A Discrete-Event Network Simulator
API
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
fdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/fdmt-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <set>
32 #include <cfloat>
33 
34 NS_LOG_COMPONENT_DEFINE ("FdMtFfMacScheduler");
35 
36 namespace ns3 {
37 
38 static const int FdMtType0AllocationRbg[4] = {
39  10, // RGB size 1
40  26, // RGB size 2
41  63, // RGB size 3
42  110 // RGB size 4
43 }; // see table 7.1.6.1-1 of 36.213
44 
45 
46 NS_OBJECT_ENSURE_REGISTERED (FdMtFfMacScheduler);
47 
48 
49 
51 {
52 public:
54 
55  // inherited from FfMacCschedSapProvider
56  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
57  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
58  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
59  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
60  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
61 
62 private:
65 };
66 
68 {
69 }
70 
72 {
73 }
74 
75 
76 void
78 {
80 }
81 
82 void
84 {
86 }
87 
88 
89 void
91 {
93 }
94 
95 void
97 {
99 }
100 
101 void
103 {
105 }
106 
107 
108 
109 
111 {
112 public:
114 
115  // inherited from FfMacSchedSapProvider
116  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
117  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
118  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
119  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
120  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
121  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
122  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
123  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
124  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
125  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
126  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
127 
128 
129 private:
132 };
133 
134 
135 
137 {
138 }
139 
140 
142  : m_scheduler (scheduler)
143 {
144 }
145 
146 void
148 {
150 }
151 
152 void
154 {
156 }
157 
158 void
160 {
162 }
163 
164 void
166 {
168 }
169 
170 void
172 {
174 }
175 
176 void
178 {
180 }
181 
182 void
184 {
186 }
187 
188 void
190 {
192 }
193 
194 void
196 {
198 }
199 
200 void
202 {
204 }
205 
206 void
208 {
210 }
211 
212 
213 
214 
215 
217  : m_cschedSapUser (0),
218  m_schedSapUser (0),
219  m_nextRntiUl (0)
220 {
221  m_amc = CreateObject <LteAmc> ();
224 }
225 
227 {
228  NS_LOG_FUNCTION (this);
229 }
230 
231 void
233 {
234  NS_LOG_FUNCTION (this);
236  m_dlHarqProcessesTimer.clear ();
238  m_dlInfoListBuffered.clear ();
239  m_ulHarqCurrentProcessId.clear ();
240  m_ulHarqProcessesStatus.clear ();
242  delete m_cschedSapProvider;
243  delete m_schedSapProvider;
244 }
245 
246 TypeId
248 {
249  static TypeId tid = TypeId ("ns3::FdMtFfMacScheduler")
251  .AddConstructor<FdMtFfMacScheduler> ()
252  .AddAttribute ("CqiTimerThreshold",
253  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
254  UintegerValue (1000),
255  MakeUintegerAccessor (&FdMtFfMacScheduler::m_cqiTimersThreshold),
256  MakeUintegerChecker<uint32_t> ())
257  .AddAttribute ("HarqEnabled",
258  "Activate/Deactivate the HARQ [by default is active].",
259  BooleanValue (true),
260  MakeBooleanAccessor (&FdMtFfMacScheduler::m_harqOn),
261  MakeBooleanChecker ())
262  .AddAttribute ("UlGrantMcs",
263  "The MCS of the UL grant, must be [0..15] (default 0)",
264  UintegerValue (0),
265  MakeUintegerAccessor (&FdMtFfMacScheduler::m_ulGrantMcs),
266  MakeUintegerChecker<uint8_t> ())
267  ;
268  return tid;
269 }
270 
271 
272 
273 void
275 {
276  m_cschedSapUser = s;
277 }
278 
279 void
281 {
282  m_schedSapUser = s;
283 }
284 
287 {
288  return m_cschedSapProvider;
289 }
290 
293 {
294  return m_schedSapProvider;
295 }
296 
297 void
299 {
300  NS_LOG_FUNCTION (this);
301  // Read the subset of parameters used
302  m_cschedCellConfig = params;
305  cnf.m_result = SUCCESS;
307  return;
308 }
309 
310 void
312 {
313  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
314  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
315  if (it == m_uesTxMode.end ())
316  {
317  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
318  // generate HARQ buffers
319  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
320  DlHarqProcessesStatus_t dlHarqPrcStatus;
321  dlHarqPrcStatus.resize (8,0);
322  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
323  DlHarqProcessesTimer_t dlHarqProcessesTimer;
324  dlHarqProcessesTimer.resize (8,0);
325  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
326  DlHarqProcessesDciBuffer_t dlHarqdci;
327  dlHarqdci.resize (8);
328  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
329  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
330  dlHarqRlcPdu.resize (2);
331  dlHarqRlcPdu.at (0).resize (8);
332  dlHarqRlcPdu.at (1).resize (8);
333  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
334  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
335  UlHarqProcessesStatus_t ulHarqPrcStatus;
336  ulHarqPrcStatus.resize (8,0);
337  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
338  UlHarqProcessesDciBuffer_t ulHarqdci;
339  ulHarqdci.resize (8);
340  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
341  }
342  else
343  {
344  (*it).second = params.m_transmissionMode;
345  }
346  return;
347 }
348 
349 void
351 {
352  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
353 
354  std::set <uint16_t>::iterator it;
355  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
356  {
357  it = m_flowStatsDl.find (params.m_rnti);
358 
359  if (it == m_flowStatsDl.end ())
360  {
361  m_flowStatsDl.insert (params.m_rnti);
362  m_flowStatsUl.insert (params.m_rnti);
363  }
364  }
365 
366  return;
367 }
368 
369 void
371 {
372  NS_LOG_FUNCTION (this);
373  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
374  {
375  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
376  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
377  while (it!=m_rlcBufferReq.end ())
378  {
379  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
380  {
381  temp = it;
382  it++;
383  m_rlcBufferReq.erase (temp);
384  }
385  else
386  {
387  it++;
388  }
389  }
390  }
391  return;
392 }
393 
394 void
396 {
397  NS_LOG_FUNCTION (this);
398 
399  m_uesTxMode.erase (params.m_rnti);
400  m_dlHarqCurrentProcessId.erase (params.m_rnti);
401  m_dlHarqProcessesStatus.erase (params.m_rnti);
402  m_dlHarqProcessesTimer.erase (params.m_rnti);
403  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
405  m_ulHarqCurrentProcessId.erase (params.m_rnti);
406  m_ulHarqProcessesStatus.erase (params.m_rnti);
407  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
408  m_flowStatsDl.erase (params.m_rnti);
409  m_flowStatsUl.erase (params.m_rnti);
410  m_ceBsrRxed.erase (params.m_rnti);
411  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
412  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
413  while (it!=m_rlcBufferReq.end ())
414  {
415  if ((*it).first.m_rnti == params.m_rnti)
416  {
417  temp = it;
418  it++;
419  m_rlcBufferReq.erase (temp);
420  }
421  else
422  {
423  it++;
424  }
425  }
426  if (m_nextRntiUl == params.m_rnti)
427  {
428  m_nextRntiUl = 0;
429  }
430 
431  return;
432 }
433 
434 
435 void
437 {
438  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
439  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
440 
441  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
442 
443  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
444 
445  it = m_rlcBufferReq.find (flow);
446 
447  if (it == m_rlcBufferReq.end ())
448  {
449  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
450  }
451  else
452  {
453  (*it).second = params;
454  }
455 
456  return;
457 }
458 
459 void
461 {
462  NS_LOG_FUNCTION (this);
463  NS_FATAL_ERROR ("method not implemented");
464  return;
465 }
466 
467 void
469 {
470  NS_LOG_FUNCTION (this);
471  NS_FATAL_ERROR ("method not implemented");
472  return;
473 }
474 
475 int
477 {
478  for (int i = 0; i < 4; i++)
479  {
480  if (dlbandwidth < FdMtType0AllocationRbg[i])
481  {
482  return (i + 1);
483  }
484  }
485 
486  return (-1);
487 }
488 
489 
490 int
492 {
493  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
494  int lcActive = 0;
495  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
496  {
497  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
498  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
499  || ((*it).second.m_rlcStatusPduSize > 0) ))
500  {
501  lcActive++;
502  }
503  if ((*it).first.m_rnti > rnti)
504  {
505  break;
506  }
507  }
508  return (lcActive);
509 
510 }
511 
512 
513 uint8_t
515 {
516  NS_LOG_FUNCTION (this << rnti);
517 
518  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
519  if (it == m_dlHarqCurrentProcessId.end ())
520  {
521  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
522  }
523  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
524  if (itStat == m_dlHarqProcessesStatus.end ())
525  {
526  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
527  }
528  uint8_t i = (*it).second;
529  do
530  {
531  i = (i + 1) % HARQ_PROC_NUM;
532  }
533  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
534  if ((*itStat).second.at (i) == 0)
535  {
536  return (true);
537  }
538  else
539  {
540  return (false); // return a not valid harq proc id
541  }
542 }
543 
544 
545 
546 uint8_t
548 {
549  NS_LOG_FUNCTION (this << rnti);
550 
551  if (m_harqOn == false)
552  {
553  return (0);
554  }
555 
556 
557  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
558  if (it == m_dlHarqCurrentProcessId.end ())
559  {
560  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
561  }
562  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
563  if (itStat == m_dlHarqProcessesStatus.end ())
564  {
565  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
566  }
567  uint8_t i = (*it).second;
568  do
569  {
570  i = (i + 1) % HARQ_PROC_NUM;
571  }
572  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
573  if ((*itStat).second.at (i) == 0)
574  {
575  (*it).second = i;
576  (*itStat).second.at (i) = 1;
577  }
578  else
579  {
580  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
581  }
582 
583  return ((*it).second);
584 }
585 
586 
587 void
589 {
590  NS_LOG_FUNCTION (this);
591 
592  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
593  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
594  {
595  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
596  {
597  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
598  {
599  // reset HARQ process
600 
601  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
602  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
603  if (itStat == m_dlHarqProcessesStatus.end ())
604  {
605  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
606  }
607  (*itStat).second.at (i) = 0;
608  (*itTimers).second.at (i) = 0;
609  }
610  else
611  {
612  (*itTimers).second.at (i)++;
613  }
614  }
615  }
616 
617 }
618 
619 
620 void
622 {
623  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
624  // API generated by RLC for triggering the scheduling of a DL subframe
625 
626 
627  // evaluate the relative channel quality indicator for each UE per each RBG
628  // (since we are using allocation type 0 the small unit of allocation is RBG)
629  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
630 
631  RefreshDlCqiMaps ();
632 
634  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
635  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
636  std::vector <bool> rbgMap; // global RBGs map
637  uint16_t rbgAllocatedNum = 0;
638  std::set <uint16_t> rntiAllocated;
639  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
641 
642  // update UL HARQ proc id
643  std::map <uint16_t, uint8_t>::iterator itProcId;
644  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
645  {
646  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
647  }
648 
649  // RACH Allocation
651  uint16_t rbStart = 0;
652  std::vector <struct RachListElement_s>::iterator itRach;
653  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
654  {
655  NS_ASSERT_MSG (m_amc->GetTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
656  BuildRarListElement_s newRar;
657  newRar.m_rnti = (*itRach).m_rnti;
658  // DL-RACH Allocation
659  // Ideal: no needs of configuring m_dci
660  // UL-RACH Allocation
661  newRar.m_grant.m_rnti = newRar.m_rnti;
662  newRar.m_grant.m_mcs = m_ulGrantMcs;
663  uint16_t rbLen = 1;
664  uint16_t tbSizeBits = 0;
665  // find lowest TB size that fits UL grant estimated size
666  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
667  {
668  rbLen++;
669  tbSizeBits = m_amc->GetTbSizeFromMcs (m_ulGrantMcs, rbLen);
670  }
671  if (tbSizeBits < (*itRach).m_estimatedSize)
672  {
673  // no more allocation space: finish allocation
674  break;
675  }
676  newRar.m_grant.m_rbStart = rbStart;
677  newRar.m_grant.m_rbLen = rbLen;
678  newRar.m_grant.m_tbSize = tbSizeBits / 8;
679  newRar.m_grant.m_hopping = false;
680  newRar.m_grant.m_tpc = 0;
681  newRar.m_grant.m_cqiRequest = false;
682  newRar.m_grant.m_ulDelay = false;
683  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
684  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
685  {
686  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
687  }
688  rbStart = rbStart + rbLen;
689 
690  if (m_harqOn == true)
691  {
692  // generate UL-DCI for HARQ retransmissions
693  UlDciListElement_s uldci;
694  uldci.m_rnti = newRar.m_rnti;
695  uldci.m_rbLen = rbLen;
696  uldci.m_rbStart = rbStart;
697  uldci.m_mcs = m_ulGrantMcs;
698  uldci.m_tbSize = tbSizeBits / 8;
699  uldci.m_ndi = 1;
700  uldci.m_cceIndex = 0;
701  uldci.m_aggrLevel = 1;
702  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
703  uldci.m_hopping = false;
704  uldci.m_n2Dmrs = 0;
705  uldci.m_tpc = 0; // no power control
706  uldci.m_cqiRequest = false; // only period CQI at this stage
707  uldci.m_ulIndex = 0; // TDD parameter
708  uldci.m_dai = 1; // TDD parameter
709  uldci.m_freqHopping = 0;
710  uldci.m_pdcchPowerOffset = 0; // not used
711 
712  uint8_t harqId = 0;
713  std::map <uint16_t, uint8_t>::iterator itProcId;
714  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
715  if (itProcId == m_ulHarqCurrentProcessId.end ())
716  {
717  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
718  }
719  harqId = (*itProcId).second;
720  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
721  if (itDci == m_ulHarqProcessesDciBuffer.end ())
722  {
723  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
724  }
725  (*itDci).second.at (harqId) = uldci;
726  }
727 
728  ret.m_buildRarList.push_back (newRar);
729  }
730  m_rachList.clear ();
731 
732 
733  // Process DL HARQ feedback
735  // retrieve past HARQ retx buffered
736  if (m_dlInfoListBuffered.size () > 0)
737  {
738  if (params.m_dlInfoList.size () > 0)
739  {
740  NS_LOG_INFO (this << " Received DL-HARQ feedback");
741  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
742  }
743  }
744  else
745  {
746  if (params.m_dlInfoList.size () > 0)
747  {
749  }
750  }
751  if (m_harqOn == false)
752  {
753  // Ignore HARQ feedback
754  m_dlInfoListBuffered.clear ();
755  }
756  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
757  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
758  {
759  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
760  if (itRnti != rntiAllocated.end ())
761  {
762  // RNTI already allocated for retx
763  continue;
764  }
765  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
766  std::vector <bool> retx;
767  NS_LOG_INFO (this << " Processing DLHARQ feedback");
768  if (nLayers == 1)
769  {
770  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
771  retx.push_back (false);
772  }
773  else
774  {
775  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
776  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
777  }
778  if (retx.at (0) || retx.at (1))
779  {
780  // retrieve HARQ process information
781  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
782  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
783  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
784  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
785  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
786  {
787  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
788  }
789 
790  DlDciListElement_s dci = (*itHarq).second.at (harqId);
791  int rv = 0;
792  if (dci.m_rv.size () == 1)
793  {
794  rv = dci.m_rv.at (0);
795  }
796  else
797  {
798  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
799  }
800 
801  if (rv == 3)
802  {
803  // maximum number of retx reached -> drop process
804  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
805  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
806  if (it == m_dlHarqProcessesStatus.end ())
807  {
808  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
809  }
810  (*it).second.at (harqId) = 0;
811  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
812  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
813  {
814  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
815  }
816  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
817  {
818  (*itRlcPdu).second.at (k).at (harqId).clear ();
819  }
820  continue;
821  }
822  // check the feasibility of retransmitting on the same RBGs
823  // translate the DCI to Spectrum framework
824  std::vector <int> dciRbg;
825  uint32_t mask = 0x1;
826  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
827  for (int j = 0; j < 32; j++)
828  {
829  if (((dci.m_rbBitmap & mask) >> j) == 1)
830  {
831  dciRbg.push_back (j);
832  NS_LOG_INFO ("\t" << j);
833  }
834  mask = (mask << 1);
835  }
836  bool free = true;
837  for (uint8_t j = 0; j < dciRbg.size (); j++)
838  {
839  if (rbgMap.at (dciRbg.at (j)) == true)
840  {
841  free = false;
842  break;
843  }
844  }
845  if (free)
846  {
847  // use the same RBGs for the retx
848  // reserve RBGs
849  for (uint8_t j = 0; j < dciRbg.size (); j++)
850  {
851  rbgMap.at (dciRbg.at (j)) = true;
852  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
853  rbgAllocatedNum++;
854  }
855 
856  NS_LOG_INFO (this << " Send retx in the same RBGs");
857  }
858  else
859  {
860  // find RBGs for sending HARQ retx
861  uint8_t j = 0;
862  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
863  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
864  std::vector <bool> rbgMapCopy = rbgMap;
865  while ((j < dciRbg.size ())&&(startRbg != rbgId))
866  {
867  if (rbgMapCopy.at (rbgId) == false)
868  {
869  rbgMapCopy.at (rbgId) = true;
870  dciRbg.at (j) = rbgId;
871  j++;
872  }
873  rbgId++;
874  }
875  if (j == dciRbg.size ())
876  {
877  // find new RBGs -> update DCI map
878  uint32_t rbgMask = 0;
879  for (uint16_t k = 0; k < dciRbg.size (); k++)
880  {
881  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
882  rbgAllocatedNum++;
883  }
884  dci.m_rbBitmap = rbgMask;
885  rbgMap = rbgMapCopy;
886  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
887  }
888  else
889  {
890  // HARQ retx cannot be performed on this TTI -> store it
891  dlInfoListUntxed.push_back (params.m_dlInfoList.at (i));
892  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
893  }
894  }
895  // retrieve RLC PDU list for retx TBsize and update DCI
897  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
898  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
899  {
900  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
901  }
902  for (uint8_t j = 0; j < nLayers; j++)
903  {
904  if (retx.at (j))
905  {
906  if (j >= dci.m_ndi.size ())
907  {
908  // for avoiding errors in MIMO transient phases
909  dci.m_ndi.push_back (0);
910  dci.m_rv.push_back (0);
911  dci.m_mcs.push_back (0);
912  dci.m_tbsSize.push_back (0);
913  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
914  }
915  else
916  {
917  dci.m_ndi.at (j) = 0;
918  dci.m_rv.at (j)++;
919  (*itHarq).second.at (harqId).m_rv.at (j)++;
920  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
921  }
922  }
923  else
924  {
925  // empty TB of layer j
926  dci.m_ndi.at (j) = 0;
927  dci.m_rv.at (j) = 0;
928  dci.m_mcs.at (j) = 0;
929  dci.m_tbsSize.at (j) = 0;
930  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
931  }
932  }
933  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
934  {
935  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
936  for (uint8_t j = 0; j < nLayers; j++)
937  {
938  if (retx.at (j))
939  {
940  if (j < dci.m_ndi.size ())
941  {
942  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
943  }
944  }
945  }
946 
947  if (rlcPduListPerLc.size () > 0)
948  {
949  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
950  }
951  }
952  newEl.m_rnti = rnti;
953  newEl.m_dci = dci;
954  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
955  // refresh timer
956  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
957  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
958  {
959  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
960  }
961  (*itHarqTimer).second.at (harqId) = 0;
962  ret.m_buildDataList.push_back (newEl);
963  rntiAllocated.insert (rnti);
964  }
965  else
966  {
967  // update HARQ process status
968  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
969  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
970  if (it == m_dlHarqProcessesStatus.end ())
971  {
972  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
973  }
974  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
975  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
976  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
977  {
978  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
979  }
980  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
981  {
982  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
983  }
984  }
985  }
986  m_dlInfoListBuffered.clear ();
987  m_dlInfoListBuffered = dlInfoListUntxed;
988 
989  if (rbgAllocatedNum == rbgNum)
990  {
991  // all the RBGs are already allocated -> exit
992  if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
993  {
995  }
996  return;
997  }
998 
999 
1000 
1001  for (int i = 0; i < rbgNum; i++)
1002  {
1003  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1004  if (rbgMap.at (i) == false)
1005  {
1006  std::set <uint16_t>::iterator it;
1007  std::set <uint16_t>::iterator itMax = m_flowStatsDl.end ();
1008  double rcqiMax = 0.0;
1009  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
1010  {
1011  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it));
1012  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it))))
1013  {
1014  // UE already allocated for HARQ or without HARQ process available -> drop it
1015  if (itRnti != rntiAllocated.end ())
1016  {
1017  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it));
1018  }
1019  if (!HarqProcessAvailability ((*it)))
1020  {
1021  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it));
1022  }
1023  continue;
1024  }
1025 
1026  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1027  itCqi = m_a30CqiRxed.find ((*it));
1028  std::map <uint16_t,uint8_t>::iterator itTxMode;
1029  itTxMode = m_uesTxMode.find ((*it));
1030  if (itTxMode == m_uesTxMode.end ())
1031  {
1032  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it));
1033  }
1034  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1035  std::vector <uint8_t> sbCqi;
1036  if (itCqi == m_a30CqiRxed.end ())
1037  {
1038  for (uint8_t k = 0; k < nLayer; k++)
1039  {
1040  sbCqi.push_back (1); // start with lowest value
1041  }
1042  }
1043  else
1044  {
1045  sbCqi = (*itCqi).second.m_higherLayerSelected.at (i).m_sbCqi;
1046  }
1047  uint8_t cqi1 = sbCqi.at (0);
1048  uint8_t cqi2 = 1;
1049  if (sbCqi.size () > 1)
1050  {
1051  cqi2 = sbCqi.at (1);
1052  }
1053  if ((cqi1 > 0)||(cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1054  {
1055  if (LcActivePerFlow ((*it)) > 0)
1056  {
1057  // this UE has data to transmit
1058  double achievableRate = 0.0;
1059  uint8_t mcs = 0;
1060  for (uint8_t k = 0; k < nLayer; k++)
1061  {
1062  if (sbCqi.size () > k)
1063  {
1064  mcs = m_amc->GetMcsFromCqi (sbCqi.at (k));
1065  }
1066  else
1067  {
1068  // no info on this subband -> worst MCS
1069  mcs = 0;
1070  }
1071  achievableRate += ((m_amc->GetTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
1072  }
1073 
1074  double rcqi = achievableRate;
1075  NS_LOG_INFO (this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate << " RCQI " << rcqi);
1076 
1077  if (rcqi > rcqiMax)
1078  {
1079  rcqiMax = rcqi;
1080  itMax = it;
1081  }
1082  }
1083  } // end if cqi
1084 
1085  } // end for m_rlcBufferReq
1086 
1087  if (itMax == m_flowStatsDl.end ())
1088  {
1089  // no UE available for this RB
1090  NS_LOG_INFO (this << " any UE found");
1091  }
1092  else
1093  {
1094  rbgMap.at (i) = true;
1095  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1096  itMap = allocationMap.find ((*itMax));
1097  if (itMap == allocationMap.end ())
1098  {
1099  // insert new element
1100  std::vector <uint16_t> tempMap;
1101  tempMap.push_back (i);
1102  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax), tempMap));
1103  }
1104  else
1105  {
1106  (*itMap).second.push_back (i);
1107  }
1108  NS_LOG_INFO (this << " UE assigned " << (*itMax));
1109  }
1110  } // end for RBG free
1111  } // end for RBGs
1112 
1113  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1114  // creating the correspondent DCIs
1115  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1116  while (itMap != allocationMap.end ())
1117  {
1118  // create new BuildDataListElement_s for this LC
1119  BuildDataListElement_s newEl;
1120  newEl.m_rnti = (*itMap).first;
1121  // create the DlDciListElement_s
1122  DlDciListElement_s newDci;
1123  newDci.m_rnti = (*itMap).first;
1124  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1125 
1126  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1127  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1128  if (lcActives == 0)
1129  {
1130  // Set to max value, to avoid divide by 0 below
1131  lcActives = (uint16_t)65535; // UINT16_MAX;
1132  }
1133  uint16_t RgbPerRnti = (*itMap).second.size ();
1134  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1135  itCqi = m_a30CqiRxed.find ((*itMap).first);
1136  std::map <uint16_t,uint8_t>::iterator itTxMode;
1137  itTxMode = m_uesTxMode.find ((*itMap).first);
1138  if (itTxMode == m_uesTxMode.end ())
1139  {
1140  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1141  }
1142  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1143  std::vector <uint8_t> worstCqi (2, 15);
1144  if (itCqi != m_a30CqiRxed.end ())
1145  {
1146  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1147  {
1148  if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1149  {
1150  NS_LOG_INFO (this << " RBG " << (*itMap).second.at (k) << " CQI " << (uint16_t)((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) );
1151  for (uint8_t j = 0; j < nLayer; j++)
1152  {
1153  if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1154  {
1155  if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1156  {
1157  worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1158  }
1159  }
1160  else
1161  {
1162  // no CQI for this layer of this suband -> worst one
1163  worstCqi.at (j) = 1;
1164  }
1165  }
1166  }
1167  else
1168  {
1169  for (uint8_t j = 0; j < nLayer; j++)
1170  {
1171  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1172  }
1173  }
1174  }
1175  }
1176  else
1177  {
1178  for (uint8_t j = 0; j < nLayer; j++)
1179  {
1180  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1181  }
1182  }
1183  for (uint8_t j = 0; j < nLayer; j++)
1184  {
1185  NS_LOG_INFO (this << " Layer " << (uint16_t)j << " CQI selected " << (uint16_t)worstCqi.at (j));
1186  }
1187  uint32_t bytesTxed = 0;
1188  for (uint8_t j = 0; j < nLayer; j++)
1189  {
1190  newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
1191  int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1192  newDci.m_tbsSize.push_back (tbSize);
1193  NS_LOG_INFO (this << " Layer " << (uint16_t)j << " MCS selected" << m_amc->GetMcsFromCqi (worstCqi.at (j)));
1194  bytesTxed += tbSize;
1195  }
1196 
1197  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1198  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1199  uint32_t rbgMask = 0;
1200  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1201  {
1202  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1203  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1204  }
1205  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1206 
1207  // create the rlc PDUs -> equally divide resources among actives LCs
1208  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1209  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1210  {
1211  if (((*itBufReq).first.m_rnti == (*itMap).first)
1212  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1213  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1214  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1215  {
1216  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1217  for (uint8_t j = 0; j < nLayer; j++)
1218  {
1219  RlcPduListElement_s newRlcEl;
1220  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1221  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1222  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1223  newRlcPduLe.push_back (newRlcEl);
1224  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1225  if (m_harqOn == true)
1226  {
1227  // store RLC PDU list for HARQ
1228  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1229  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1230  {
1231  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1232  }
1233  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1234  }
1235  }
1236  newEl.m_rlcPduList.push_back (newRlcPduLe);
1237  }
1238  if ((*itBufReq).first.m_rnti > (*itMap).first)
1239  {
1240  break;
1241  }
1242  }
1243  for (uint8_t j = 0; j < nLayer; j++)
1244  {
1245  newDci.m_ndi.push_back (1);
1246  newDci.m_rv.push_back (0);
1247  }
1248 
1249  newEl.m_dci = newDci;
1250 
1251  if (m_harqOn == true)
1252  {
1253  // store DCI for HARQ
1254  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1255  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1256  {
1257  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1258  }
1259  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1260  // refresh timer
1261  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1262  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1263  {
1264  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1265  }
1266  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1267  }
1268 
1269  // ...more parameters -> ingored in this version
1270 
1271  ret.m_buildDataList.push_back (newEl);
1272 
1273  itMap++;
1274  } // end while allocation
1275  ret.m_nrOfPdcchOfdmSymbols = 1;
1276 
1278 
1279 
1280  return;
1281 }
1282 
1283 void
1285 {
1286  NS_LOG_FUNCTION (this);
1287 
1288  m_rachList = params.m_rachList;
1289 
1290  return;
1291 }
1292 
1293 void
1295 {
1296  NS_LOG_FUNCTION (this);
1297 
1298  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1299  {
1300  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1301  {
1302  // wideband CQI reporting
1303  std::map <uint16_t,uint8_t>::iterator it;
1304  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1305  it = m_p10CqiRxed.find (rnti);
1306  if (it == m_p10CqiRxed.end ())
1307  {
1308  // create the new entry
1309  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1310  // generate correspondent timer
1311  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1312  }
1313  else
1314  {
1315  // update the CQI value and refresh correspondent timer
1316  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1317  // update correspondent timer
1318  std::map <uint16_t,uint32_t>::iterator itTimers;
1319  itTimers = m_p10CqiTimers.find (rnti);
1320  (*itTimers).second = m_cqiTimersThreshold;
1321  }
1322  }
1323  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1324  {
1325  // subband CQI reporting high layer configured
1326  std::map <uint16_t,SbMeasResult_s>::iterator it;
1327  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1328  it = m_a30CqiRxed.find (rnti);
1329  if (it == m_a30CqiRxed.end ())
1330  {
1331  // create the new entry
1332  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1333  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1334  }
1335  else
1336  {
1337  // update the CQI value and refresh correspondent timer
1338  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1339  std::map <uint16_t,uint32_t>::iterator itTimers;
1340  itTimers = m_a30CqiTimers.find (rnti);
1341  (*itTimers).second = m_cqiTimersThreshold;
1342  }
1343  }
1344  else
1345  {
1346  NS_LOG_ERROR (this << " CQI type unknown");
1347  }
1348  }
1349 
1350  return;
1351 }
1352 
1353 
1354 double
1355 FdMtFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1356 {
1357  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1358  if (itCqi == m_ueCqi.end ())
1359  {
1360  // no cqi info about this UE
1361  return (NO_SINR);
1362 
1363  }
1364  else
1365  {
1366  // take the average SINR value among the available
1367  double sinrSum = 0;
1368  int sinrNum = 0;
1369  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1370  {
1371  double sinr = (*itCqi).second.at (i);
1372  if (sinr != NO_SINR)
1373  {
1374  sinrSum += sinr;
1375  sinrNum++;
1376  }
1377  }
1378  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1379  // store the value
1380  (*itCqi).second.at (rb) = estimatedSinr;
1381  return (estimatedSinr);
1382  }
1383 }
1384 
1385 void
1387 {
1388  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1389 
1390  RefreshUlCqiMaps ();
1391 
1392  // Generate RBs map
1394  std::vector <bool> rbMap;
1395  uint16_t rbAllocatedNum = 0;
1396  std::set <uint16_t> rntiAllocated;
1397  std::vector <uint16_t> rbgAllocationMap;
1398  // update with RACH allocation map
1399  rbgAllocationMap = m_rachAllocationMap;
1400  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1401  m_rachAllocationMap.clear ();
1403 
1404  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1405  // remove RACH allocation
1406  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1407  {
1408  if (rbgAllocationMap.at (i) != 0)
1409  {
1410  rbMap.at (i) = true;
1411  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1412  }
1413  }
1414 
1415 
1416  if (m_harqOn == true)
1417  {
1418  // Process UL HARQ feedback
1419  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1420  {
1421  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1422  {
1423  // retx correspondent block: retrieve the UL-DCI
1424  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1425  std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1426  if (itProcId == m_ulHarqCurrentProcessId.end ())
1427  {
1428  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1429  }
1430  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1431  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1432  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1433  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1434  {
1435  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1436  continue;
1437  }
1438  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1439  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1440  if (itStat == m_ulHarqProcessesStatus.end ())
1441  {
1442  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1443  }
1444  if ((*itStat).second.at (harqId) >= 3)
1445  {
1446  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1447  continue;
1448  }
1449  bool free = true;
1450  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1451  {
1452  if (rbMap.at (j) == true)
1453  {
1454  free = false;
1455  NS_LOG_INFO (this << " BUSY " << j);
1456  }
1457  }
1458  if (free)
1459  {
1460  // retx on the same RBs
1461  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1462  {
1463  rbMap.at (j) = true;
1464  rbgAllocationMap.at (j) = dci.m_rnti;
1465  NS_LOG_INFO ("\tRB " << j);
1466  rbAllocatedNum++;
1467  }
1468  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1469  }
1470  else
1471  {
1472  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1473  continue;
1474  }
1475  dci.m_ndi = 0;
1476  // Update HARQ buffers with new HarqId
1477  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1478  (*itStat).second.at (harqId) = 0;
1479  (*itHarq).second.at ((*itProcId).second) = dci;
1480  ret.m_dciList.push_back (dci);
1481  rntiAllocated.insert (dci.m_rnti);
1482  }
1483  else
1484  {
1485  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1486  }
1487  }
1488  }
1489 
1490  std::map <uint16_t,uint32_t>::iterator it;
1491  int nflows = 0;
1492 
1493  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1494  {
1495  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1496  // select UEs with queues not empty and not yet allocated for HARQ
1497  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1498  {
1499  nflows++;
1500  }
1501  }
1502 
1503  if (nflows == 0)
1504  {
1505  if (ret.m_dciList.size () > 0)
1506  {
1507  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1509  }
1510 
1511  return; // no flows to be scheduled
1512  }
1513 
1514 
1515  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1516  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1517  if (rbPerFlow < 3)
1518  {
1519  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1520  }
1521  int rbAllocated = 0;
1522 
1523  if (m_nextRntiUl != 0)
1524  {
1525  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1526  {
1527  if ((*it).first == m_nextRntiUl)
1528  {
1529  break;
1530  }
1531  }
1532  if (it == m_ceBsrRxed.end ())
1533  {
1534  NS_LOG_ERROR (this << " no user found");
1535  }
1536  }
1537  else
1538  {
1539  it = m_ceBsrRxed.begin ();
1540  m_nextRntiUl = (*it).first;
1541  }
1542  do
1543  {
1544  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1545  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1546  {
1547  // UE already allocated for UL-HARQ -> skip it
1548  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1549  it++;
1550  if (it == m_ceBsrRxed.end ())
1551  {
1552  // restart from the first
1553  it = m_ceBsrRxed.begin ();
1554  }
1555  continue;
1556  }
1557  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1558  {
1559  // limit to physical resources last resource assignment
1560  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1561  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1562  if (rbPerFlow < 3)
1563  {
1564  // terminate allocation
1565  rbPerFlow = 0;
1566  }
1567  }
1568 
1569  UlDciListElement_s uldci;
1570  uldci.m_rnti = (*it).first;
1571  uldci.m_rbLen = rbPerFlow;
1572  bool allocated = false;
1573  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1574  while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1575  {
1576  // check availability
1577  bool free = true;
1578  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1579  {
1580  if (rbMap.at (j) == true)
1581  {
1582  free = false;
1583  break;
1584  }
1585  }
1586  if (free)
1587  {
1588  uldci.m_rbStart = rbAllocated;
1589 
1590  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1591  {
1592  rbMap.at (j) = true;
1593  // store info on allocation for managing ul-cqi interpretation
1594  rbgAllocationMap.at (j) = (*it).first;
1595  }
1596  rbAllocated += rbPerFlow;
1597  allocated = true;
1598  break;
1599  }
1600  rbAllocated++;
1601  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1602  {
1603  // limit to physical resources last resource assignment
1604  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1605  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1606  if (rbPerFlow < 3)
1607  {
1608  // terminate allocation
1609  rbPerFlow = 0;
1610  }
1611  }
1612  }
1613  if (!allocated)
1614  {
1615  // unable to allocate new resource: finish scheduling
1616  m_nextRntiUl = (*it).first;
1617  if (ret.m_dciList.size () > 0)
1618  {
1620  }
1621  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1622  return;
1623  }
1624 
1625 
1626 
1627  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1628  int cqi = 0;
1629  if (itCqi == m_ueCqi.end ())
1630  {
1631  // no cqi info about this UE
1632  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1633  }
1634  else
1635  {
1636  // take the lowest CQI value (worst RB)
1637  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1638  if (minSinr == NO_SINR)
1639  {
1640  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1641  }
1642  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1643  {
1644  double sinr = (*itCqi).second.at (i);
1645  if (sinr == NO_SINR)
1646  {
1647  sinr = EstimateUlSinr ((*it).first, i);
1648  }
1649  if ((*itCqi).second.at (i) < minSinr)
1650  {
1651  minSinr = (*itCqi).second.at (i);
1652  }
1653  }
1654 
1655  // translate SINR -> cqi: WILD ACK: same as DL
1656  double s = log2 ( 1 + (
1657  std::pow (10, minSinr / 10 ) /
1658  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1659  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1660  if (cqi == 0)
1661  {
1662  it++;
1663  if (it == m_ceBsrRxed.end ())
1664  {
1665  // restart from the first
1666  it = m_ceBsrRxed.begin ();
1667  }
1668  NS_LOG_DEBUG (this << " UE discared for CQI=0, RNTI " << uldci.m_rnti);
1669  // remove UE from allocation map
1670  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1671  {
1672  rbgAllocationMap.at (i) = 0;
1673  }
1674  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1675  }
1676  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1677  }
1678 
1679  uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1680  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1681  uldci.m_ndi = 1;
1682  uldci.m_cceIndex = 0;
1683  uldci.m_aggrLevel = 1;
1684  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1685  uldci.m_hopping = false;
1686  uldci.m_n2Dmrs = 0;
1687  uldci.m_tpc = 0; // no power control
1688  uldci.m_cqiRequest = false; // only period CQI at this stage
1689  uldci.m_ulIndex = 0; // TDD parameter
1690  uldci.m_dai = 1; // TDD parameter
1691  uldci.m_freqHopping = 0;
1692  uldci.m_pdcchPowerOffset = 0; // not used
1693  ret.m_dciList.push_back (uldci);
1694  // store DCI for HARQ_PERIOD
1695  uint8_t harqId = 0;
1696  if (m_harqOn == true)
1697  {
1698  std::map <uint16_t, uint8_t>::iterator itProcId;
1699  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1700  if (itProcId == m_ulHarqCurrentProcessId.end ())
1701  {
1702  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1703  }
1704  harqId = (*itProcId).second;
1705  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1706  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1707  {
1708  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1709  }
1710  (*itDci).second.at (harqId) = uldci;
1711  }
1712 
1713  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1714 
1715 
1716  it++;
1717  if (it == m_ceBsrRxed.end ())
1718  {
1719  // restart from the first
1720  it = m_ceBsrRxed.begin ();
1721  }
1722  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1723  {
1724  // Stop allocation: no more PRBs
1725  m_nextRntiUl = (*it).first;
1726  break;
1727  }
1728  }
1729  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1730 
1731 
1732  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1734 
1735  return;
1736 }
1737 
1738 void
1740 {
1741  NS_LOG_FUNCTION (this);
1742  return;
1743 }
1744 
1745 void
1747 {
1748  NS_LOG_FUNCTION (this);
1749  return;
1750 }
1751 
1752 void
1754 {
1755  NS_LOG_FUNCTION (this);
1756 
1757  std::map <uint16_t,uint32_t>::iterator it;
1758 
1759  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1760  {
1761  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1762  {
1763  // buffer status report
1764  // note that this scheduler does not differentiate the
1765  // allocation according to which LCGs have more/less bytes
1766  // to send.
1767  // Hence the BSR of different LCGs are just summed up to get
1768  // a total queue size that is used for allocation purposes.
1769 
1770  uint32_t buffer = 0;
1771  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1772  {
1773  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1774  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1775  }
1776 
1777  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1778  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1779  it = m_ceBsrRxed.find (rnti);
1780  if (it == m_ceBsrRxed.end ())
1781  {
1782  // create the new entry
1783  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1784  }
1785  else
1786  {
1787  // update the buffer size value
1788  (*it).second = buffer;
1789  }
1790  }
1791  }
1792 
1793  return;
1794 }
1795 
1796 void
1798 {
1799  NS_LOG_FUNCTION (this);
1800 // retrieve the allocation for this subframe
1801  switch (m_ulCqiFilter)
1802  {
1804  {
1805  // filter all the CQIs that are not SRS based
1806  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1807  {
1808  return;
1809  }
1810  }
1811  break;
1813  {
1814  // filter all the CQIs that are not SRS based
1815  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1816  {
1817  return;
1818  }
1819  }
1821  break;
1822 
1823  default:
1824  NS_FATAL_ERROR ("Unknown UL CQI type");
1825  }
1826 
1827  switch (params.m_ulCqi.m_type)
1828  {
1829  case UlCqi_s::PUSCH:
1830  {
1831  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1832  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1833  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1834  itMap = m_allocationMaps.find (params.m_sfnSf);
1835  if (itMap == m_allocationMaps.end ())
1836  {
1837  return;
1838  }
1839  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1840  {
1841  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1842  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1843  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1844  if (itCqi == m_ueCqi.end ())
1845  {
1846  // create a new entry
1847  std::vector <double> newCqi;
1848  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1849  {
1850  if (i == j)
1851  {
1852  newCqi.push_back (sinr);
1853  }
1854  else
1855  {
1856  // initialize with NO_SINR value.
1857  newCqi.push_back (NO_SINR);
1858  }
1859 
1860  }
1861  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1862  // generate correspondent timer
1863  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1864  }
1865  else
1866  {
1867  // update the value
1868  (*itCqi).second.at (i) = sinr;
1869  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1870  // update correspondent timer
1871  std::map <uint16_t, uint32_t>::iterator itTimers;
1872  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1873  (*itTimers).second = m_cqiTimersThreshold;
1874 
1875  }
1876 
1877  }
1878  // remove obsolete info on allocation
1879  m_allocationMaps.erase (itMap);
1880  }
1881  break;
1882  case UlCqi_s::SRS:
1883  {
1884  // get the RNTI from vendor specific parameters
1885  uint16_t rnti = 0;
1886  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1887  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1888  {
1889  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1890  {
1891  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1892  rnti = vsp->GetRnti ();
1893  }
1894  }
1895  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1896  itCqi = m_ueCqi.find (rnti);
1897  if (itCqi == m_ueCqi.end ())
1898  {
1899  // create a new entry
1900  std::vector <double> newCqi;
1901  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1902  {
1903  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1904  newCqi.push_back (sinr);
1905  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1906 
1907  }
1908  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1909  // generate correspondent timer
1910  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1911  }
1912  else
1913  {
1914  // update the values
1915  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1916  {
1917  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1918  (*itCqi).second.at (j) = sinr;
1919  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1920  }
1921  // update correspondent timer
1922  std::map <uint16_t, uint32_t>::iterator itTimers;
1923  itTimers = m_ueCqiTimers.find (rnti);
1924  (*itTimers).second = m_cqiTimersThreshold;
1925 
1926  }
1927 
1928 
1929  }
1930  break;
1931  case UlCqi_s::PUCCH_1:
1932  case UlCqi_s::PUCCH_2:
1933  case UlCqi_s::PRACH:
1934  {
1935  NS_FATAL_ERROR ("FdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1936  }
1937  break;
1938  default:
1939  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1940  }
1941  return;
1942 }
1943 
1944 void
1946 {
1947  // refresh DL CQI P01 Map
1948  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1949  while (itP10 != m_p10CqiTimers.end ())
1950  {
1951  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1952  if ((*itP10).second == 0)
1953  {
1954  // delete correspondent entries
1955  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1956  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1957  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1958  m_p10CqiRxed.erase (itMap);
1959  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1960  itP10++;
1961  m_p10CqiTimers.erase (temp);
1962  }
1963  else
1964  {
1965  (*itP10).second--;
1966  itP10++;
1967  }
1968  }
1969 
1970  // refresh DL CQI A30 Map
1971  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1972  while (itA30 != m_a30CqiTimers.end ())
1973  {
1974  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1975  if ((*itA30).second == 0)
1976  {
1977  // delete correspondent entries
1978  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1979  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1980  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
1981  m_a30CqiRxed.erase (itMap);
1982  std::map <uint16_t,uint32_t>::iterator temp = itA30;
1983  itA30++;
1984  m_a30CqiTimers.erase (temp);
1985  }
1986  else
1987  {
1988  (*itA30).second--;
1989  itA30++;
1990  }
1991  }
1992 
1993  return;
1994 }
1995 
1996 
1997 void
1999 {
2000  // refresh UL CQI Map
2001  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
2002  while (itUl != m_ueCqiTimers.end ())
2003  {
2004  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2005  if ((*itUl).second == 0)
2006  {
2007  // delete correspondent entries
2008  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
2009  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
2010  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
2011  (*itMap).second.clear ();
2012  m_ueCqi.erase (itMap);
2013  std::map <uint16_t,uint32_t>::iterator temp = itUl;
2014  itUl++;
2015  m_ueCqiTimers.erase (temp);
2016  }
2017  else
2018  {
2019  (*itUl).second--;
2020  itUl++;
2021  }
2022  }
2023 
2024  return;
2025 }
2026 
2027 void
2028 FdMtFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
2029 {
2030  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
2031  LteFlowId_t flow (rnti, lcid);
2032  it = m_rlcBufferReq.find (flow);
2033  if (it != m_rlcBufferReq.end ())
2034  {
2035  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2036  // Update queues: RLC tx order Status, ReTx, Tx
2037  // Update status queue
2038  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2039  {
2040  (*it).second.m_rlcStatusPduSize = 0;
2041  }
2042  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
2043  {
2044  (*it).second.m_rlcRetransmissionQueueSize = 0;
2045  }
2046  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2047  {
2048  uint32_t rlcOverhead;
2049  if (lcid == 1)
2050  {
2051  // for SRB1 (using RLC AM) it's better to
2052  // overestimate RLC overhead rather than
2053  // underestimate it and risk unneeded
2054  // segmentation which increases delay
2055  rlcOverhead = 4;
2056  }
2057  else
2058  {
2059  // minimum RLC overhead due to header
2060  rlcOverhead = 2;
2061  }
2062  // update transmission queue
2063  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2064  {
2065  (*it).second.m_rlcTransmissionQueueSize = 0;
2066  }
2067  else
2068  {
2069  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2070  }
2071  }
2072  }
2073  else
2074  {
2075  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2076  }
2077 }
2078 
2079 void
2080 FdMtFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2081 {
2082 
2083  size = size - 2; // remove the minimum RLC overhead
2084  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2085  if (it != m_ceBsrRxed.end ())
2086  {
2087  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2088  if ((*it).second >= size)
2089  {
2090  (*it).second -= size;
2091  }
2092  else
2093  {
2094  (*it).second = 0;
2095  }
2096  }
2097  else
2098  {
2099  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2100  }
2101 
2102 }
2103 
2104 void
2106 {
2107  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2109  params.m_rnti = rnti;
2110  params.m_transmissionMode = txMode;
2112 }
2113 
2114 
2115 }
std::vector< struct UlInfoListElement_s > m_ulInfoList
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:88
int LcActivePerFlow(uint16_t rnti)
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
virtual void CschedLcReleaseReq(const struct CschedLcReleaseReqParameters &params)
smart pointer class similar to boost::intrusive_ptr
Definition: ptr.h:60
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by "...
#define HARQ_PERIOD
Definition: lte-common.h:30
Hold a bool native type.
Definition: boolean.h:38
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register the class in the ns-3 factory.
Definition: object-base.h:38
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
enum ns3::UlCqi_s::Type_e m_type
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
virtual void CschedUeConfigReq(const struct CschedUeConfigReqParameters &params)
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
std::vector< uint16_t > m_sinr
std::vector< uint8_t > DlHarqProcessesTimer_t
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file...
Definition: assert.h:61
std::vector< uint16_t > m_rachAllocationMap
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:170
std::vector< uint8_t > m_mcs
Definition: ff-mac-common.h:95
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
std::vector< struct UlDciListElement_s > m_dciList
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:223
#define NS_FATAL_ERROR(msg)
fatal error handling
Definition: fatal-error.h:95
See section 4.3.10 buildRARListElement.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
virtual void SchedUlCqiInfoReq(const struct SchedUlCqiInfoReqParameters &params)
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Maximize Throughput scheduler...
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
virtual void CschedCellConfigReq(const struct CschedCellConfigReqParameters &params)
CSCHED_CELL_CONFIG_REQ.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
std::vector< struct RachListElement_s > m_rachList
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
friend class FdMtSchedulerMemberSchedSapProvider
virtual void DoDispose(void)
This method is called by Object::Dispose or by the object's destructor, whichever comes first...
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
static const int FdMtType0AllocationRbg[4]
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
int GetRbgSize(int dlbandwidth)
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Hold an unsigned integer type.
Definition: uinteger.h:46
static uint8_t TxMode2LayerNum(uint8_t txMode)
Definition: lte-common.cc:170
Ptr< SampleEmitter > s
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
std::vector< uint8_t > m_ndi
Definition: ff-mac-common.h:96
virtual void SchedUlNoiseInterferenceReq(const struct SchedUlNoiseInterferenceReqParameters &params)
Provides the SCHED SAP.
virtual void SchedUlMacCtrlInfoReq(const struct SchedUlMacCtrlInfoReqParameters &params)
FfMacCschedSapProvider * m_cschedSapProvider
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:233
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
virtual void CschedLcConfigReq(const struct CschedLcConfigReqParameters &params)
std::vector< struct DlInfoListElement_s > m_dlInfoList
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
virtual void SchedDlRlcBufferReq(const struct SchedDlRlcBufferReqParameters &params)
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
std::map< uint16_t, uint32_t > m_a30CqiTimers
std::set< uint16_t > m_flowStatsDl
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
std::vector< uint16_t > m_tbsSize
Definition: ff-mac-common.h:94
See section 4.3.9 rlcPDU_ListElement.
std::set< uint16_t > m_flowStatsUl
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
virtual ~FdMtFfMacScheduler()
Destructor.
friend class FdMtSchedulerMemberCschedSapProvider
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
FfMacSchedSapUser * m_schedSapUser
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
bool m_harqOn
m_harqOn when false inhibit te HARQ mechanisms (by default active)
std::vector< uint8_t > m_rv
Definition: ff-mac-common.h:97
FfMacCschedSapUser * m_cschedSapUser
std::map< uint16_t, std::vector< double > > m_ueCqi
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
std::map< uint16_t, uint8_t > m_uesTxMode
UlCqiFilter_t m_ulCqiFilter
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
#define SRS_CQI_RNTI_VSP
virtual void SchedDlPagingBufferReq(const struct SchedDlPagingBufferReqParameters &params)
This abstract base class identifies the interface by means of which the helper object can plug on the...
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:84
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
std::vector< struct RachListElement_s > m_rachList
static double fpS11dot3toDouble(uint16_t val)
Definition: lte-common.cc:114
std::vector< uint8_t > UlHarqProcessesStatus_t
std::vector< uint8_t > DlHarqProcessesStatus_t
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
static uint32_t BsrId2BufferSize(uint8_t val)
Definition: lte-common.cc:142
std::map< uint16_t, uint32_t > m_ueCqiTimers
std::map< uint16_t, uint32_t > m_p10CqiTimers
virtual void SchedUlTriggerReq(const struct SchedUlTriggerReqParameters &params)
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
virtual void SchedDlRachInfoReq(const struct SchedDlRachInfoReqParameters &params)
virtual void SchedDlMacBufferReq(const struct SchedDlMacBufferReqParameters &params)
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:213
std::map< uint16_t, uint8_t > m_p10CqiRxed
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:193
virtual void SchedDlCqiInfoReq(const struct SchedDlCqiInfoReqParameters &params)
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_UL_CONFIG_IND primitive.
virtual void SchedDlTriggerReq(const struct SchedDlTriggerReqParameters &params)
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
virtual void CschedUeReleaseReq(const struct CschedUeReleaseReqParameters &params)
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
#define HARQ_DL_TIMEOUT
#define NO_SINR
struct DlDciListElement_s m_dci
std::vector< struct BuildRarListElement_s > m_buildRarList
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
a unique identifier for an interface.
Definition: type-id.h:49
virtual void SchedUlSrInfoReq(const struct SchedUlSrInfoReqParameters &params)
TypeId SetParent(TypeId tid)
Definition: type-id.cc:610
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
#define HARQ_PROC_NUM
std::map< uint16_t, uint32_t > m_ceBsrRxed
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
std::vector< struct BuildDataListElement_s > m_buildDataList
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
FfMacSchedSapProvider * m_schedSapProvider
See section 4.3.8 builDataListElement.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)