerChecker<uint32_t> ())
258  .AddAttribute ("HarqEnabled",
259  "Activate/Deactivate the HARQ [by default is active].",
260  BooleanValue (true),
261  MakeBooleanAccessor (&FdBetFfMacScheduler::m_harqOn),
262  MakeBooleanChecker ())
263  .AddAttribute ("UlGrantMcs",
264  "The MCS of the UL grant, must be [0..15] (default 0)",
265  UintegerValue (0),
266  MakeUintegerAccessor (&FdBetFfMacScheduler::m_ulGrantMcs),
267  MakeUintegerChecker<uint8_t> ())
268  ;
269  return tid;
270 }
271 
272 
273 
274 void
276 {
277  m_cschedSapUser = s;
278 }
279 
280 void
282 {
283  m_schedSapUser = s;
284 }
285 
288 {
289  return m_cschedSapProvider;
290 }
291 
294 {
295  return m_schedSapProvider;
296 }
297 
298 void
300 {
301  NS_LOG_FUNCTION (this);
302  // Read the subset of parameters used
303  m_cschedCellConfig = params;
306  cnf.m_result = SUCCESS;
308  return;
309 }
310 
311 void
313 {
314  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
315  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
316  if (it == m_uesTxMode.end ())
317  {
318  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
319  // generate HARQ buffers
320  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
321  DlHarqProcessesStatus_t dlHarqPrcStatus;
322  dlHarqPrcStatus.resize (8,0);
323  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
324  DlHarqProcessesTimer_t dlHarqProcessesTimer;
325  dlHarqProcessesTimer.resize (8,0);
326  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
327  DlHarqProcessesDciBuffer_t dlHarqdci;
328  dlHarqdci.resize (8);
329  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
330  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
331  dlHarqRlcPdu.resize (2);
332  dlHarqRlcPdu.at (0).resize (8);
333  dlHarqRlcPdu.at (1).resize (8);
334  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
335  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
336  UlHarqProcessesStatus_t ulHarqPrcStatus;
337  ulHarqPrcStatus.resize (8,0);
338  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
339  UlHarqProcessesDciBuffer_t ulHarqdci;
340  ulHarqdci.resize (8);
341  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
342  }
343  else
344  {
345  (*it).second = params.m_transmissionMode;
346  }
347  return;
348 }
349 
350 void
352 {
353  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
354 
355  std::map <uint16_t, fdbetsFlowPerf_t>::iterator it;
356  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
357  {
358  it = m_flowStatsDl.find (params.m_rnti);
359 
360  if (it == m_flowStatsDl.end ())
361  {
362  fdbetsFlowPerf_t flowStatsDl;
363  flowStatsDl.flowStart = Simulator::Now ();
364  flowStatsDl.totalBytesTransmitted = 0;
365  flowStatsDl.lastTtiBytesTrasmitted = 0;
366  flowStatsDl.lastAveragedThroughput = 1;
367  m_flowStatsDl.insert (std::pair<uint16_t, fdbetsFlowPerf_t> (params.m_rnti, flowStatsDl));
368  fdbetsFlowPerf_t flowStatsUl;
369  flowStatsUl.flowStart = Simulator::Now ();
370  flowStatsUl.totalBytesTransmitted = 0;
371  flowStatsUl.lastTtiBytesTrasmitted = 0;
372  flowStatsUl.lastAveragedThroughput = 1;
373  m_flowStatsUl.insert (std::pair<uint16_t, fdbetsFlowPerf_t> (params.m_rnti, flowStatsUl));
374  }
375  }
376 
377  return;
378 }
379 
380 void
382 {
383  NS_LOG_FUNCTION (this);
384  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
385  {
386  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
387  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
388  while (it!=m_rlcBufferReq.end ())
389  {
390  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
391  {
392  temp = it;
393  it++;
394  m_rlcBufferReq.erase (temp);
395  }
396  else
397  {
398  it++;
399  }
400  }
401  }
402  return;
403 }
404 
405 void
407 {
408  NS_LOG_FUNCTION (this);
409 
410  m_uesTxMode.erase (params.m_rnti);
411  m_dlHarqCurrentProcessId.erase (params.m_rnti);
412  m_dlHarqProcessesStatus.erase (params.m_rnti);
413  m_dlHarqProcessesTimer.erase (params.m_rnti);
414  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
416  m_ulHarqCurrentProcessId.erase (params.m_rnti);
417  m_ulHarqProcessesStatus.erase (params.m_rnti);
418  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
419  m_flowStatsDl.erase (params.m_rnti);
420  m_flowStatsUl.erase (params.m_rnti);
421  m_ceBsrRxed.erase (params.m_rnti);
422  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
423  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
424  while (it!=m_rlcBufferReq.end ())
425  {
426  if ((*it).first.m_rnti == params.m_rnti)
427  {
428  temp = it;
429  it++;
430  m_rlcBufferReq.erase (temp);
431  }
432  else
433  {
434  it++;
435  }
436  }
437  if (m_nextRntiUl == params.m_rnti)
438  {
439  m_nextRntiUl = 0;
440  }
441 
442  return;
443 }
444 
445 
446 void
448 {
449  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
450  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
451 
452  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
453 
454  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
455 
456  it = m_rlcBufferReq.find (flow);
457 
458  if (it == m_rlcBufferReq.end ())
459  {
460  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
461  }
462  else
463  {
464  (*it).second = params;
465  }
466 
467  return;
468 }
469 
470 void
472 {
473  NS_LOG_FUNCTION (this);
474  NS_FATAL_ERROR ("method not implemented");
475  return;
476 }
477 
478 void
480 {
481  NS_LOG_FUNCTION (this);
482  NS_FATAL_ERROR ("method not implemented");
483  return;
484 }
485 
486 int
488 {
489  for (int i = 0; i < 4; i++)
490  {
491  if (dlbandwidth < FdBetType0AllocationRbg[i])
492  {
493  return (i + 1);
494  }
495  }
496 
497  return (-1);
498 }
499 
500 
501 int
503 {
504  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
505  int lcActive = 0;
506  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
507  {
508  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
509  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
510  || ((*it).second.m_rlcStatusPduSize > 0) ))
511  {
512  lcActive++;
513  }
514  if ((*it).first.m_rnti > rnti)
515  {
516  break;
517  }
518  }
519  return (lcActive);
520 
521 }
522 
523 
524 uint8_t
526 {
527  NS_LOG_FUNCTION (this << rnti);
528 
529  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
530  if (it == m_dlHarqCurrentProcessId.end ())
531  {
532  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
533  }
534  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
535  if (itStat == m_dlHarqProcessesStatus.end ())
536  {
537  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
538  }
539  uint8_t i = (*it).second;
540  do
541  {
542  i = (i + 1) % HARQ_PROC_NUM;
543  }
544  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
545  if ((*itStat).second.at (i) == 0)
546  {
547  return (true);
548  }
549  else
550  {
551  return (false); // return a not valid harq proc id
552  }
553 }
554 
555 
556 
557 uint8_t
559 {
560  NS_LOG_FUNCTION (this << rnti);
561 
562  if (m_harqOn == false)
563  {
564  return (0);
565  }
566 
567 
568  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
569  if (it == m_dlHarqCurrentProcessId.end ())
570  {
571  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
572  }
573  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
574  if (itStat == m_dlHarqProcessesStatus.end ())
575  {
576  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
577  }
578  uint8_t i = (*it).second;
579  do
580  {
581  i = (i + 1) % HARQ_PROC_NUM;
582  }
583  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
584  if ((*itStat).second.at (i) == 0)
585  {
586  (*it).second = i;
587  (*itStat).second.at (i) = 1;
588  }
589  else
590  {
591  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
592  }
593 
594  return ((*it).second);
595 }
596 
597 
598 void
600 {
601  NS_LOG_FUNCTION (this);
602 
603  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
604  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
605  {
606  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
607  {
608  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
609  {
610  // reset HARQ process
611 
612  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
613  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
614  if (itStat == m_dlHarqProcessesStatus.end ())
615  {
616  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
617  }
618  (*itStat).second.at (i) = 0;
619  (*itTimers).second.at (i) = 0;
620  }
621  else
622  {
623  (*itTimers).second.at (i)++;
624  }
625  }
626  }
627 
628 }
629 
630 
631 void
633 {
634  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
635  // API generated by RLC for triggering the scheduling of a DL subframe
636 
637 
638  // evaluate the relative channel quality indicator for each UE per each RBG
639  // (since we are using allocation type 0 the small unit of allocation is RBG)
640  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
641 
642  RefreshDlCqiMaps ();
643 
645  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
646  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
647  std::vector <bool> rbgMap; // global RBGs map
648  uint16_t rbgAllocatedNum = 0;
649  std::set <uint16_t> rntiAllocated;
650  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
652 
653 
654  // update UL HARQ proc id
655  std::map <uint16_t, uint8_t>::iterator itProcId;
656  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
657  {
658  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
659  }
660 
661  // RACH Allocation
663  uint16_t rbStart = 0;
664  std::vector <struct RachListElement_s>::iterator itRach;
665  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
666  {
667  NS_ASSERT_MSG (m_amc->GetTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
668  BuildRarListElement_s newRar;
669  newRar.m_rnti = (*itRach).m_rnti;
670  // DL-RACH Allocation
671  // Ideal: no needs of configuring m_dci
672  // UL-RACH Allocation
673  newRar.m_grant.m_rnti = newRar.m_rnti;
674  newRar.m_grant.m_mcs = m_ulGrantMcs;
675  uint16_t rbLen = 1;
676  uint16_t tbSizeBits = 0;
677  // find lowest TB size that fits UL grant estimated size
678  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
679  {
680  rbLen++;
681  tbSizeBits = m_amc->GetTbSizeFromMcs (m_ulGrantMcs, rbLen);
682  }
683  if (tbSizeBits < (*itRach).m_estimatedSize)
684  {
685  // no more allocation space: finish allocation
686  break;
687  }
688  newRar.m_grant.m_rbStart = rbStart;
689  newRar.m_grant.m_rbLen = rbLen;
690  newRar.m_grant.m_tbSize = tbSizeBits / 8;
691  newRar.m_grant.m_hopping = false;
692  newRar.m_grant.m_tpc = 0;
693  newRar.m_grant.m_cqiRequest = false;
694  newRar.m_grant.m_ulDelay = false;
695  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
696  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
697  {
698  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
699  }
700  rbStart = rbStart + rbLen;
701 
702  if (m_harqOn == true)
703  {
704  // generate UL-DCI for HARQ retransmissions
705  UlDciListElement_s uldci;
706  uldci.m_rnti = newRar.m_rnti;
707  uldci.m_rbLen = rbLen;
708  uldci.m_rbStart = rbStart;
709  uldci.m_mcs = m_ulGrantMcs;
710  uldci.m_tbSize = tbSizeBits / 8;
711  uldci.m_ndi = 1;
712  uldci.m_cceIndex = 0;
713  uldci.m_aggrLevel = 1;
714  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
715  uldci.m_hopping = false;
716  uldci.m_n2Dmrs = 0;
717  uldci.m_tpc = 0; // no power control
718  uldci.m_cqiRequest = false; // only period CQI at this stage
719  uldci.m_ulIndex = 0; // TDD parameter
720  uldci.m_dai = 1; // TDD parameter
721  uldci.m_freqHopping = 0;
722  uldci.m_pdcchPowerOffset = 0; // not used
723 
724  uint8_t harqId = 0;
725  std::map <uint16_t, uint8_t>::iterator itProcId;
726  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
727  if (itProcId == m_ulHarqCurrentProcessId.end ())
728  {
729  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
730  }
731  harqId = (*itProcId).second;
732  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
733  if (itDci == m_ulHarqProcessesDciBuffer.end ())
734  {
735  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
736  }
737  (*itDci).second.at (harqId) = uldci;
738  }
739 
740  ret.m_buildRarList.push_back (newRar);
741  }
742  m_rachList.clear ();
743 
744 
745  // Process DL HARQ feedback
747  // retrieve past HARQ retx buffered
748  if (m_dlInfoListBuffered.size () > 0)
749  {
750  if (params.m_dlInfoList.size () > 0)
751  {
752  NS_LOG_INFO (this << " Received DL-HARQ feedback");
753  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
754  }
755  }
756  else
757  {
758  if (params.m_dlInfoList.size () > 0)
759  {
761  }
762  }
763  if (m_harqOn == false)
764  {
765  // Ignore HARQ feedback
766  m_dlInfoListBuffered.clear ();
767  }
768  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
769  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
770  {
771  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
772  if (itRnti != rntiAllocated.end ())
773  {
774  // RNTI already allocated for retx
775  continue;
776  }
777  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
778  std::vector <bool> retx;
779  NS_LOG_INFO (this << " Processing DLHARQ feedback");
780  if (nLayers == 1)
781  {
782  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
783  retx.push_back (false);
784  }
785  else
786  {
787  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
788  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
789  }
790  if (retx.at (0) || retx.at (1))
791  {
792  // retrieve HARQ process information
793  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
794  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
795  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
796  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
797  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
798  {
799  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
800  }
801 
802  DlDciListElement_s dci = (*itHarq).second.at (harqId);
803  int rv = 0;
804  if (dci.m_rv.size () == 1)
805  {
806  rv = dci.m_rv.at (0);
807  }
808  else
809  {
810  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
811  }
812 
813  if (rv == 3)
814  {
815  // maximum number of retx reached -> drop process
816  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
817  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
818  if (it == m_dlHarqProcessesStatus.end ())
819  {
820  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
821  }
822  (*it).second.at (harqId) = 0;
823  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
824  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
825  {
826  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
827  }
828  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
829  {
830  (*itRlcPdu).second.at (k).at (harqId).clear ();
831  }
832  continue;
833  }
834  // check the feasibility of retransmitting on the same RBGs
835  // translate the DCI to Spectrum framework
836  std::vector <int> dciRbg;
837  uint32_t mask = 0x1;
838  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
839  for (int j = 0; j < 32; j++)
840  {
841  if (((dci.m_rbBitmap & mask) >> j) == 1)
842  {
843  dciRbg.push_back (j);
844  NS_LOG_INFO ("\t" << j);
845  }
846  mask = (mask << 1);
847  }
848  bool free = true;
849  for (uint8_t j = 0; j < dciRbg.size (); j++)
850  {
851  if (rbgMap.at (dciRbg.at (j)) == true)
852  {
853  free = false;
854  break;
855  }
856  }
857  if (free)
858  {
859  // use the same RBGs for the retx
860  // reserve RBGs
861  for (uint8_t j = 0; j < dciRbg.size (); j++)
862  {
863  rbgMap.at (dciRbg.at (j)) = true;
864  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
865  rbgAllocatedNum++;
866  }
867 
868  NS_LOG_INFO (this << " Send retx in the same RBGs");
869  }
870  else
871  {
872  // find RBGs for sending HARQ retx
873  uint8_t j = 0;
874  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
875  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
876  std::vector <bool> rbgMapCopy = rbgMap;
877  while ((j < dciRbg.size ())&&(startRbg != rbgId))
878  {
879  if (rbgMapCopy.at (rbgId) == false)
880  {
881  rbgMapCopy.at (rbgId) = true;
882  dciRbg.at (j) = rbgId;
883  j++;
884  }
885  rbgId++;
886  }
887  if (j == dciRbg.size ())
888  {
889  // find new RBGs -> update DCI map
890  uint32_t rbgMask = 0;
891  for (uint16_t k = 0; k < dciRbg.size (); k++)
892  {
893  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
894  rbgAllocatedNum++;
895  }
896  dci.m_rbBitmap = rbgMask;
897  rbgMap = rbgMapCopy;
898  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
899  }
900  else
901  {
902  // HARQ retx cannot be performed on this TTI -> store it
903  dlInfoListUntxed.push_back (params.m_dlInfoList.at (i));
904  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
905  }
906  }
907  // retrieve RLC PDU list for retx TBsize and update DCI
909  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
910  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
911  {
912  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
913  }
914  for (uint8_t j = 0; j < nLayers; j++)
915  {
916  if (retx.at (j))
917  {
918  if (j >= dci.m_ndi.size ())
919  {
920  // for avoiding errors in MIMO transient phases
921  dci.m_ndi.push_back (0);
922  dci.m_rv.push_back (0);
923  dci.m_mcs.push_back (0);
924  dci.m_tbsSize.push_back (0);
925  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
926  }
927  else
928  {
929  dci.m_ndi.at (j) = 0;
930  dci.m_rv.at (j)++;
931  (*itHarq).second.at (harqId).m_rv.at (j)++;
932  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
933  }
934  }
935  else
936  {
937  // empty TB of layer j
938  dci.m_ndi.at (j) = 0;
939  dci.m_rv.at (j) = 0;
940  dci.m_mcs.at (j) = 0;
941  dci.m_tbsSize.at (j) = 0;
942  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
943  }
944  }
945  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
946  {
947  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
948  for (uint8_t j = 0; j < nLayers; j++)
949  {
950  if (retx.at (j))
951  {
952  if (j < dci.m_ndi.size ())
953  {
954  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
955  }
956  }
957  }
958 
959  if (rlcPduListPerLc.size () > 0)
960  {
961  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
962  }
963  }
964  newEl.m_rnti = rnti;
965  newEl.m_dci = dci;
966  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
967  // refresh timer
968  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
969  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
970  {
971  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
972  }
973  (*itHarqTimer).second.at (harqId) = 0;
974  ret.m_buildDataList.push_back (newEl);
975  rntiAllocated.insert (rnti);
976  }
977  else
978  {
979  // update HARQ process status
980  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
981  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
982  if (it == m_dlHarqProcessesStatus.end ())
983  {
984  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
985  }
986  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
987  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
988  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
989  {
990  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
991  }
992  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
993  {
994  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
995  }
996  }
997  }
998  m_dlInfoListBuffered.clear ();
999  m_dlInfoListBuffered = dlInfoListUntxed;
1000 
1001  if (rbgAllocatedNum == rbgNum)
1002  {
1003  // all the RBGs are already allocated -> exit
1004  if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
1005  {
1007  }
1008  return;
1009  }
1010 
1011  std::map <uint16_t, fdbetsFlowPerf_t>::iterator itFlow;
1012  std::map <uint16_t, double> estAveThr; // store expected average throughput for UE
1013  std::map <uint16_t, double>::iterator itMax = estAveThr.end ();
1014  std::map <uint16_t, double>::iterator it;
1015  std::map <uint16_t, int> rbgPerRntiLog; // record the number of RBG assigned to UE
1016  double metricMax = 0.0;
1017  for (itFlow = m_flowStatsDl.begin (); itFlow != m_flowStatsDl.end (); itFlow++)
1018  {
1019  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*itFlow).first);
1020  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*itFlow).first)))
1021  {
1022  // UE already allocated for HARQ or without HARQ process available -> drop it
1023  if (itRnti != rntiAllocated.end ())
1024  {
1025  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*itFlow).first);
1026  }
1027  if (!HarqProcessAvailability ((*itFlow).first))
1028  {
1029  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*itFlow).first);
1030  }
1031  continue;
1032  }
1033 
1034  estAveThr.insert (std::pair <uint16_t, double> ((*itFlow).first, (*itFlow).second.lastAveragedThroughput));
1035  }
1036 
1037  if (estAveThr.size () != 0)
1038  {
1039  // Find UE with largest priority metric
1040  for (it = estAveThr.begin (); it != estAveThr.end (); it++)
1041  {
1042  double metric = 1 / (*it).second;
1043  if (metric > metricMax)
1044  {
1045  metricMax = metric;
1046  itMax = it;
1047  }
1048  rbgPerRntiLog.insert (std::pair<uint16_t, int> ((*it).first, 1));
1049  }
1050 
1051 
1052  // The scheduler tries the best to achieve the equal throughput among all UEs
1053  int i = 0;
1054  do
1055  {
1056  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1057  if (rbgMap.at (i) == false)
1058  {
1059  // allocate one RBG to current UE
1060  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1061  std::vector <uint16_t> tempMap;
1062  itMap = allocationMap.find ((*itMax).first);
1063  if (itMap == allocationMap.end ())
1064  {
1065  tempMap.push_back (i);
1066  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax).first, tempMap));
1067  }
1068  else
1069  {
1070  (*itMap).second.push_back (i);
1071  }
1072 
1073  // caculate expected throughput for current UE
1074  std::map <uint16_t,uint8_t>::iterator itCqi;
1075  itCqi = m_p10CqiRxed.find ((*itMax).first);
1076  std::map <uint16_t,uint8_t>::iterator itTxMode;
1077  itTxMode = m_uesTxMode.find ((*itMax).first);
1078  if (itTxMode == m_uesTxMode.end ())
1079  {
1080  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMax).first);
1081  }
1082  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1083  std::vector <uint8_t> mcs;
1084  for (uint8_t j = 0; j < nLayer; j++)
1085  {
1086  if (itCqi == m_p10CqiRxed.end ())
1087  {
1088  mcs.push_back (0); // no info on this user -> lowest MCS
1089  }
1090  else
1091  {
1092  mcs.push_back (m_amc->GetMcsFromCqi ((*itCqi).second));
1093  }
1094  }
1095 
1096  std::map <uint16_t,int>::iterator itRbgPerRntiLog;
1097  itRbgPerRntiLog = rbgPerRntiLog.find ((*itMax).first);
1098  std::map <uint16_t, fdbetsFlowPerf_t>::iterator itPastAveThr;
1099  itPastAveThr = m_flowStatsDl.find ((*itMax).first);
1100  uint32_t bytesTxed = 0;
1101  for (uint8_t j = 0; j < nLayer; j++)
1102  {
1103  int tbSize = (m_amc->GetTbSizeFromMcs (mcs.at (0), (*itRbgPerRntiLog).second * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1104  bytesTxed += tbSize;
1105  }
1106  double expectedAveThr = ((1.0 - (1.0 / m_timeWindow)) * (*itPastAveThr).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)(bytesTxed / 0.001));
1107 
1108  int rbgPerRnti = (*itRbgPerRntiLog).second;
1109  rbgPerRnti++;
1110  rbgPerRntiLog[(*itMax).first] = rbgPerRnti;
1111  estAveThr[(*itMax).first] = expectedAveThr;
1112 
1113  // find new UE with largest priority metric
1114  metricMax = 0.0;
1115  for (it = estAveThr.begin (); it != estAveThr.end (); it++)
1116  {
1117  double metric = 1 / (*it).second;
1118  if (metric > metricMax)
1119  {
1120  itMax = it;
1121  metricMax = metric;
1122  }
1123  } // end for estAveThr
1124 
1125  rbgMap.at (i) = true;
1126 
1127  } // end for free RBGs
1128 
1129  i++;
1130 
1131  }
1132  while ( i < rbgNum ); // end for RBGs
1133 
1134  } // end if estAveThr
1135 
1136  // reset TTI stats of users
1137  std::map <uint16_t, fdbetsFlowPerf_t>::iterator itStats;
1138  for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
1139  {
1140  (*itStats).second.lastTtiBytesTrasmitted = 0;
1141  }
1142 
1143  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1144  // creating the correspondent DCIs
1145  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1146  while (itMap != allocationMap.end ())
1147  {
1148  // create new BuildDataListElement_s for this LC
1149  BuildDataListElement_s newEl;
1150  newEl.m_rnti = (*itMap).first;
1151  // create the DlDciListElement_s
1152  DlDciListElement_s newDci;
1153  newDci.m_rnti = (*itMap).first;
1154  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1155 
1156  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1157  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1158  if (lcActives == 0)
1159  {
1160  // Set to max value, to avoid divide by 0 below
1161  lcActives = (uint16_t)65535; // UINT16_MAX;
1162  }
1163  uint16_t RgbPerRnti = (*itMap).second.size ();
1164  std::map <uint16_t,uint8_t>::iterator itCqi;
1165  itCqi = m_p10CqiRxed.find ((*itMap).first);
1166  std::map <uint16_t,uint8_t>::iterator itTxMode;
1167  itTxMode = m_uesTxMode.find ((*itMap).first);
1168  if (itTxMode == m_uesTxMode.end ())
1169  {
1170  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1171  }
1172  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1173 
1174  uint32_t bytesTxed = 0;
1175  for (uint8_t j = 0; j < nLayer; j++)
1176  {
1177  if (itCqi == m_p10CqiRxed.end ())
1178  {
1179  newDci.m_mcs.push_back (0); // no info on this user -> lowest MCS
1180  }
1181  else
1182  {
1183  newDci.m_mcs.push_back ( m_amc->GetMcsFromCqi ((*itCqi).second) );
1184  }
1185 
1186  int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1187  newDci.m_tbsSize.push_back (tbSize);
1188  bytesTxed += tbSize;
1189  }
1190 
1191  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1192  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1193  uint32_t rbgMask = 0;
1194  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1195  {
1196  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1197  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1198  }
1199  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1200 
1201  // create the rlc PDUs -> equally divide resources among actives LCs
1202  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1203  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1204  {
1205  if (((*itBufReq).first.m_rnti == (*itMap).first)
1206  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1207  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1208  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1209  {
1210  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1211  for (uint8_t j = 0; j < nLayer; j++)
1212  {
1213  RlcPduListElement_s newRlcEl;
1214  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1215  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1216  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1217  newRlcPduLe.push_back (newRlcEl);
1218  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1219  if (m_harqOn == true)
1220  {
1221  // store RLC PDU list for HARQ
1222  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1223  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1224  {
1225  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1226  }
1227  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1228  }
1229  }
1230  newEl.m_rlcPduList.push_back (newRlcPduLe);
1231  }
1232  if ((*itBufReq).first.m_rnti > (*itMap).first)
1233  {
1234  break;
1235  }
1236  }
1237  for (uint8_t j = 0; j < nLayer; j++)
1238  {
1239  newDci.m_ndi.push_back (1);
1240  newDci.m_rv.push_back (0);
1241  }
1242 
1243  newEl.m_dci = newDci;
1244 
1245  if (m_harqOn == true)
1246  {
1247  // store DCI for HARQ
1248  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1249  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1250  {
1251  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1252  }
1253  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1254  // refresh timer
1255  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1256  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1257  {
1258  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1259  }
1260  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1261  }
1262 
1263  // ...more parameters -> ingored in this version
1264 
1265  ret.m_buildDataList.push_back (newEl);
1266  // update UE stats
1267  std::map <uint16_t, fdbetsFlowPerf_t>::iterator it;
1268  it = m_flowStatsDl.find ((*itMap).first);
1269  if (it != m_flowStatsDl.end ())
1270  {
1271  (*it).second.lastTtiBytesTrasmitted = bytesTxed;
1272  NS_LOG_INFO (this << " UE total bytes txed " << (*it).second.lastTtiBytesTrasmitted);
1273 
1274 
1275  }
1276  else
1277  {
1278  NS_FATAL_ERROR (this << " No Stats for this allocated UE");
1279  }
1280 
1281  itMap++;
1282  } // end while allocation
1283  ret.m_nrOfPdcchOfdmSymbols = 1;
1284 
1285 
1286  // update UEs stats
1287  NS_LOG_INFO (this << " Update UEs statistics");
1288  for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
1289  {
1290  (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1291  // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
1292  (*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1293  NS_LOG_INFO (this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1294  NS_LOG_INFO (this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1295  (*itStats).second.lastTtiBytesTrasmitted = 0;
1296  }
1297 
1299 
1300 
1301  return;
1302 }
1303 
1304 void
1306 {
1307  NS_LOG_FUNCTION (this);
1308 
1309  m_rachList = params.m_rachList;
1310 
1311  return;
1312 }
1313 
1314 void
1316 {
1317  NS_LOG_FUNCTION (this);
1318 
1319  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1320  {
1321  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1322  {
1323  // wideband CQI reporting
1324  std::map <uint16_t,uint8_t>::iterator it;
1325  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1326  it = m_p10CqiRxed.find (rnti);
1327  if (it == m_p10CqiRxed.end ())
1328  {
1329  // create the new entry
1330  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1331  // generate correspondent timer
1332  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1333  }
1334  else
1335  {
1336  // update the CQI value and refresh correspondent timer
1337  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1338  // update correspondent timer
1339  std::map <uint16_t,uint32_t>::iterator itTimers;
1340  itTimers = m_p10CqiTimers.find (rnti);
1341  (*itTimers).second = m_cqiTimersThreshold;
1342  }
1343  }
1344  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1345  {
1346  // subband CQI reporting high layer configured
1347  std::map <uint16_t,SbMeasResult_s>::iterator it;
1348  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1349  it = m_a30CqiRxed.find (rnti);
1350  if (it == m_a30CqiRxed.end ())
1351  {
1352  // create the new entry
1353  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1354  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1355  }
1356  else
1357  {
1358  // update the CQI value and refresh correspondent timer
1359  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1360  std::map <uint16_t,uint32_t>::iterator itTimers;
1361  itTimers = m_a30CqiTimers.find (rnti);
1362  (*itTimers).second = m_cqiTimersThreshold;
1363  }
1364  }
1365  else
1366  {
1367  NS_LOG_ERROR (this << " CQI type unknown");
1368  }
1369  }
1370 
1371  return;
1372 }
1373 
1374 
1375 double
1376 FdBetFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1377 {
1378  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1379  if (itCqi == m_ueCqi.end ())
1380  {
1381  // no cqi info about this UE
1382  return (NO_SINR);
1383 
1384  }
1385  else
1386  {
1387  // take the average SINR value among the available
1388  double sinrSum = 0;
1389  int sinrNum = 0;
1390  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1391  {
1392  double sinr = (*itCqi).second.at (i);
1393  if (sinr != NO_SINR)
1394  {
1395  sinrSum += sinr;
1396  sinrNum++;
1397  }
1398  }
1399  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1400  // store the value
1401  (*itCqi).second.at (rb) = estimatedSinr;
1402  return (estimatedSinr);
1403  }
1404 }
1405 
1406 void
1408 {
1409  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1410 
1411  RefreshUlCqiMaps ();
1412 
1413  // Generate RBs map
1415  std::vector <bool> rbMap;
1416  uint16_t rbAllocatedNum = 0;
1417  std::set <uint16_t> rntiAllocated;
1418  std::vector <uint16_t> rbgAllocationMap;
1419  // update with RACH allocation map
1420  rbgAllocationMap = m_rachAllocationMap;
1421  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1422  m_rachAllocationMap.clear ();
1424 
1425  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1426  // remove RACH allocation
1427  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1428  {
1429  if (rbgAllocationMap.at (i) != 0)
1430  {
1431  rbMap.at (i) = true;
1432  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1433  }
1434  }
1435 
1436 
1437  if (m_harqOn == true)
1438  {
1439  // Process UL HARQ feedback
1440  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1441  {
1442  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1443  {
1444  // retx correspondent block: retrieve the UL-DCI
1445  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1446  std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1447  if (itProcId == m_ulHarqCurrentProcessId.end ())
1448  {
1449  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1450  }
1451  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1452  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1453  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1454  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1455  {
1456  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1457  continue;
1458  }
1459  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1460  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1461  if (itStat == m_ulHarqProcessesStatus.end ())
1462  {
1463  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1464  }
1465  if ((*itStat).second.at (harqId) >= 3)
1466  {
1467  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1468  continue;
1469  }
1470  bool free = true;
1471  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1472  {
1473  if (rbMap.at (j) == true)
1474  {
1475  free = false;
1476  NS_LOG_INFO (this << " BUSY " << j);
1477  }
1478  }
1479  if (free)
1480  {
1481  // retx on the same RBs
1482  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1483  {
1484  rbMap.at (j) = true;
1485  rbgAllocationMap.at (j) = dci.m_rnti;
1486  NS_LOG_INFO ("\tRB " << j);
1487  rbAllocatedNum++;
1488  }
1489  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1490  }
1491  else
1492  {
1493  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1494  continue;
1495  }
1496  dci.m_ndi = 0;
1497  // Update HARQ buffers with new HarqId
1498  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1499  (*itStat).second.at (harqId) = 0;
1500  (*itHarq).second.at ((*itProcId).second) = dci;
1501  ret.m_dciList.push_back (dci);
1502  rntiAllocated.insert (dci.m_rnti);
1503  }
1504  else
1505  {
1506  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1507  }
1508  }
1509  }
1510 
1511  std::map <uint16_t,uint32_t>::iterator it;
1512  int nflows = 0;
1513 
1514  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1515  {
1516  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1517  // select UEs with queues not empty and not yet allocated for HARQ
1518  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1519  {
1520  nflows++;
1521  }
1522  }
1523 
1524  if (nflows == 0)
1525  {
1526  if (ret.m_dciList.size () > 0)
1527  {
1528  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1530  }
1531 
1532  return; // no flows to be scheduled
1533  }
1534 
1535 
1536  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1537  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1538  if (rbPerFlow < 3)
1539  {
1540  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1541  }
1542  int rbAllocated = 0;
1543 
1544  std::map <uint16_t, fdbetsFlowPerf_t>::iterator itStats;
1545  if (m_nextRntiUl != 0)
1546  {
1547  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1548  {
1549  if ((*it).first == m_nextRntiUl)
1550  {
1551  break;
1552  }
1553  }
1554  if (it == m_ceBsrRxed.end ())
1555  {
1556  NS_LOG_ERROR (this << " no user found");
1557  }
1558  }
1559  else
1560  {
1561  it = m_ceBsrRxed.begin ();
1562  m_nextRntiUl = (*it).first;
1563  }
1564  do
1565  {
1566  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1567  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1568  {
1569  // UE already allocated for UL-HARQ -> skip it
1570  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1571  it++;
1572  if (it == m_ceBsrRxed.end ())
1573  {
1574  // restart from the first
1575  it = m_ceBsrRxed.begin ();
1576  }
1577  continue;
1578  }
1579  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1580  {
1581  // limit to physical resources last resource assignment
1582  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1583  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1584  if (rbPerFlow < 3)
1585  {
1586  // terminate allocation
1587  rbPerFlow = 0;
1588  }
1589  }
1590 
1591  UlDciListElement_s uldci;
1592  uldci.m_rnti = (*it).first;
1593  uldci.m_rbLen = rbPerFlow;
1594  bool allocated = false;
1595  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1596  while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1597  {
1598  // check availability
1599  bool free = true;
1600  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1601  {
1602  if (rbMap.at (j) == true)
1603  {
1604  free = false;
1605  break;
1606  }
1607  }
1608  if (free)
1609  {
1610  uldci.m_rbStart = rbAllocated;
1611 
1612  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1613  {
1614  rbMap.at (j) = true;
1615  // store info on allocation for managing ul-cqi interpretation
1616  rbgAllocationMap.at (j) = (*it).first;
1617  }
1618  rbAllocated += rbPerFlow;
1619  allocated = true;
1620  break;
1621  }
1622  rbAllocated++;
1623  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1624  {
1625  // limit to physical resources last resource assignment
1626  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1627  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1628  if (rbPerFlow < 3)
1629  {
1630  // terminate allocation
1631  rbPerFlow = 0;
1632  }
1633  }
1634  }
1635  if (!allocated)
1636  {
1637  // unable to allocate new resource: finish scheduling
1638  m_nextRntiUl = (*it).first;
1639  if (ret.m_dciList.size () > 0)
1640  {
1642  }
1643  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1644  return;
1645  }
1646 
1647 
1648 
1649  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1650  int cqi = 0;
1651  if (itCqi == m_ueCqi.end ())
1652  {
1653  // no cqi info about this UE
1654  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1655  }
1656  else
1657  {
1658  // take the lowest CQI value (worst RB)
1659  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1660  if (minSinr == NO_SINR)
1661  {
1662  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1663  }
1664  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1665  {
1666  double sinr = (*itCqi).second.at (i);
1667  if (sinr == NO_SINR)
1668  {
1669  sinr = EstimateUlSinr ((*it).first, i);
1670  }
1671  if ((*itCqi).second.at (i) < minSinr)
1672  {
1673  minSinr = (*itCqi).second.at (i);
1674  }
1675  }
1676 
1677  // translate SINR -> cqi: WILD ACK: same as DL
1678  double s = log2 ( 1 + (
1679  std::pow (10, minSinr / 10 ) /
1680  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1681  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1682  if (cqi == 0)
1683  {
1684  it++;
1685  if (it == m_ceBsrRxed.end ())
1686  {
1687  // restart from the first
1688  it = m_ceBsrRxed.begin ();
1689  }
1690  NS_LOG_DEBUG (this << " UE discared for CQI=0, RNTI " << uldci.m_rnti);
1691  // remove UE from allocation map
1692  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1693  {
1694  rbgAllocationMap.at (i) = 0;
1695  }
1696  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1697  }
1698  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1699  }
1700 
1701  uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1702  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1703  uldci.m_ndi = 1;
1704  uldci.m_cceIndex = 0;
1705  uldci.m_aggrLevel = 1;
1706  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1707  uldci.m_hopping = false;
1708  uldci.m_n2Dmrs = 0;
1709  uldci.m_tpc = 0; // no power control
1710  uldci.m_cqiRequest = false; // only period CQI at this stage
1711  uldci.m_ulIndex = 0; // TDD parameter
1712  uldci.m_dai = 1; // TDD parameter
1713  uldci.m_freqHopping = 0;
1714  uldci.m_pdcchPowerOffset = 0; // not used
1715  ret.m_dciList.push_back (uldci);
1716  // store DCI for HARQ_PERIOD
1717  uint8_t harqId = 0;
1718  if (m_harqOn == true)
1719  {
1720  std::map <uint16_t, uint8_t>::iterator itProcId;
1721  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1722  if (itProcId == m_ulHarqCurrentProcessId.end ())
1723  {
1724  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1725  }
1726  harqId = (*itProcId).second;
1727  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1728  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1729  {
1730  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1731  }
1732  (*itDci).second.at (harqId) = uldci;
1733  }
1734 
1735  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1736 
1737  // update TTI UE stats
1738  itStats = m_flowStatsUl.find ((*it).first);
1739  if (itStats != m_flowStatsUl.end ())
1740  {
1741  (*itStats).second.lastTtiBytesTrasmitted = uldci.m_tbSize;
1742  }
1743  else
1744  {
1745  NS_LOG_DEBUG (this << " No Stats for this allocated UE");
1746  }
1747 
1748 
1749  it++;
1750  if (it == m_ceBsrRxed.end ())
1751  {
1752  // restart from the first
1753  it = m_ceBsrRxed.begin ();
1754  }
1755  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1756  {
1757  // Stop allocation: no more PRBs
1758  m_nextRntiUl = (*it).first;
1759  break;
1760  }
1761  }
1762  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1763 
1764 
1765  // Update global UE stats
1766  // update UEs stats
1767  for (itStats = m_flowStatsUl.begin (); itStats != m_flowStatsUl.end (); itStats++)
1768  {
1769  (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1770  // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
1771  (*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1772  NS_LOG_INFO (this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1773  NS_LOG_INFO (this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1774  (*itStats).second.lastTtiBytesTrasmitted = 0;
1775  }
1776  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1778 
1779  return;
1780 }
1781 
1782 void
1784 {
1785  NS_LOG_FUNCTION (this);
1786  return;
1787 }
1788 
1789 void
1791 {
1792  NS_LOG_FUNCTION (this);
1793  return;
1794 }
1795 
1796 void
1798 {
1799  NS_LOG_FUNCTION (this);
1800 
1801  std::map <uint16_t,uint32_t>::iterator it;
1802 
1803  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1804  {
1805  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1806  {
1807  // buffer status report
1808  // note that this scheduler does not differentiate the
1809  // allocation according to which LCGs have more/less bytes
1810  // to send.
1811  // Hence the BSR of different LCGs are just summed up to get
1812  // a total queue size that is used for allocation purposes.
1813 
1814  uint32_t buffer = 0;
1815  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1816  {
1817  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1818  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1819  }
1820 
1821  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1822  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1823  it = m_ceBsrRxed.find (rnti);
1824  if (it == m_ceBsrRxed.end ())
1825  {
1826  // create the new entry
1827  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1828  }
1829  else
1830  {
1831  // update the buffer size value
1832  (*it).second = buffer;
1833  }
1834  }
1835  }
1836 
1837  return;
1838 }
1839 
1840 void
1842 {
1843  NS_LOG_FUNCTION (this);
1844 // retrieve the allocation for this subframe
1845  switch (m_ulCqiFilter)
1846  {
1848  {
1849  // filter all the CQIs that are not SRS based
1850  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1851  {
1852  return;
1853  }
1854  }
1855  break;
1857  {
1858  // filter all the CQIs that are not SRS based
1859  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1860  {
1861  return;
1862  }
1863  }
1865  break;
1866 
1867  default:
1868  NS_FATAL_ERROR ("Unknown UL CQI type");
1869  }
1870 
1871  switch (params.m_ulCqi.m_type)
1872  {
1873  case UlCqi_s::PUSCH:
1874  {
1875  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1876  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1877  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1878  itMap = m_allocationMaps.find (params.m_sfnSf);
1879  if (itMap == m_allocationMaps.end ())
1880  {
1881  return;
1882  }
1883  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1884  {
1885  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1886  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1887  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1888  if (itCqi == m_ueCqi.end ())
1889  {
1890  // create a new entry
1891  std::vector <double> newCqi;
1892  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1893  {
1894  if (i == j)
1895  {
1896  newCqi.push_back (sinr);
1897  }
1898  else
1899  {
1900  // initialize with NO_SINR value.
1901  newCqi.push_back (NO_SINR);
1902  }
1903 
1904  }
1905  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1906  // generate correspondent timer
1907  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1908  }
1909  else
1910  {
1911  // update the value
1912  (*itCqi).second.at (i) = sinr;
1913  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1914  // update correspondent timer
1915  std::map <uint16_t, uint32_t>::iterator itTimers;
1916  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1917  (*itTimers).second = m_cqiTimersThreshold;
1918 
1919  }
1920 
1921  }
1922  // remove obsolete info on allocation
1923  m_allocationMaps.erase (itMap);
1924  }
1925  break;
1926  case UlCqi_s::SRS:
1927  {
1928  // get the RNTI from vendor specific parameters
1929  uint16_t rnti = 0;
1930  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1931  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1932  {
1933  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1934  {
1935  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1936  rnti = vsp->GetRnti ();
1937  }
1938  }
1939  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1940  itCqi = m_ueCqi.find (rnti);
1941  if (itCqi == m_ueCqi.end ())
1942  {
1943  // create a new entry
1944  std::vector <double> newCqi;
1945  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1946  {
1947  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1948  newCqi.push_back (sinr);
1949  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1950 
1951  }
1952  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1953  // generate correspondent timer
1954  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1955  }
1956  else
1957  {
1958  // update the values
1959  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1960  {
1961  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1962  (*itCqi).second.at (j) = sinr;
1963  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1964  }
1965  // update correspondent timer
1966  std::map <uint16_t, uint32_t>::iterator itTimers;
1967  itTimers = m_ueCqiTimers.find (rnti);
1968  (*itTimers).second = m_cqiTimersThreshold;
1969 
1970  }
1971 
1972 
1973  }
1974  break;
1975  case UlCqi_s::PUCCH_1:
1976  case UlCqi_s::PUCCH_2:
1977  case UlCqi_s::PRACH:
1978  {
1979  NS_FATAL_ERROR ("FdBetFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1980  }
1981  break;
1982  default:
1983  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1984  }
1985  return;
1986 }
1987 
1988 void
1990 {
1991  // refresh DL CQI P01 Map
1992  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1993  while (itP10 != m_p10CqiTimers.end ())
1994  {
1995  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1996  if ((*itP10).second == 0)
1997  {
1998  // delete correspondent entries
1999  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
2000  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
2001  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
2002  m_p10CqiRxed.erase (itMap);
2003  std::map <uint16_t,uint32_t>::iterator temp = itP10;
2004  itP10++;
2005  m_p10CqiTimers.erase (temp);
2006  }
2007  else
2008  {
2009  (*itP10).second--;
2010  itP10++;
2011  }
2012  }
2013 
2014  // refresh DL CQI A30 Map
2015  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
2016  while (itA30 != m_a30CqiTimers.end ())
2017  {
2018  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2019  if ((*itA30).second == 0)
2020  {
2021  // delete correspondent entries
2022  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
2023  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
2024  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
2025  m_a30CqiRxed.erase (itMap);
2026  std::map <uint16_t,uint32_t>::iterator temp = itA30;
2027  itA30++;
2028  m_a30CqiTimers.erase (temp);
2029  }
2030  else
2031  {
2032  (*itA30).second--;
2033  itA30++;
2034  }
2035  }
2036 
2037  return;
2038 }
2039 
2040 
2041 void
2043 {
2044  // refresh UL CQI Map
2045  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
2046  while (itUl != m_ueCqiTimers.end ())
2047  {
2048  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2049  if ((*itUl).second == 0)
2050  {
2051  // delete correspondent entries
2052  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
2053  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
2054  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
2055  (*itMap).second.clear ();
2056  m_ueCqi.erase (itMap);
2057  std::map <uint16_t,uint32_t>::iterator temp = itUl;
2058  itUl++;
2059  m_ueCqiTimers.erase (temp);
2060  }
2061  else
2062  {
2063  (*itUl).second--;
2064  itUl++;
2065  }
2066  }
2067 
2068  return;
2069 }
2070 
2071 void
2072 FdBetFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
2073 {
2074  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
2075  LteFlowId_t flow (rnti, lcid);
2076  it = m_rlcBufferReq.find (flow);
2077  if (it != m_rlcBufferReq.end ())
2078  {
2079  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2080  // Update queues: RLC tx order Status, ReTx, Tx
2081  // Update status queue
2082  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2083  {
2084  (*it).second.m_rlcStatusPduSize = 0;
2085  }
2086  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
2087  {
2088  (*it).second.m_rlcRetransmissionQueueSize = 0;
2089  }
2090  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2091  {
2092  uint32_t rlcOverhead;
2093  if (lcid == 1)
2094  {
2095  // for SRB1 (using RLC AM) it's better to
2096  // overestimate RLC overhead rather than
2097  // underestimate it and risk unneeded
2098  // segmentation which increases delay
2099  rlcOverhead = 4;
2100  }
2101  else
2102  {
2103  // minimum RLC overhead due to header
2104  rlcOverhead = 2;
2105  }
2106  // update transmission queue
2107  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2108  {
2109  (*it).second.m_rlcTransmissionQueueSize = 0;
2110  }
2111  else
2112  {
2113  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2114  }
2115  }
2116  }
2117  else
2118  {
2119  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2120  }
2121 }
2122 
2123 void
2124 FdBetFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2125 {
2126 
2127  size = size - 2; // remove the minimum RLC overhead
2128  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2129  if (it != m_ceBsrRxed.end ())
2130  {
2131  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2132  if ((*it).second >= size)
2133  {
2134  (*it).second -= size;
2135  }
2136  else
2137  {
2138  (*it).second = 0;
2139  }
2140  }
2141  else
2142  {
2143  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2144  }
2145 
2146 }
2147 
2148 void
2150 {
2151  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2153  params.m_rnti = rnti;
2154  params.m_transmissionMode = txMode;
2156 }
2157 
2158 
2159 }
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
std::vector< struct UlInfoListElement_s > m_ulInfoList
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:88
virtual void SchedDlMacBufferReq(const struct SchedDlMacBufferReqParameters &params)
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
smart pointer class similar to boost::intrusive_ptr
Definition: ptr.h:60
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by "...
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
virtual ~FdBetFfMacScheduler()
Destructor.
#define HARQ_PERIOD
Definition: lte-common.h:30
Hold a bool native type.
Definition: boolean.h:38
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register the class in the ns-3 factory.
Definition: object-base.h:38
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
virtual void CschedLcReleaseReq(const struct CschedLcReleaseReqParameters &params)
virtual void CschedUeConfigReq(const struct CschedUeConfigReqParameters &params)
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
enum ns3::UlCqi_s::Type_e m_type
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
virtual void SchedDlPagingBufferReq(const struct SchedDlPagingBufferReqParameters &params)
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
std::vector< uint16_t > m_sinr
virtual void DoDispose(void)
This method is called by Object::Dispose or by the object's destructor, whichever comes first...
std::vector< uint8_t > DlHarqProcessesTimer_t
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file...
Definition: assert.h:61
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:170
std::vector< uint8_t > m_mcs
Definition: ff-mac-common.h:95
virtual void SchedUlTriggerReq(const struct SchedUlTriggerReqParameters &params)
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
std::vector< struct UlDciListElement_s > m_dciList
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:223
#define NS_FATAL_ERROR(msg)
fatal error handling
Definition: fatal-error.h:95
See section 4.3.10 buildRARListElement.
std::map< uint16_t, fdbetsFlowPerf_t > m_flowStatsDl
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
virtual void SchedDlTriggerReq(const struct SchedDlTriggerReqParameters &params)
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
std::map< uint16_t, uint8_t > m_p10CqiRxed
std::vector< uint16_t > m_rachAllocationMap
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
FfMacSchedSapUser * m_schedSapUser
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Blind Equal Throughput scheduler...
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
Hold an unsigned integer type.
Definition: uinteger.h:46
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
static uint8_t TxMode2LayerNum(uint8_t txMode)
Definition: lte-common.cc:170
Ptr< SampleEmitter > s
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
std::vector< uint8_t > m_ndi
Definition: ff-mac-common.h:96
FfMacCschedSapProvider * m_cschedSapProvider
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
Provides the SCHED SAP.
virtual void CschedUeReleaseReq(const struct CschedUeReleaseReqParameters &params)
std::map< uint16_t, uint32_t > m_p10CqiTimers
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
virtual void SchedDlRlcBufferReq(const struct SchedDlRlcBufferReqParameters &params)
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:233
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
std::vector< struct DlInfoListElement_s > m_dlInfoList
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
FfMacSchedSapProvider * m_schedSapProvider
friend class FdBetSchedulerMemberCschedSapProvider
virtual void SchedUlCqiInfoReq(const struct SchedUlCqiInfoReqParameters &params)
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
std::vector< uint16_t > m_tbsSize
Definition: ff-mac-common.h:94
See section 4.3.9 rlcPDU_ListElement.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
FfMacCschedSapUser * m_cschedSapUser
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
virtual void SchedUlNoiseInterferenceReq(const struct SchedUlNoiseInterferenceReqParameters &params)
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::map< uint16_t, std::vector< double > > m_ueCqi
std::map< uint16_t, uint8_t > m_uesTxMode
std::vector< uint8_t > m_rv
Definition: ff-mac-common.h:97
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
std::map< uint16_t, uint32_t > m_a30CqiTimers
static Time Now(void)
Return the "current simulation time".
Definition: simulator.cc:180
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
UlCqiFilter_t m_ulCqiFilter
std::vector< struct RachListElement_s > m_rachList
#define SRS_CQI_RNTI_VSP
This abstract base class identifies the interface by means of which the helper object can plug on the...
virtual void CschedCellConfigReq(const struct CschedCellConfigReqParameters &params)
CSCHED_CELL_CONFIG_REQ.
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:84
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
std::vector< struct RachListElement_s > m_rachList
virtual void CschedLcConfigReq(const struct CschedLcConfigReqParameters &params)
static double fpS11dot3toDouble(uint16_t val)
Definition: lte-common.cc:114
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
std::vector< uint8_t > UlHarqProcessesStatus_t
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
std::vector< uint8_t > DlHarqProcessesStatus_t
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
static uint32_t BsrId2BufferSize(uint8_t val)
Definition: lte-common.cc:142
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:213
static const int FdBetType0AllocationRbg[4]
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
virtual void SchedDlCqiInfoReq(const struct SchedDlCqiInfoReqParameters &params)
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
std::map< uint16_t, fdbetsFlowPerf_t > m_flowStatsUl
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
bool m_harqOn
m_harqOn when false inhibit te HARQ mechanisms (by default active)
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:193
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Parameters of the SCHED_UL_CONFIG_IND primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
#define HARQ_DL_TIMEOUT
virtual void SchedDlRachInfoReq(const struct SchedDlRachInfoReqParameters &params)
#define NO_SINR
struct DlDciListElement_s m_dci
std::vector< struct BuildRarListElement_s > m_buildRarList
virtual void SchedUlMacCtrlInfoReq(const struct SchedUlMacCtrlInfoReqParameters &params)
a unique identifier for an interface.
Definition: type-id.h:49
TypeId SetParent(TypeId tid)
Definition: type-id.cc:610
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
#define HARQ_PROC_NUM
virtual void SchedUlSrInfoReq(const struct SchedUlSrInfoReqParameters &params)
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
friend class FdBetSchedulerMemberSchedSapProvider
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
std::vector< struct BuildDataListElement_s > m_buildDataList
std::map< uint16_t, uint32_t > m_ceBsrRxed
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
See section 4.3.8 builDataListElement.